
DRAFT
The VTK-m
User’s Guide
VTK-m version 1.0

Kenneth Moreland

May 25, 2016

http://m.vtk.org
http://kitware.com

http://m.vtk.org
http://kitware.com

DRAFT
Published by Kitware Inc. c©2016

All product names mentioned herein are the trademarks of their respective owners.
This document is available under a Creative Commons Attribution 4.0 International license available at [add

url]

This project has been funded in whole or in part with Federal funds from the Department of Energy, including
from Sandia National Laboratories, Los Alamos National Laboratory, Advanced Simulation and Computing,

and Oak Ridge National Laboratory.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.

Printed and produced in the United States of America.
ISBN number [FILL IN ISBN NUMBERS HERE]

DRAFT
CONTRIBUTORS

This book includes contributions from the VTK-m community including the VTK-m development team and the
user community.

ABOUT THE COVER

Join the VTK-m Commuity at m.vtk.org

m.vtk.org

DRAFT

DRAFT
CONTENTS

I Getting Started 1

1 Introduction 3

1.1 How to Use This Guide . 3

1.2 Conventions Used in This Guide . 4

2 File I/O 7

2.1 Readers . 7

2.1.1 Legacy VTK File Reader . 7

2.2 Writers . 8

2.2.1 Legacy VTK File Writer . 8

3 Provided Filters 9

3.1 Field Filters . 9

3.1.1 Cell Average . 10

3.1.2 Point Elevation . 11

3.2 Data Set Filters . 11

3.2.1 External Faces . 12

3.2.2 Vertex Clustering . 13

3.3 Data Set and Field Filters . 13

3.3.1 Marching Cubes . 14

3.3.2 Threshold . 15

4 Rendering 17

II Using VTK-m 19

5 Basic Provisions 21

DRAFT

CONTENTS

5.1 General Approach . 21

5.2 Package Structure . 22

5.3 Function and Method Exports . 23

5.4 Error Handling . 24

5.5 Core Data Types . 25

5.5.1 Single Number Types . 26

5.5.2 Vector Types . 26

5.5.3 Pair . 27

5.6 Traits . 27

5.6.1 Type Traits . 28

5.6.2 Vector Traits . 29

5.7 List Tags . 31

5.7.1 Building List Tags . 31

5.7.2 Type Lists . 32

5.7.3 Operating on Lists . 33

6 Array Handles 35

6.1 Creating Array Handles . 35

6.2 Array Portals . 37

6.3 Allocating and Populating Array Handles . 39

6.4 Interface to Execution Environment . 40

7 Device Adapters 43

7.1 Device Adapter Tag . 43

7.1.1 Default Device Adapter . 43

7.1.2 Specifying Device Adapter Tags . 45

7.2 Device Adapter Algorithms . 46

7.3 Implementing Device Adapters . 48

7.3.1 Tag . 49

7.3.2 Array Manager Execution . 49

7.3.3 Algorithms . 51

7.3.4 Timer Implementation . 55

8 Timers 57

9 Fancy Array Storage 59

9.1 Basic Storage . 60

9.2 Provided Fancy Arrays . 60

vi CONTENTS

DRAFT

CONTENTS

9.2.1 Constant Arrays . 61

9.2.2 Counting Arrays . 61

9.2.3 Cast Arrays . 62

9.2.4 Permuted Arrays . 63

9.2.5 Zipped Arrays . 64

9.2.6 Coordinate System Arrays . 65

9.2.7 Composite Vector Arrays . 66

9.2.8 Grouped Vector Arrays . 68

9.3 Implementing Fancy Arrays . 68

9.3.1 Implicit Array Handles . 68

9.3.2 Transformed Arrays . 70

9.3.3 Derived Storage . 72

9.4 Adapting Data Structures . 79

10 Dynamic Array Handles 85

10.1 Querying and Casting . 85

10.2 Casting to Unknown Types . 87

10.3 Specifying Cast Lists . 88

11 Data Sets 91

11.1 Building Data Sets . 91

11.1.1 Creating Uniform Grids . 91

11.1.2 Creating Rectilinear Grids . 92

11.1.3 Creating Explicit Meshes . 93

11.1.4 Add Fields . 95

11.2 Cell Sets . 96

11.2.1 Structured Cell Sets . 97

11.2.2 Explicit Cell Sets . 98

11.2.3 Cell Set Permutations . 99

11.2.4 Dynamic Cell Sets . 99

11.2.5 Blocks and Assemblies . 100

11.2.6 Zero Cell Sets . 100

11.3 Fields . 100

11.4 Coordinate Systems . 101

12 Filter Policies 103

13 OpenGL Interoperability 105

CONTENTS vii

DRAFT

CONTENTS

III Developing with VTK-m 107

14 Worklets 109

14.1 Worklet Types . 109

14.2 Dispatchers . 110

14.3 Provided Worklets . 110

14.4 Creating Worklets . 110

14.4.1 Control Signature . 111

Type List Tags . 112

14.4.2 Execution Signature . 113

14.4.3 Input Domain . 113

14.4.4 Worklet Operator . 113

14.5 Worklet Type Reference . 114

14.5.1 Field Map . 114

14.5.2 Topology Map . 117

Point to Cell Map . 117

Cell To Point Map . 120

General Topology Maps . 124

14.6 Whole Arrays . 126

14.7 Execution Objects . 129

14.8 Scatter . 130

14.9 Error Handling . 133

15 Creating Filters 135

16 Math 137

16.1 Basic Math . 137

16.2 Vector Analysis . 140

16.3 Matrices . 141

16.4 Newton’s Method . 142

17 Working with Cells 145

17.1 Cell Shape Tags and Ids . 145

17.1.1 Converting Between Tags and Identifiers . 145

17.1.2 Cell Traits . 147

17.2 Parametric and World Coordinates . 148

17.3 Interpolation . 149

17.4 Derivatives . 149

viii CONTENTS

DRAFT

CONTENTS

IV Advanced Development 151

18 Advanced Worklet Customization 153

18.1 Transferring Arguments from Control to Execution . 153

18.1.1 Type Checks . 153

18.1.2 Transport . 154

18.1.3 Fetch . 155

18.2 Function Interface Objects . 156

18.2.1 Declaring and Creating . 156

18.2.2 Parameters . 157

18.2.3 Invoking . 158

18.2.4 Modifying Parameters . 160

18.2.5 Transformations . 161

18.2.6 For Each . 164

18.3 Invocation Objects . 165

18.4 Creating New ControlSignature Tags . 165

18.5 Creating New ExecutionSignature Tags . 165

18.6 Creating New Worklet Types . 165

18.6.1 New Worklet Superclasses . 165

18.6.2 Dispatch Workflow . 165

18.6.3 New Dispatch Classes . 165

V Appendix 167

A Coding Conventions 169

Index 173

CONTENTS ix

DRAFT

DRAFT
LIST OF FIGURES

1.1 Comparison of Marching Cubes implementations. 4

5.1 Diagram of the VTK-m framework. 22

5.2 VTK-m package hierarchy. 23

9.1 Array handles, storage objects, and the underlying data source. 59

11.1 An example explicit mesh. 93

11.2 The relationship between a cell shape and its topological elements (points, edges, and faces). 97

11.3 The arrangement of points and cells in a 3D structured grid. 97

11.4 Example of cells in a CellSetExplict and the arrays that define them. 98

14.1 Annotated example of a worklet declaration. 111

17.1 Basic Cell Shapes . 146

DRAFT

DRAFT
LIST OF EXAMPLES

2.1 Reading a legacy VTK file. 7

2.2 Writing a legacy VTK file. 8

3.1 Using PointElevation, which is a field filter. 10

3.2 Using VertexClustering, which is a data set filter. 12

3.3 Using MarchingCubes, which is a data set and field filter. 14

5.1 Usage of export macro. 24

5.2 Simple error reporting. 24

5.3 Using VTKM ASSERT. 25

5.4 Creating vector types. 26

5.5 A Longer Vector. 27

5.6 Vector operations. 27

5.7 Repurposing a vtkm::Vec. 27

5.8 Definition of vtkm::TypeTraits<vtkm::Float32>. 28

5.9 Using TypeTraits for a generic remainder. 28

5.10 Definition of vtkm::VecTraits<vtkm::Id3>. 29

5.11 Using VecTraits for less functors. 30

5.12 Creating list tags. 31

5.13 Defining new type lists. 33

5.14 Converting dynamic types to static types with ListForEach. 33

6.1 Declaration of the vtkm::cont::ArrayHandle templated class. 35

6.2 Creating an ArrayHandle for output data. 35

6.3 Creating an ArrayHandle that points to a provided C array. 36

6.4 Creating an ArrayHandle that points to a provided std::vector. 36

6.5 Invalidating an ArrayHandle by letting the source std::vector leave scope. 36

6.6 A simple array portal implementation. 37

6.7 Using ArrayPortalToIterators. 38

DRAFT

LIST OF EXAMPLES

6.8 Using ArrayPortalToIteratorBegin and ArrayPortalToIteratorEnd. 38

6.9 Using portals from an ArrayHandle. 39

6.10 Allocating an ArrayHandle. 40

6.11 Populating a newly allocated ArrayHandle. 40

6.12 Using an execution array portal from an ArrayHandle. 41

7.1 Macros to port VTK-m code among different devices . 44

7.2 Specifying a device using a device adapter tag. 45

7.3 Specifying a default device for template parameters. 45

7.4 Prototype for vtkm::cont::DeviceAdapterAlgorithm. 46

7.5 Contents of the base header for a device adapter. 48

7.6 Implementation of a device adapter tag. 49

7.7 Prototype for vtkm::cont::internal::ArrayManagerExecution. 49

7.8 Specialization of ArrayManagerExecution. 50

7.9 Minimal specialization of DeviceAdapterAlgorithm. 52

7.10 Specialization of DeviceAdapterTimerImplementation. 55

8.1 Using vtkm::cont::Timer. 57

9.1 Declaration of the vtkm::cont::ArrayHandle templated class (again). 60

9.2 Specifying the storage type for an ArrayHandle. 60

9.3 Using ArrayHandleConstant. 61

9.4 Using make ArrayHandleConstant. 61

9.5 Using ArrayHandleIndex. 61

9.6 Using ArrayHandleCounting. 61

9.7 Using make ArrayHandleCounting. 62

9.8 Counting backwards with ArrayHandleCounting. 62

9.9 Using ArrayHandleCounting with vtkm::Vec objects. 62

9.10 Using ArrayHandleCast. 62

9.11 Using make ArrayHandleCast. 63

9.12 Using ArrayHandlePermutation. 63

9.13 Using make ArrayHandlePermutation. 63

9.14 Using ArrayHandleZip. 64

9.15 Using make ArrayHandleZip. 65

9.16 Using ArrayHandleUniformPointCoordinates. 65

9.17 Using a ArrayHandleCartesianProduct. 65

9.18 Using make ArrayHandleCartesianProduct. 66

9.19 Using ArrayHandleCompositeVector. 67

9.20 Using make ArrayHandleCompositeVector. 67

9.21 Combining vector components with ArrayHandleCompositeVector. 67

xiv LIST OF EXAMPLES

DRAFT

LIST OF EXAMPLES

9.22 Using ArrayHandleGroupVec. 68

9.23 Using make ArrayHandleGroupVec. 68

9.24 Functor that doubles an index. 69

9.25 Declaring a ArrayHandleImplicit. 69

9.26 Using make ArrayHandleImplicit. 69

9.27 Custom implicit array handle for even numbers. 69

9.28 Functor to scale and bias a value. 70

9.29 Using make ArrayHandleTransform. 71

9.30 Custom transform array handle for scale and bias. 71

9.31 Derived array portal for concatenated arrays. 72

9.32 Storage for derived container of concatenated arrays. 73

9.33 Prototype for vtkm::cont::internal::ArrayTransfer. 75

9.34 Prototype for ArrayTransfer constructor. 76

9.35 ArrayTransfer for derived storage of concatenated arrays. 77

9.36 ArrayHandle for derived storage of concatenated arrays. 78

9.37 Fictitious field storage used in custom array storage examples. 79

9.38 Array portal to adapt a third-party container to VTK-m. 80

9.39 Prototype for vtkm::cont::internal::Storage. 81

9.40 Storage to adapt a third-party container to VTK-m. 82

9.41 Array handle to adapt a third-party container to VTK-m. 82

9.42 Using an ArrayHandle with custom container. 83

9.43 Redefining the default array handle storage. 84

10.1 Creating a DynamicArrayHandle. 85

10.2 Non type-specific queries on DynamicArrayHandle. 86

10.3 Using DynamicArrayHandle::NewInstance(). 86

10.4 Querying the component and storage types of a DynamicArrayHandle. 86

10.5 Casting a DynamicArrayHandle to a concrete ArrayHandle. 87

10.6 Operating on DynamicArrayHandle with CastAndCall. 87

10.7 Trying all component types in a DynamicArrayHandle. 89

10.8 Specifying a single component type in a DynamicArrayHandle. 89

10.9 Specifying different storage types in a DynamicArrayHandle. 89

10.10Specifying both component and storage types in a DynamicArrayHandle. 89

10.11Using DynamicArrayHandleBase to accept generic dynamic array handles. 90

11.1 Creating a uniform grid. 92

11.2 Creating a uniform grid with custom origin and spacing. 92

11.3 Creating a rectilinear grid. 92

11.4 Creating an explicit mesh with DataSetBuilderExplicit. 93

LIST OF EXAMPLES xv

DRAFT

LIST OF EXAMPLES

11.5 Creating an explicit mesh with DataSetBuilderExplicitIterative. 94

11.6 Adding fields to a DataSet. 95

11.7 Subsampling a data set with CellSetPermutation. 99

14.1 A ControlSignature. 111

14.2 An ExecutionSignature. 113

14.3 An InputDomain declaration. 113

14.4 An overloaded parenthesis operator of a worklet. 113

14.5 Implementation and use of a field map worklet. 115

14.6 Leveraging field maps and field maps for general processing. 116

14.7 Implementation and use of a map point to cell worklet. 119

14.8 Implementation and use of a map cell to point worklet. 122

14.9 Using WholeArrayIn to access a lookup table in a worklet. 126

14.10Using ExecObject to access a lookup table in a worklet. 129

14.11Declaration of a scatter type in a worklet. 131

14.12Using ScatterUniform. 131

14.13Using ScatterCounting. 132

14.14Raising an error in the execution environment. 134

16.1 Creating a Matrix. 141

16.2 Using NewtonsMethod to solve a small system of nonlinear equations. 142

17.1 Using CellShapeIdToTag. 146

17.2 Using CellTraits to implement a polygon normal estimator. 147

17.3 Interpolating field values to a cell’s center. 149

17.4 Computing the derivative of the field at cell centers. 149

18.1 Behavior of vtkm::cont::arg::TypeCheck. 154

18.2 Behavior of vtkm::cont::arg::Transport. 155

18.3 Declaring vtkm::internal::FunctionInterface. 156

18.4 Using vtkm::internal::make FunctionInterface. 157

18.5 Getting the arity of a FunctionInterface. 157

18.6 Using FunctionInterface::GetParameter(). 157

18.7 Using FunctionInterface::SetParameter(). 158

18.8 Invoking a FunctionInterface. 158

18.9 Invoking a FunctionInterface with a transform. 158

18.10Getting return value from FunctionInterface safely. 159

18.11Appending parameters to a FunctionInterface. 160

18.12Replacing parameters in a FunctionInterface. 160

18.13Chaining Replace and Append with a FunctionInterface. 161

18.14Using a static transform of function interface class. 162

xvi LIST OF EXAMPLES

DRAFT

LIST OF EXAMPLES

18.15Using a dynamic transform of a function interface. 162

18.16Using DynamicTransform to cast dynamic arrays in a function interface. 163

18.17Using the ForEach feature of FunctionInterface. 164

LIST OF EXAMPLES xvii

DRAFT

DRAFTPart I

Getting Started

DRAFT

DRAFT
CHAPTER

ONE

INTRODUCTION

High-performance computing relies on ever finer threading. Advances in processor technology include ever greater
numbers of cores, hyperthreading, accelerators with integrated blocks of cores, and special vectorized instructions,
all of which require more software parallelism to achieve peak performance. Traditional visualization solutions
cannot support this extreme level of concurrency. Extreme scale systems require a new programming model and
a fundamental change in how we design algorithms. To address these issues we created VTK-m: the visualization
toolkit for multi-/many-core architectures.

VTK-m supports a number of algorithms and the ability to design further algorithms through a top-down design
with an emphasis on extreme parallelism. VTK-m also provides support for finding and building links across
topologies, making it possible to perform operations that determine manifold surfaces, interpolate generated
values, and find adjacencies. Although Dax provides a simplified high-level interface for programming, its
template-based code removes the overhead of abstraction.

VTK-m simplifies the development of parallel scientific visualization algorithms by providing a framework of
supporting functionality that allows developers to focus on visualization operations. Consider the listings in
Figure 1.1 that compares the size of the implementations for the Marching Cubes algorithm in VTK-m with the
equivalent algorithms implemented in the CUDA software development kit reference implementation and the
PISTON visualization library. Because VTK-m internally manages the parallel distribution of work and data,
the VTK-m implementation is shorter and easier to maintain. Additionally, VTK-m provides data abstractions
not provided by the other libraries that make code written in VTK-m more versatile.

Did you know?
VTK-m is written in C++ and makes extensive use of templates. The toolkit is implemented as a header
library, meaning that all the code is implemented in header files (with extension .h) and completely included
in any code that uses it. This allows the compiler to inline and specialize code for better performance.

1.1 How to Use This Guide

This user’s guide is organized into three parts to help guide novice to advanced users and to provide a convenient
reference. Part I, Getting Started, provides everything needed to get up and running with VTK-m. In this part
we learn the basics of reading and writing data files, using filters to process data, and perform basic rendering
to view the results.

Part II, Using VTK-m, dives deeper into the VTK-m library and provides all the information needed to customize
VTK-m’s data structures and support multiple devices.

DRAFT

1.2. Conventions Used in This Guide

CUDA SDK PISTON VTK-m
431 LOC 369 LOC 265 LOC

Figure 1.1: Comparison of the Marching Cubes algorithm in VTK-m and two other implementations. Implemen-
tations in VTK-m are simpler, shorter, more general, and easier to maintain. (Lines of code (LOC) measurements
come from cloc.

Part III, Developing with VTK-m, documents how to use VTK-m’s framework to develop new or custom visual-
ization algorithms. This part describes how worklets are used to implement and execute algorithms and how to
use worklets to implement new filters. Part III also describes the facilities available in the execution environment
that help write visualization algorithms.

Part IV, Advanced Development, exposes the inner workings of VTK-m and allows you to design new algorithmic
structures not already available. [This might be removed in the first version of the book.]

1.2 Conventions Used in This Guide

When documenting the VTK-m API, the following conventions are used.

• Filenames are printed in a sans serif font.

• C++ code is printed in a monospace font.

4 Chapter 1. Introduction

DRAFT

1.2. Conventions Used in This Guide

• Macros and namespaces from VTK-m are printed in red.

• Identifiers from VTK-m are printed in blue.

• Signatures, described in Chapter 14, and the tags used in them are printed in green.

This guide provides actual code samples throughout its discussions to demonstrate their use. These examples
are all valid code that can be compiled and used although it is often the case that code snippets are provided.
In such cases, the code must be placed in a larger context.

Did you know?
In this guide we periodically use these Did you know? boxes to provide additional information related to
the topic at hand.

Common Errors
Common Errors blocks are used to highlight some of the common problems or complications you might
encounter when dealing with the topic of discussion.

Chapter 1. Introduction 5

DRAFT

DRAFT
CHAPTER

TWO

FILE I/O

Before VTK-m can be used to process data, data need to be loaded into the system. VTK-m comes with a basic
file I/O package to get started developing very quickly. All the file I/O classes are declared under the vtkm::io
namespace.

Did you know?
Files are just one of many ways to get data in and out of VTK-m. In Part II we explore efficient ways to
define VTK-m data structures. In particular, Section 11.1 describes how to build VTK-m data set objects
and Section 9.4 documents how to adapt data structures defined in other libraries to be used directly in
VTK-m.

2.1 Readers

All reader classes provided by VTK-m are located in the vtkm::io::reader namespace. The general interface
for each reader class is to accept a filename in the constructor and to provide a ReadDataSet method to load
the data from disk.

The data in the file are returned in a vtkm::cont::DataSet object. Section ?? provides much more details
about the contents of a data set object, but for now we treat DataSet as an opaque object that can be passed
around readers, writers, filters, and rendering units.

2.1.1 Legacy VTK File Reader

Legacy VTK files are a simple open format for storing visualization data. These files typically have a .vtk
extension. Legacy VTK files are popular because they are simple to create and read and are consequently
supported by a large number of tools. The format of legacy VTK files is well documented in The VTK User’s
Guide1. Legacy VTK files can also be read and written with tools like ParaView and VisIt.

Legacy VTK files can be read using the vtkm::io::reader::VTKDataSetReader class. The constructor for
this class takes a string containing the filename. The ReadDataSet method reads the data from the previously
indicated file and returns a vtkm::cont::DataSet object, which can be used with filters and rendering.

Example 2.1: Reading a legacy VTK file.
1 # include <vtkm/io/ reader / VTKDataSetReader .h>

1A free excerpt describing the file format is available at http://www.vtk.org/Wiki/File:VTK-File-Formats.pdf.

http://www.vtk.org/Wiki/File:VTK-File-Formats.pdf

DRAFT

2.2. Writers

2
3 vtkm :: cont :: DataSet OpenDataFromVTKFile ()
4 {
5 vtkm :: io :: reader :: VTKDataSetReader reader (" data.vtk ");
6
7 return reader . ReadDataSet ();
8 }

2.2 Writers

All writer classes provided by VTK-m are located in the vtkm::io::writer namespace. The general interface for
each writer class is to accept a filename in the constructor and to provide a WriteDataSet method to save data
to the disk. The WriteDataSet method takes a vtkm::cont::DataSet object as an argument, which contains
the data to write to the file.

2.2.1 Legacy VTK File Writer

Legacy VTK files can be written using the vtkm::io::writer::VTKDataSetWriter class. The constructor for
this class takes a string containing the filename. The WriteDataSet method takes a vtkm::cont::DataSet
object and writes its data to the previously indicated file.

Example 2.2: Writing a legacy VTK file.
1 # include <vtkm/io/ writer / VTKDataSetWriter .h>
2
3 void SaveDataAsVTKFile (vtkm :: cont :: DataSet data)
4 {
5 vtkm :: io :: writer :: VTKDataSetWriter writer (" data.vtk ");
6
7 writer . WriteDataSet (data);
8 }

8 Chapter 2. File I/O

DRAFT
CHAPTER

THREE

PROVIDED FILTERS

Filters are functional units that take data as input and write new data as output. Filters operate on vtkm::-
cont::DataSet objects, which are introduced with the file I/O operations in Chapter ?? and are described in
more detail in Chapter 11. For now we treat DataSet mostly as an opaque object that can be passed around
readers, writers, filters, and rendering units.

Did you know?
The structure of filters in VTK-m is significantly simpler than their counterparts in VTK. VTK filters
are arranged in a dataflow network (a.k.a. a visualization pipeline) and execution management is handled
automatically. In contrast, VTK-m filters are simple imperative units, which are simply called with input
data and return output data.

VTK-m comes with several filters ready for use, and in this chapter we will give a brief overview of these filters.
We group filters based on the type of operation that they do and the shared interfaces that they have. Later
Part ?? describes the necessary steps in creating new filters in VTK-m.

3.1 Field Filters

Every vtkm::cont::DataSet object contains a list of fields. A field describes some numerical value associated
with different parts of the data set in space. Fields often represent physical properties such as temperature,
pressure, or velocity. Field filters are a class of filters that generate a new field. These new fields are typically
derived from one or more existing fields or point coordinates on the data set. For example, mass, volume, and
density are interrelated, and any one can be derived from the other two.

All field filters contain an Execute method that takes two arguments. The first argument is a vtkm::cont::-
DataSet object with the input data. The second argument specifies the field from which to derive a new field.
The field can be specified as either a string naming a field in the input DataSet object, as a vtkm::cont::Field
object, or as a coordinate system (typically retrived from a DataSet object with the GetCoordianteSystem
method). See Sections 11.3 and 11.4 for more information on fields and coordinate systems, respectively.

Field filters often need more information than just a data set and a field. Any additional information is provided
using methods in the filter class that changes the state. These methods are called before Execute. One such
method that all field filters have is SetOutputFieldName, which specifies the name assigned to the generated
field. If not specified, then the filter will use a default name.

The Execute method returns a vtkm::filter::ResultField object, which contains the state of the execution

DRAFT

3.1. Field Filters

and the data generated. A ResultField object has the following methods.

IsValid Returns a bool value specifying whether the execution completed successfully. If true, then the
execution was successful and the data stored in the ResultField is valid. If false, then the execution
failed.

GetDataSet Returns a DataSet containing the results of the execution. The data set returned is a shallow copy
of the input data with the generated field added.

GetField Returns the field information in a vtkm::cont::Field object. Field objects are described in Sec-
tion 11.3.

FieldAs Given a vtkm::cont::ArrayHandle object, allocates the array and copies the generated field data into
it.

The following example provides a simple demonstration of using a field filter. It specifically uses the point
elevation filter, which is one of the field filters.

Example 3.1: Using PointElevation, which is a field filter.
1 VTKM_CONT_EXPORT
2 vtkm :: cont :: DataSet ComputeAirPressure (vtkm :: cont :: DataSet dataSet)
3 {
4 vtkm :: filter :: PointElevation elevationFilter ;
5
6 // Use the elevation filter to estimate atmospheric pressure based on the
7 // height of the point coordinates . Atmospheric pressure is 101325 Pa at
8 // sea level and drops about 12 Pa per meter .
9 elevationFilter . SetOutputFieldName (" pressure ");

10 elevationFilter . SetLowPoint (0.0 , 0.0 , 0.0);
11 elevationFilter . SetHighPoint (0.0 , 0.0 , 2000.0);
12 elevationFilter . SetRange (101325.0 , 77325.0);
13
14 vtkm :: filter :: ResultField result =
15 elevationFilter . Execute (dataSet , dataSet . GetCoordinateSystem ());
16
17 if (! result . IsValid ())
18 {
19 throw vtkm :: cont :: ErrorControlBadValue (" Failed to run elevation filter .");
20 }
21
22 return result . GetDataSet ();
23 }

3.1.1 Cell Average

vtkm::filter::CellAverage is the cell average filter. It will take a data set with a collection of cells and a field
defined on the points of the data set and create a new field defined on the cells. The values of this new derived
field are computed by averaging the values of the input field at all the incident points. This is a simple way to
convert a point field to a cell field. Both the input data set and the input field are specified as arguments to the
Execute method.

The default name for the output cell field is the same name as the input point field. The name can be overridden
using the SetOutputFieldName method.

In addition the standard SetOutputFieldName and Execute methods, CellAverage provides the following meth-
ods.

10 Chapter 3. Provided Filters

DRAFT

3.2. Data Set Filters

SetActiveCellSet Sets the index for the cell set to use from the DataSet provided to the Execute method.
The default index is 0, which is the first cell set. If you want to set the active cell set by name, you can
use the GetCellSetIndex method on the DataSet object that will be used with Execute.

GetActiveCellSetIndex Returns the index to be used when getting a cell set from the DataSet passed to
Execute. Set with SetActiveCellSet.

3.1.2 Point Elevation

vtkm::filter::PointElevation computes the “elevation” of a field of point coordinates in space. The filter
will take a data set and a field of 3 dimensional vectors and compute the distance along a line defined by a low
point and a high point. Any point in the plane touching the low point and perpendicular to the line is set to the
minimum range value in the elevation whereas any point in the plane touching the high point and perpendicular
to the line is set to the maximum range value. All other values are interpolated linearly between these two
planes. This filter is commonly used to compute the elevation of points in some direction, but can be repurposed
for a variety of measures.

The input field (or coordinate system) is specified as the second argument to the Execute method. A vtkm::-
cont::DataSet that is expected to contain the field is also given but is otherwise unused. Example 3.1 gives a
demonstration of the elevation filter.

The default name for the output field is “elevation”, but that can be overridden using the SetOutputFieldName
method.

In addition to the standard SetOutputFieldName and Execute methods, PointElevation provides the following
methods.

SetLowPoint/SetHighPoint This pair of methods is used to set the low and high points, respectively, of the
elevation. Each method takes three floating point numbers specifying the x, y, and z components of the
low or high point.

SetRange Sets the range of values to use for the output field. This method takes two floating point numbers
specifying the low and high values, respectively.

3.2 Data Set Filters

Data set filters are a class of filters that generate a new data set with a new topology. This new topology is
typically derived from an existing data set. For example, a data set can be significantly altered by adding,
removing, or replacing cells.

All data set filters contain an Execute method that takes one argument: a vtkm::cont::DataSet object with
the input data.

Some data set filters need more information that just a data set when executing. Any additional information
is provided using methods in the filter class that changes the state. These methods are called before Execute.
One such method that all data set filters have is SetActiveCellSet, which selects which cell set in the input
DataSet to operate on. Likewise, SetActiveCoordinateSystem selects which coordinate system to operate on.
By default, the filter will operate on the first cell set and coordinate system. (See Sections 11.2 and 11.4 for
more information about cell sets and coordinate systems, respectively.)

The Execute method returns a vtkm::filter::ResultDataSet object, which contains the state of the execution
and the data generated. A ResultDataSet object has the following methods.

Chapter 3. Provided Filters 11

DRAFT

3.2. Data Set Filters

IsValid Returns a bool value specifying whether the execution completed successfully. If true, then the
execution was successful and the data stored in the ResultField is valid. If false, then the execution
failed.

GetDataSet Returns a DataSet containing the results of the execution.

Because the new data set is derived from existing data, it can often inherit field information from the original
data. All data set filters also contain a MapFieldOntoOutput method to map fields from the output to the
input. This method takes two arguments. The first argument is the ResultDataSet object returned from
the last call to Execute. The second argument is a vtkm::cont::Field object that comes from the input.
MapFieldOntoOutput returns a bool that is true if the field was successfully mapped and added to the output
data set in the ResultDataSet object.

Common Errors
Not all data set filters support the mapping of all input fields to the output. If the mapping is not supported,
MapFieldOntoOutput will simply return false.

The following example provides a simple demonstration of using a data set filter. It specifically uses the vertex
clustering filter, which is one of the data set filters.

Example 3.2: Using VertexClustering, which is a data set filter.
1 vtkm :: filter :: VertexClustering vertexClustering ;
2
3 vertexClustering . SetNumberOfDivisions (vtkm :: Id3 (128 ,128 ,128));
4
5 vtkm :: filter :: ResultDataSet result =
6 vertexClustering . Execute (originalSurface);
7
8 if (! result . IsValid ())
9 {

10 throw vtkm :: cont :: ErrorControlBadValue (" Failed to run vertex clustering .");
11 }
12
13 for (vtkm :: IdComponent fieldIndex = 0;
14 fieldIndex < originalSurface . GetNumberOfFields ();
15 fieldIndex ++)
16 {
17 vertexClustering . MapFieldOntoOutput (result ,
18 originalSurface . GetField (fieldIndex));
19 }
20
21 vtkm :: cont :: DataSet simplifiedSurface = result . GetDataSet ();

3.2.1 External Faces

vtkm::filter::ExternalFaces is a filter that extracts all the external faces from a polyhedral data set. An
external face is any face that is on the boundary of a mesh. Thus, if there is a hole in a volume, the boundary
of that hole will be considered external. More formally, an external face is one that belongs to only one cell in a
mesh.

12 Chapter 3. Provided Filters

DRAFT

3.3. Data Set and Field Filters

Common Errors
The current implementation of the external faces filter only supports tetrahedron cell cells. Future versions
will support general 3D cell shapes. [Remove this when the code is updated.]

The external faces filter has no extra methods beyond the base methods of data set filters (such as Execute and
MapFieldOntoOutput) because it requires no further metadata for its operations.

3.2.2 Vertex Clustering

vtkm::filter::VertexClustering is a filter that simplifies a polygonal mesh. It does so by dividing space into
a uniform grid of bin and then merges together all points located in the same bin. The smaller the dimensions of
this binning grid, the fewer polygons will be in the output cells and the coarser the representation. This surface
simplification is an important operation to support level of detail (LOD) rendering in visualization applications.
Example 3.2 provides a demonstration of the vertex clustering filter.

In addition to the standard Execute, MapFieldOntoOutput, and other methods, VertexClustering provides
the following methods.

SetNumberOfDivisions Set the dimensions of the uniform grid that establishes the bins used for clustering.
Setting smaller numbers of dimensions produces a smaller output, but with a coarser representation of the
surface. The dimensions are provided as a vtkm::Id3.

GetNumberOfDimensions Returns the number of dimensions used for binning. The dimensions are returned as
a vtkm::Id3.

3.3 Data Set and Field Filters

Data set and field filters are a class of filters that generate a new data set with a new topology. This new topology
is derived from an existing data set and at least one of the fields in the data set. For example, a field might
determine how each cell is culled, clipped, or sliced.

All data set and field filters contain an Execute method that takes two arguments. The first argument is
a vtkm::cont::DataSet object with the input data. The second argument specifies the field from which to
derive a new field. The field can be specified as either a string naming a field in the input DataSet object,
as a vtkm::cont::Field object, or as a coordinate system (typically retrieved from a DataSet object with
the GetCoordianteSystem method). See Sections 11.3 and 11.4 for more information on fields and coordinate
systems, respectively.

Some data set filters need more information that just a data set when executing. Any additional information
is provided using methods in the filter class that changes the state. These methods are called before Execute.
One such method that all data set filters have is SetActiveCellSet, which selects which cell set in the input
DataSet to operate on. Likewise, SetActiveCoordinateSystem selects which coordinate system to operate on.
By default, the filter will operate on the first cell set and coordinate system. (See Sections 11.2 and 11.4 for
more information about cell sets and coordinate systems, respectively.)

The Execute method returns a vtkm::filter::ResultDataSet object, which contains the state of the execution
and the data generated. A ResultDataSet object has the following methods.

Chapter 3. Provided Filters 13

DRAFT

3.3. Data Set and Field Filters

IsValid Returns a bool value specifying whether the execution completed successfully. If true, then the
execution was successful and the data stored in the ResultField is valid. If false, then the execution
failed.

GetDataSet Returns a DataSet containing the results of the execution.

Because the new data set is derived from existing data, it can often inherit field information from the original
data. All data set filters also contain a MapFieldOntoOutput method to map fields from the output to the
input. This method takes two arguments. The first argument is the ResultDataSet object returned from
the last call to Execute. The second argument is a vtkm::cont::Field object that comes from the input.
MapFieldOntoOutput returns a bool that is true if the field was successfully mapped and added to the output
data set in the ResultDataSet object.

Common Errors
Not all data set filters support the mapping of all input fields to the output. If the mapping is not supported,
MapFieldOntoOutput will simply return false.

The following example provides a simple demonstration of using a data set and field filter. It specifically uses
the Marching Cubes filter, which is one of the data set and field filters.

Example 3.3: Using MarchingCubes, which is a data set and field filter.
1 vtkm :: filter :: MarchingCubes marchingCubes ;
2
3 marchingCubes . SetIsoValue (10.0);
4
5 vtkm :: filter :: ResultDataSet result =
6 marchingCubes . Execute (inData , " pointvar ");
7
8 if (! result . IsValid ())
9 {

10 throw vtkm :: cont :: ErrorControlBadValue (" Failed to run Marching Cubes .");
11 }
12
13 for (vtkm :: IdComponent fieldIndex = 0;
14 fieldIndex < inData . GetNumberOfFields ();
15 fieldIndex ++)
16 {
17 marchingCubes . MapFieldOntoOutput (result , inData . GetField (fieldIndex));
18 }
19
20 vtkm :: cont :: DataSet isosurface = result . GetDataSet ();

3.3.1 Marching Cubes

Contouring is one of the most fundamental filters in scientific visualization. A contour is the locus where a field is
equal to a particular value. A topographic map showing curves of various elevations often used when hiking in hilly
regions is an example of contours of an elevation field in 2 dimensions. Extended to 3 dimensions, a contour gives
a surface. Thus, a contour is often called an isosurface. Marching Cubes is a well know algorithm for computing
contours and is implemented by vtkm::filter::MarchingCubes. Example 3.3 provides a demonstration of the
Marching Cubes filter.

In addition to the standard Execute, MapFieldOntoOutput, and other methods, MarchingCubes provides the
following methods.

14 Chapter 3. Provided Filters

DRAFT

3.3. Data Set and Field Filters

SetIsoValue Provide the value on which to extract the contour. The contour will be the surface where the field
(provided to Execute) is equal to this value.

GetIsoValue Retrieve the currently set iso value.

SetMergeDuplicatePoints Sets a Boolean flag to determine whether coincident points in the data set should
be merged. Because the Marching Cubes filter (like all filters in VTK-m) runs in parallel, parallel threads
can (and often do) create duplicate versions of points. When this flag is set to true, a secondary operation
will find all duplicated points and combine them together.

GetMergeDuplicatePoints Returns the merge duplicate points flag.

SetGenerateNormals Sets a Boolean flag to determine whether to generate normal vectors for the surface.
Normals are used in shading calculations during rendering and can make the surface appear more smooth.
Generated normals are based on the gradient of the field being contoured.

GetGenerateNormals Returns the generate normals flag.

3.3.2 Threshold

A threshold operation removes topology elements from a data set that do not meet a specified criterion. The
vtkm::filter::Threshold filter removes all cells where the field (provided to Execute) is not between a range
of values.

In addition to the standard Execute, MapFieldOntoOutput, and other methods, Threshold provides the following
methods.

SetLowerThreshold Sets the lower scalar value. Any cells where the scalar field is less than this value are
removed.

SetUpperThreshold Sets the upper scalar value. Any cells where the scalar field is more than this value are
removed.

GetLowerThreshold Returns the lower threshold value.

GetUpperThreshold Returns the upper threshold value.

Chapter 3. Provided Filters 15

DRAFT

DRAFT
CHAPTER

FOUR

RENDERING

[Write this once the rendering module is implemented.]

DRAFT

DRAFTPart II

Using VTK-m

DRAFT

DRAFT
CHAPTER

FIVE

BASIC PROVISIONS

This section describes the core facilities provided by VTK-m. These include macros, types, and classes that
define the environment in which code is run, the core types of data stored, and template introspection. We also
start with a description of package structure used by VTK-m.

5.1 General Approach

VTK-m is designed to provide a pervasive parallelism throughout all its visualization algorithms, meaning that
the algorithm is designed to operate with independent concurrency at the finest possible level throughout. VTK-
m provides this pervasive parallelism by providing a programming construct called a worklet, which operates on
a very fine granularity of data. The worklets are designed as serial components, and VTK-m handles whatever
layers of concurrency are necessary, thereby removing the onus from the visualization algorithm developer.
Worklet operation is then wrapped into filters, which provide a simplified interface to end users.

A worklet is essentially a small functor or kernel designed to operate on a small element of data. (The name
“worklet” means a small amount of work. We mean small in this sense to be the amount of data, not necessarily
the amount of instructions performed.) The worklet is constrained to contain a serial and stateless function.
These constraints form three critical purposes. First, the constraints on the worklets allow VTK-m to schedule
worklet invocations on a great many independent concurrent threads and thereby making the algorithm per-
vasively parallel. Second, the constraints allow VTK-m to provide thread safety. By controlling the memory
access the toolkit can insure that no worklet will have any memory collisions, false sharing, or other parallel pro-
gramming pitfalls. Third, the constraints encourage good programming practices. The worklet model provides
a natural approach to visualization algorithm design that also has good general performance characteristics.

VTK-m allows developers to design algorithms that are run on massive amounts of threads. However, VTK-m
also allows developers to interface to applications, define data, and invoke algorithms that they have written or
are provided otherwise. These two modes represent significantly different operations on the data. The operating
code of an algorithm in a worklet is constrained to access only a small portion of data that is provided by the
framework. Conversely, code that is building the data structures needs to manage the data in its entirety, but
has little reason to perform computations on any particular element.

Consequently, VTK-m is divided into two environments that handle each of these use cases. Each environment
has its own API, and direct interaction between the environments is disallowed. The environments are as follows.

Execution Environment This is the environment in which the computational portion of algorithms are exe-
cuted. The API for this environment provides work for one element with convenient access to information
such as connectivity and neighborhood as needed by typical visualization algorithms. Code for the execu-
tion environment is designed to always execute on a very large number of threads.

DRAFT

5.2. Package Structure

Control Environment This is the environment that is used to interface with applications, interface with
I/O devices, and schedule parallel execution of the algorithms. The associated API is designed for users
that want to use VTK-m to analyze their data using provided or supplied filters. Code for the control
environment is designed to run on a single thread (or one single thread per process in an MPI job).

These dual programming environments are partially a convenience to isolate the application from the execution
of the worklets and are partially a necessity to support GPU languages with host and device environments. The
control and execution environments are logically equivalent to the host and device environments, respectively, in
CUDA and other associated GPU languages.

W
orklet

Control
Environment

Data Model
Array Handle
Invoke

Execution
Environment

Cell Operations
Field Operations

Basic Math
Make CellsAllocate

Transfer
Schedule

Sort
Scan

...

Device
Adapter

Figure 5.1: Diagram of the VTK-m framework.

Figure 5.1 displays the relationship between the control and execution environment. The typical workflow when
using VTK-m is that first the control thread establishes a data set in the control environment and then invokes a
parallel operation on the data using a filter. From there the data is logically divided into its constituent elements,
which are sent to independent invocations of a worklet. The worklet invocations, being independent, are run on
as many concurrent threads as are supported by the device. On completion the results of the worklet invocations
are collected to a single data structure and a handle is returned back to the control environment.

Did you know?
Are you only planning to use filters in VTK-m that already exist? If so, then everything you work with
will be in the control environment. The execution environment is only used when implementing algorithms
for filters.

5.2 Package Structure

VTK-m is organized in a hierarchy of nested packages. VTK-m places definitions in namespaces that correspond
to the package (with the exception that one package may specialize a template defined in a different namespace).

The base package is named vtkm. All classes within VTK-m are placed either directly in the vtkm package or in
a package beneath it. This helps prevent name collisions between VTK-m and any other library.

As described in Section 5.1, the VTK-m API is divided into two distinct environments: the control environment
and the execution environment. The API for these two environments are located in the vtkm::cont and vtkm::-
exec packages, respectively. Items located in the base vtkm namespace are available in both environments.

22 Chapter 5. Basic Provisions

DRAFT

5.3. Function and Method Exports

Although it is conventional to spell out names in identifiers (see the coding conventions in Chapter A), there is
an exception to abbreviate control and execution to cont and exec, respectively. This is because it is also part of
the coding convention to declare the entire namespace when using an identifier that is part of the corresponding
package. The shorter names make the identifiers easier to read, faster to type, and more feasible to pack lines
in 80 column displays. These abbreviations are also used instead of more common abbreviations (e.g. ctrl for
control) because, as part of actual English words, they are easier to type.

Further functionality in VTK-m is built on top of the base vtkm, vtkm::cont, and vtkm::exec packages.
Support classes for building worklets, described in Chapter 14, are contained in the vtkm::worklet package.
Other facilities in VTK-m are provided in their own packages such as vtkm::io, vtkm::filter, and vtkm::-
rendering. These packages are described in Part I.

VTK-m contains code that uses specialized compiler features, such as those with CUDA, or libraries, such as Intel
Threading Building Blocks, that will not be available on all machines. Code for these features are encapsulated
in their own packages under the vtkm::cont namespace: vtkm::cont::cuda and vtkm::cont::tbb.

VTK-m contains OpenGL interoperability that allows data generated with VTK-m to be efficiently transferred
to OpenGL objects. This feature is encapsulated in the vtkm::opengl package.

Figure 5.2 provides a diagram of the VTK-m package hierarchy.

cuda tbb reader writer

exec cont worklet filter io rendering opengl

vtkm

Figure 5.2: VTK-m package hierarchy.

By convention all classes will be defined in a file with the same name as the class name (with a .h extension)
located in a directory corresponding to the package name. For example, the vtkm::cont::ArrayHandle class is
found in the vtkm/cont/ArrayHandle.h header. There are, however, exceptions to this rule. Some smaller classes
and types are grouped together for convenience. These exceptions will be noted as necessary.

Within each namespace there may also be internal and detail sub-namespaces. The internal namespaces
contain features that are used internally and may change without notice. The detail namespaces contain
features that are used by a particular class but must be declared outside of that class. Users should generally
ignore classes in these namespaces.

5.3 Function and Method Exports

Any function or method defined by VTK-m must come with an export modifier that determines in which
environments the function may be run. These export modifiers are C macros that VTK-m uses to instruct the
compiler for which architectures to compile each method. Most user code outside of VTK-m need not use these
macros with the important exception of any classes passed to VTK-m. This occurs when defining new worklets,
array storage, and device adapters.

VTK-m provides three export macros, VTKM CONT EXPORT, VTKM EXEC EXPORT, and VTKM EXEC CONT EXPORT,
which are used to declare functions and methods that can run in the control environment, execution environment,
and both environments, respectively. These macros get defined by including just about any VTK-m header file,
but including vtkm/Types.h will ensure they are defined.

The export macro is placed after the template declaration, if there is one, and before the return type for the

Chapter 5. Basic Provisions 23

DRAFT

5.4. Error Handling

function. Here is a simple example of a function that will square a value. Since most types you would use this
function on have operators in both the control and execution environments, the function is exported to both
places.

Example 5.1: Usage of export macro.
1 template < typename ValueType >
2 VTKM_EXEC_CONT_EXPORT
3 ValueType Square (const ValueType & inValue)
4 {
5 return inValue * inValue ;
6 }

The primary function of the export macros is to inject compiler-specific keywords that specify what architecture
to compile code for. For example, when compiling with CUDA, the control exports have host in them and
execution exports have device in them.

There is one additional export macro that is not used for functions but rather used when declaring a constant
data object that is used in the execution environment. This macro is named VTKM EXEC CONSTANT EXPORT and
is used to declare a constant lookup table used when executing a worklet. Its primary reason for existing is to
add a constant keyword when compiling with CUDA. This export currently has no effect on any other
compiler.

Finally, it is sometimes the case that a function declared as VTKM EXEC CONT EXPORT has to call a method de-
clared as VTKM EXEC EXPORT or VTKM CONT EXPORT. Generally functions should not call other functions with in-
compatible control/execution exports, but sometimes a generic VTKM EXEC CONT EXPORT function calls another
function determined by the template parameters, and the export of this subfunction may be inconsistent. For
cases like this, you can use the VTKM SUPPRESS EXEC WARNINGS to tell the compiler to ignore the inconsistency
when resolving the template. When applied to a templated function or method, VTKM SUPPRESS EXEC WARN-
INGS is placed before the template keyword. When applied to a non-templated method in a templated class,
VTKM SUPPRESS EXEC WARNINGS is placed before the export macro.

5.4 Error Handling

VTK-m uses exceptions to report errors. All exceptions thrown by VTK-m will be a subclass of vtkm::cont::-
Error. For simple error reporting, it is possible to simply catch a vtkm::cont::Error and report the error
message string reported by the GetMessage method.

Example 5.2: Simple error reporting.
1 int main(int argc , char ** argv)
2 {
3 try
4 {
5 // Do something cool with VTK -m
6 // ...
7 }
8 catch (vtkm :: cont :: Error error)
9 {

10 std :: cout << error . GetMessage () << std :: endl;
11 return 1;
12 }
13 return 0;
14 }

There are several subclasses to vtkm::cont::Error. The specific subclass gives an indication of the type of
error that occured when the exception was thrown. Catching one of these subclasses may help a program better
recover from errors.

24 Chapter 5. Basic Provisions

DRAFT

5.5. Core Data Types

vtkm::cont::ErrorControlBadAllocation Thrown when there is a problem accessing or manipulating mem-
ory. Often this is thrown when an allocation fails because there is insufficient memory, but other memory
access errors can cause this to be thrown as well.

vtkm::cont::ErrorControlBadType Thrown when VTK-m attempts to perform an operation on an object that
is of an incompatible type.

vtkm::cont::ErrorControlBadValue Thrown when a VTK-m function or method encounters an invalid value
that inhibits progress.

vtkm::cont::ErrorExecution Throw when an error is signaled in the execution environment for example when
a worklet is being executed.

vtkm::cont::ErrorControlInternal Thrown when VTK-m detects an internal state that should never be
reached. This error usually indicates a bug in VTK-m or, at best, VTK-m failed to detect an invalid input
it should have.

vtkm::io::ErrorIO Thrown by a reader or writer when a file error is encountered.

In addition to the aforementioned error signaling, the vtkm/Assert.h header file defines a macro named VTKM -
ASSERT. This macro behaves the same as the POSIX assert macro. It takes a single argument that is a condition
that is expected to be true. If it is not true, the program is halted and a message is printed. Asserts are useful
debugging tools to ensure that software is behaving and being used as expected.

Example 5.3: Using VTKM ASSERT.
1 template < typename T>
2 VTKM_CONT_EXPORT
3 T GetArrayValue (vtkm :: cont :: ArrayHandle <T> arrayHandle , vtkm :: Id index)
4 {
5 VTKM_ASSERT (index >= 0);
6 VTKM_ASSERT (index < arrayHandle . GetNumberOfValues ());

Did you know?
Like the POSIX assert, if the NDEBUG macro is defined, then VTKM ASSERT will become an empty expres-
sion. Typically NDEBUG is defined with a compiler flag (like -DNDEBUG) for release builds to better optimize
the code. CMake will automatically add this flag for release builds.

Common Errors
A helpful warning provided by many compilers alerts you of unused variables. (This warning is commonly
enabled on VTK-m regression test nightly builds.) If a function argument is used only in a VTKM ASSERT,
then it will be required for debug builds and be unused in release builds. To get around this problem, add a
statement to the function of the form (void)variableName ;. This statement will have no effect on the
code generated but will suppress the warning for release builds.

5.5 Core Data Types

Except in rare circumstances where precision is not a concern, VTK-m does not directly use the core C types
like int, float, and double. Instead, VTK-m provides its own core types, which are declared in vtkm/Types.h.

Chapter 5. Basic Provisions 25

DRAFT

5.5. Core Data Types

5.5.1 Single Number Types

To ensure portability across different compilers and architectures, VTK-m provides typedefs for the following
basic types with explicit precision: vtkm::Float32, vtkm::Float64, vtkm::Int8, vtkm::Int16, vtkm::Int32,
vtkm::Int64, vtkm::UInt8, vtkm::UInt16, vtkm::UInt32, and vtkm::UInt64. Under most circumstances
when using VTK-m (and performing visualization in general) the type of data is determined by the source of the
data or resolved through templates. In the case where a specific type of data is required, these VTK-m–defined
types should be preferred over basic C types like int or float.

Many of the structures in VTK-m require indices to identify elements like points and cells. All indices for arrays
and other lists use the type vtkm::Id. By default this type is a 32-bit wide integer but can be easily changed
by compile options. The CMake configuration option VTKM USE 64BIT IDS can be used to change vtkm::Id
to be 64 bits wide. This configuration can be overridden by defining the C macro VTKM USE 64BIT IDS or
VTKM NO 64BIT IDS to force vtkm::Id to be either 64 or 32 bits. These macros must be defined before any
VTK-m header files are included to take effect.

There is also a secondary index type named vtkm::IdComponent that is used to index components of short
vectors (discussed in Section 5.5.2). This type is an integer that might be a shorter width than vtkm::Id.

There is also the rare circumstance in which an algorithm in VTK-m computes data values for which there is
no indication what the precision should be. For these circumstances, the type vtkm::FloatDefault is provided.
By default this type is a 32-bit wide floating point number but can be easily changed by compile options. The
CMake configuration option VTKM USE DOUBLE PRECISION can be used to change vtkm::FloatDefault to
be 64 bits wide. This configuration can be overridden by defining the C macro VTKM USE DOUBLE PRECISION
or VTKM NO DOUBLE PRECISION to force vtkm::FloatDefault to be either 64 or 32 bits. These macros must
be defined before any VTK-m header files are included to take effect.

For convenience, you can include either vtkm/internal/ConfigureFor32.h or vtkm/internal/ConfigureFor64.h to force
both vtkm::Id and vtkm::FloatDefault to be 32 or 64 bits.

5.5.2 Vector Types

Visualization algorithms also often require operations on short vectors. Arrays indexed in up to three dimensions
are common. Data are often defined in 2-space and 3-space, and transformations are typically done in homoge-
neous coordinates of length 4. To simplify these types of operations, VTK-m provides the vtkm::Vec<T,Size>
templated type, which is essentially a fixed length array of a given type.

The default constructor of vtkm::Vec objects leaves the values uninitialized. All vectors have a constructor
with one argument that is used to initialize all components. All vtkm::Vec objects with a size of 4 or less is
specialized to also have a constructor that allows you to set the individual components. Likewise, there is a
vtkm::make Vec function that builds initialized vector types of up to 4 components. Once created, you can use
the bracket operator to get and set component values with the same syntax as an array.

Example 5.4: Creating vector types.
1 vtkm ::Vec <vtkm :: Float32 ,3> A(1); // A is (1, 1, 1)
2 A[1] = 2; // A is now (1, 2, 1)
3 vtkm ::Vec <vtkm :: Float32 ,3> B(1, 2, 3); // B is (1, 2, 3)
4 vtkm ::Vec <vtkm :: Float32 ,3> C = vtkm :: make_Vec (3, 4, 5); // C is (3, 4, 5)

The types vtkm::Id2 and vtkm::Id3 are typedefs of vtkm::Vec<vtkm::Id,2> and vtkm::Vec<vtkm::Id,2>.
These are used to index arrays of 2 and 3 dimensions, which is common.

Vectors longer than 4 are also supported, but independent component values must be set after construction. The
vtkm::Vec class contains a constant named NUM COMPONENTS to specify how many components are in the vector.

26 Chapter 5. Basic Provisions

DRAFT

5.6. Traits

Example 5.5: A Longer Vector.
1 vtkm ::Vec <vtkm :: Float32 , 5> A(2); // A is (2, 2, 2, 2, 2)
2 for (vtkm :: IdComponent index = 1; index < A. NUM_COMPONENTS ; index ++)
3 {
4 A[index] = A[index -1] * 1.5;
5 }
6 // A is now (2, 3, 4.5 , 6.75 , 10.125)

vtkm::Vec supports component-wise arithmetic using the operators for plus (+), minus (-), multiply (*), and
divide (/). It also supports scalar to vector multiplication with the multiply operator. The comparison operators
equal (==) is true if every pair of corresponding components are true and not equal (!=) is true otherwise. A
special vtkm::dot function is overloaded to provide a dot product for every type of vector.

Example 5.6: Vector operations.
1 vtkm ::Vec <vtkm :: Float32 ,3> A(1, 2, 3);
2 vtkm ::Vec <vtkm :: Float32 ,3> B(4, 5, 6.5);
3 vtkm ::Vec <vtkm :: Float32 ,3> C = A + B; // C is (5, 7, 9.5)
4 vtkm ::Vec <vtkm :: Float32 ,3> D = 2.0f * C; // D is (10 , 14, 19)
5 vtkm :: Float32 s = vtkm :: dot(A, B); // s is 33.5
6 bool b1 = (A == B); // b1 is false
7 bool b2 = (A == vtkm :: make_Vec (1, 2, 3)); // b2 is true

These operators, of course, only work if they are also defined for the component type of the vtkm::Vec. For
example, the multiply operator will work fine on objects of type vtkm::Vec<char,3>, but the multiply operator
will not work on objects of type vtkm::Vec<std::string,3> because you cannot multiply objects of type
std::string.

In addition to generalizing vector operations and making arbitrarily long vectors, vtkm::Vec can be repurposed
for creating any sequence of homogeneous objects. Here is a simple example of using vtkm::Vec to hold the
state of a polygon.

Example 5.7: Repurposing a vtkm::Vec.
1 vtkm ::Vec <vtkm ::Vec <vtkm :: Float32 ,2>, 3> equilateralTriangle (
2 vtkm :: make_Vec (0.0 , 0.0) ,
3 vtkm :: make_Vec (1.0 , 0.0) ,
4 vtkm :: make_Vec (0.5 , 0.866));

5.5.3 Pair

VTK-m defines a vtkm::Pair<T1,T2> templated object that behaves just like std::pair from the standard
template library. The difference is that vtkm::Pair will work in both the execution and control environment,
whereas the STL std::pair does not always work in the execution environment.

The VTK-m version of vtkm::Pair supports the same types, fields, and operations as the STL version. VTK-m
also provides a vtkm::make Pair function for convenience.

5.6 Traits

When using templated types, it is often necessary to get information about the type or specialize code based
on general properties of the type. VTK-m uses traits classes to publish and retrieve information about types.
A traits class is simply a templated structure that provides typedefs for tag structures, empty types used for
identification. The traits classes might also contain constant numbers and helpful static functions. See Effective
C++ Third Edition by Scott Mayers for a description of traits classes and their uses.

Chapter 5. Basic Provisions 27

DRAFT

5.6. Traits

5.6.1 Type Traits

The vtkm::TypeTraits<T> templated class provides basic information about a core type. These type traits
are available for all the basic C++ types as well as the core VTK-m types described in Section 5.5. vtkm::-
TypeTraits contains the following elements.

NumericTag This type is set to either vtkm::TypeTraitsRealTag or vtkm::TypeTraitsIntegerTag to signal
that the type represents either floating point numbers or integers.

DimensionalityTag This type is set to either vtkm::TypeTraitsScalarTag or vtkm::TypeTraitsVectorTag
to signal that the type represents either a single scalar value or a tuple of values.

The definition of vtkm::TypeTraits for vtkm::Float32 could like something like this.

Example 5.8: Definition of vtkm::TypeTraits<vtkm::Float32>.
1 namespace vtkm {
2
3 template <>
4 struct TypeTraits <vtkm :: Float32 >
5 {
6 typedef vtkm :: TypeTraitsRealTag NumericTag ;
7 typedef vtkm :: TypeTraitsScalarTag DimensionalityTag ;
8 };
9

10 }

Here is a simple example of using vtkm::TypeTraits to implement a generic function that behaves like the
remainder operator (%) for all types including floating points and vectors.

Example 5.9: Using TypeTraits for a generic remainder.
1 # include <vtkm/ TypeTraits .h>
2
3 # include <vtkm/Math.h>
4
5 template < typename T>
6 T Remainder (const T &numerator , const T & denominator);
7
8 namespace detail {
9

10 template < typename T>
11 T RemainderImpl (const T &numerator ,
12 const T & denominator ,
13 vtkm :: TypeTraitsIntegerTag ,
14 vtkm :: TypeTraitsScalarTag)
15 {
16 return numerator % denominator ;
17 }
18
19 template < typename T>
20 T RemainderImpl (const T &numerator ,
21 const T & denominator ,
22 vtkm :: TypeTraitsRealTag ,
23 vtkm :: TypeTraitsScalarTag)
24 {
25 // The VTK -m math library contains a Remainder function that operates on
26 // floating point numbers .
27 return vtkm :: Remainder (numerator , denominator);
28 }
29
30 template < typename T, typename NumericTag >

28 Chapter 5. Basic Provisions

DRAFT

5.6. Traits

31 T RemainderImpl (const T &numerator ,
32 const T & denominator ,
33 NumericTag ,
34 vtkm :: TypeTraitsVectorTag)
35 {
36 T result ;
37 for (int componentIndex = 0;
38 componentIndex < T:: NUM_COMPONENTS ;
39 componentIndex ++)
40 {
41 result [componentIndex] =
42 Remainder (numerator [componentIndex], denominator [componentIndex]);
43 }
44 return result ;
45 }
46
47 } // namespace detail
48
49 template < typename T>
50 T Remainder (const T &numerator , const T & denominator)
51 {
52 return detail :: RemainderImpl (numerator ,
53 denominator ,
54 typename vtkm :: TypeTraits <T >:: NumericTag (),
55 typename vtkm :: TypeTraits <T >:: DimensionalityTag ());
56 }

5.6.2 Vector Traits

The vtkm::VecTraits<T> templated class provides information and accessors to vector types. It contains the
following elements.

ComponentType This type is set to the type for each component in the vector. For example, a vtkm::Id3 has
ComponentType defined as vtkm::Id.

NUM COMPONENTS An integer specifying how many components are contained in the vector.

HasMultipleComponents This type is set to either vtkm::VecTraitsTagSingleComponent if the vector length
is size 1 or vtkm::VecTraitsTagMultipleComponents otherwise. This tag can be useful for creating
specialized functions when a vector is really just a scalar.

GetComponent A static method that takes a vector and returns a particular component.

SetComponent A static method that takes a vector and sets a particular component to a given value.

ToVec A static method that converts a vector of the given type to a vtkm::Vec.

The definition of vtkm::VecTraits for vtkm::Id3 could like something like this.

Example 5.10: Definition of vtkm::VecTraits<vtkm::Id3>.
1 namespace vtkm {
2
3 template <>
4 struct VecTraits <vtkm ::Id3 >
5 {
6 typedef vtkm :: Id ComponentType ;
7 static const int NUM_COMPONENTS = 3;
8 typedef VecTraitsTagMultipleComponents HasMultipleComponents ;

Chapter 5. Basic Provisions 29

DRAFT

5.6. Traits

9
10 VTKM_EXEC_CONT_EXPORT
11 static vtkm :: Id & GetComponent (vtkm :: Id3 &vector , int component) {
12 return vector [component];
13 }
14
15 VTKM_EXEC_CONT_EXPORT
16 static void SetComponent (vtkm :: Id3 &vector , int component , vtkm :: Id value) {
17 vector [component] = value ;
18 }
19
20 VTKM_EXEC_CONT_EXPORT
21 static vtkm ::Vec <vtkm ::Id ,3> ToTuple (const vtkm :: Id3 & vector) {
22 return vector ;
23 }
24 };
25
26 } // namespace vtkm

The real power of vector traits is that they simplify creating generic operations on any type that can look like
a vector. This includes operations on scalar values as if they were vectors of size one. The following code uses
vector traits to simplify the implementation of less functors that define an ordering that can be used for sorting
and other operations.

Example 5.11: Using VecTraits for less functors.
1 # include <vtkm/ VecTraits .h>
2
3 // This functor provides a total ordering of vectors . Every compared vector
4 // will be either less , greater , or equal (assuming all the vector components
5 // also have a total ordering).
6 template < typename T>
7 struct LessTotalOrder
8 {
9 VTKM_EXEC_CONT_EXPORT

10 bool operator ()(const T &left , const T & right)
11 {
12 for (int index = 0; index < vtkm :: VecTraits <T >:: NUM_COMPONENTS ; index ++)
13 {
14 typedef typename vtkm :: VecTraits <T >:: ComponentType ComponentType ;
15 const ComponentType & leftValue =
16 vtkm :: VecTraits <T >:: GetComponent (left , index);
17 const ComponentType & rightValue =
18 vtkm :: VecTraits <T >:: GetComponent (right , index);
19 if (leftValue < rightValue) { return true; }
20 if (rightValue < leftValue) { return false ; }
21 }
22 // If we are here , the vectors are equal (or at least equivalent).
23 return false ;
24 }
25 };
26
27 // This functor provides a partial ordering of vectors . It returns true if and
28 // only if all components satisfy the less operation . It is possible for
29 // vectors to be neither less , greater , nor equal , but the transitive closure
30 // is still valid .
31 template < typename T>
32 struct LessPartialOrder
33 {
34 VTKM_EXEC_CONT_EXPORT
35 bool operator ()(const T &left , const T & right)
36 {
37 for (int index = 0; index < vtkm :: VecTraits <T >:: NUM_COMPONENTS ; index ++)
38 {

30 Chapter 5. Basic Provisions

DRAFT

5.7. List Tags

39 typedef typename vtkm :: VecTraits <T >:: ComponentType ComponentType ;
40 const ComponentType & leftValue =
41 vtkm :: VecTraits <T >:: GetComponent (left , index);
42 const ComponentType & rightValue =
43 vtkm :: VecTraits <T >:: GetComponent (right , index);
44 if (!(leftValue < rightValue)) { return false ; }
45 }
46 // If we are here , all components satisfy less than relation .
47 return true;
48 }
49 };

5.7 List Tags

VTK-m internally uses template metaprogramming, which utilizes the C++ template to run source-generating
programs, to customize code to various data and compute platforms. One basic structure often uses with template
metaprogramming is a list of class names (also sometimes called a tuple or vector, although both of those names
have different meanings in VTK-m).

Many VTK-m users only need predefined lists, such as the type lists specified in Section 5.7.2. Those users
can skip most of the details of this section. However, it is sometimes useful to modify lists, create new lists, or
operate on lists, and these usages are documented here.

VTK-m uses a tag-based mechanism for defining lists, which differs significantly from lists in many other template
metaprogramming libraries such as with boost::mpl::vector or boost::vector. Rather than enumerating all
list entries as template arguments, the list is referenced by a single tag class with a descriptive name. The intention
is to make fully resolved types shorter and more readable. (Anyone experienced with template programming
knows how insanely long and unreadable types can get in compiler errors and warnings.)

5.7.1 Building List Tags

List tags are constructed in VTK-m by defining a struct that publicly inherits from another list tags. The base
list tags are defined in the vtkm/ListTag.h header.

The most basic list is defined with vtkm::ListTagEmpty. This tag represents an empty list.

vtkm::ListTagBase<T, ...> represents a list of the types given as template parameters. vtkm::ListTagBase
supports a variable number of parameters with the maximum specified by VTKM MAX BASE LIST.

Finally, lists can be combined together with vtkm::ListTagJoin<ListTag1,ListTag2>, which concatinates two
lists together.

The following example demonstrates how to build list tags using these base lists classes. Note first that all the
list tags are defined as struct rather than class. Although these are roughly synonymous in C++, struct
inheritance is by default public, and public inheritance is important for the list tags to work. Note second that
these tags are created by inheritance rather than using typedef. Although typedef will work, it will lead to
much uglier type names defined by the compiler.

Example 5.12: Creating list tags.
1 # include <vtkm/ ListTag .h>
2
3 // Placeholder classes representing things that might be in a template
4 // metaprogram list.
5 class Foo;
6 class Bar;

Chapter 5. Basic Provisions 31

DRAFT

5.7. List Tags

7 class Baz;
8 class Qux;
9 class Xyzzy ;

10
11 // The names of the following tags are indicative of the lists they contain .
12
13 struct FooList : vtkm :: ListTagBase <Foo > { };
14
15 struct FooBarList : vtkm :: ListTagBase <Foo ,Bar > { };
16
17 struct BazQuxXyzzyList : vtkm :: ListTagBase <Baz ,Qux ,Xyzzy > { };
18
19 struct QuxBazBarFooList : vtkm :: ListTagBase <Qux ,Baz ,Bar ,Foo > { };
20
21 struct FooBarBazQuxXyzzyList
22 : vtkm :: ListTagJoin < FooBarList , BazQuxXyzzyList > { };

5.7.2 Type Lists

One of the major use cases for template metaprogramming lists in VTK-m is to identify a set of potential data
types for arrays. The vtkm/TypeListTag.h header contains predefined lists for known VTK-m types. Although
technically all these lists are of C++ types, the types we refer to here are those data types stored in data arrays.
The following lists are provided.

vtkm::TypeListTagId Contains the single item vtkm::Id.

vtkm::TypeListTagId2 Contains the single item vtkm::Id2.

vtkm::TypeListTagId3 Contains the single item vtkm::Id3.

vtkm::TypeListTagIndex A list of all types used to index arrays. Contains vtkm::Id, vtkm::Id2, and vtkm::-
Id3.

vtkm::TypeListTagFieldScalar A list containing types used for scalar fields. Specifically, it contains floating
point numbers of different widths (i.e. vtkm::Float32 and vtkm::Float64).

vtkm::TypeListTagFieldVec2 A list containing types for values of fields with 2 dimensional vectors. All these
vectors use floating point numbers.

vtkm::TypeListTagFieldVec3 A list containing types for values of fields with 3 dimensional vectors. All these
vectors use floating point numbers.

vtkm::TypeListTagFieldVec3 A list containing types for values of fields with 3 dimensional vectors. All these
vectors use floating point numbers.

vtkm::TypeListTagField A list containing all the types generally used for fields. It is the combination of
vtkm::TypeListTagFieldScalar, vtkm::TypeListTagFieldVec2, vtkm::TypeListTagFieldVec3, and
vtkm::TypeListTagFieldVec4.

vtkm::TypeListTagScalarAll A list of all scalar types. It contains signed and unsigned integers of widths from
8 to 64 bits. It also contains floats of 32 and 64 bit widths.

vtkm::TypeListTagVecCommon A list of the most common vector types. It contains all vtkm::Vec class of size
2 through 4 containing components of unsigned bytes, signed 32-bit integers, signed 64-bit integers, 32-bit
floats, or 64-bit floats.

32 Chapter 5. Basic Provisions

DRAFT

5.7. List Tags

vtkm::TypeListTagVecAll A list of all vtkm::Vec classes with standard integers or floating points as compo-
nents and lengths between 2 and 4.

vtkm::TypeListTagAll A list of all types included in vtkm/Types.h with vtkm::Vecs with up to 4 components.

vtkm::TypeListTagCommon A list containing only the most used types in visualization. This includes signed
integers and floats that are 32 or 64 bit. It also includes 3 dimensional vectors of floats. This is the default
list used when resolving the type in dynamic arrays (described in Section ??).

If these lists are not sufficient, it is possible to build new type lists using the existing type lists and the list bases
from Section 5.7.1 as demonstrated in the following example.

Example 5.13: Defining new type lists.
1 # define VTKM_DEFAULT_TYPE_LIST_TAG MyCommonTypes
2
3 # include <vtkm/ ListTag .h>
4 # include <vtkm/ TypeListTag .h>
5
6 // A list of 2D vector types .
7 struct Vec2List
8 : vtkm :: ListTagBase <vtkm ::Id2 ,
9 vtkm ::Vec <vtkm :: Float32 ,2>,

10 vtkm ::Vec <vtkm :: Float64 ,2> > { };
11
12 // An application that uses 2D geometry might commonly encounter this list of
13 // types .
14 struct MyCommonTypes : vtkm :: ListTagJoin <Vec2List ,vtkm :: TypeListTagCommon > { };

The vtkm/TypeListTag.h header also defines a macro named VTKM DEFAULT TYPE LIST TAG that defines a de-
fault list of types to use in classes like vtkm::cont::DynamicArrayHandle (Section ??). This list can be overrid-
den by defining the VTKM DEFAULT TYPE LIST TAG macro before any VTK-m headers are included. If included
after a VTK-m header, the list is not likely to take effect. Do not ignore compiler warnings about the macro
being redefined, which you will not get if defined correctly. Example 5.13 also contains an example of overriding
the VTKM DEFAULT TYPE LIST TAG macro.

5.7.3 Operating on Lists

VTK-m template metaprogramming lists are typically just passed to VTK-m methods that internally operate
on the lists. Although not typically used outside of the VTK-m library, these operations are also available.

The vtkm/ListTag.h header comes with a vtkm::ListForEach function that takes a functor object and a list tag.
It then calls the functor object with the default object of each type in the list. This is most typically used with
C++ run-time type information to convert a run-time polymorphic object to a statically typed (and possibly
inlined) call.

The following example shows a rudimentary version of coverting a dynamically-typed array to a statically-typed
array similar to what is done in VTK-m classes like vtkm::cont::DynamicArrayHandle (which is documented
in Section ??).

Example 5.14: Converting dynamic types to static types with ListForEach.
1 struct MyArrayBase {
2 // A virtual destructor makes sure C++ RTTI will be generated . It also helps
3 // ensure subclass destructors are called .
4 virtual ˜ MyArrayBase () { }
5 };
6

Chapter 5. Basic Provisions 33

DRAFT

5.7. List Tags

7 template < typename T>
8 struct MyArrayImpl : public MyArrayBase {
9 std :: vector <T> Array ;

10 };
11
12 template < typename T>
13 void PrefixSum (std :: vector <T> & array)
14 {
15 T sum(typename vtkm :: VecTraits <T >:: ComponentType (0));
16 for (typename std :: vector <T >:: iterator iter = array . begin ();
17 iter != array .end ();
18 iter ++)
19 {
20 sum = sum + *iter;
21 *iter = sum;
22 }
23 }
24
25 struct PrefixSumFunctor {
26 MyArrayBase * ArrayPointer ;
27
28 PrefixSumFunctor (MyArrayBase * arrayPointer) : ArrayPointer (arrayPointer) { }
29
30 template < typename T>
31 void operator ()(T) {
32 typedef MyArrayImpl <T> ConcreteArrayType ;
33 ConcreteArrayType * concreteArray =
34 dynamic_cast < ConcreteArrayType *>(this -> ArrayPointer);
35 if (concreteArray != NULL)
36 {
37 PrefixSum (concreteArray -> Array);
38 }
39 }
40 };
41
42 void DoPrefixSum (MyArrayBase * array)
43 {
44 PrefixSumFunctor functor = PrefixSumFunctor (array);
45 vtkm :: ListForEach (functor , vtkm :: TypeListTagCommon ());
46 }

34 Chapter 5. Basic Provisions

DRAFT
CHAPTER

SIX

ARRAY HANDLES

An array handle, implemented with the vtkm::cont::ArrayHandle class, manages an array of data that can
be accessed or manipulated by VTK-m algorithms. It is typical to construct an array handle in the control
environment to pass data to an algorithm running in the execution environment. It is also typical for an
algorithm running in the execution environment to allocate and populate an array handle, which can then be
read back in the control environment. It is also possible for an array handle to manage data created by one
VTK-m algorithm and passed to another, remaining in the execution environment the whole time and never
copied to the control environment.

Did you know?
The array handle may have up to two copies of the array, one for the control environment and one for
the execution environment. However, depending on the device and how the array is being used, the array
handle will only have one copy when possible. Copies between the environments are implicit and lazy. They
are copied only when an operation needs data in an environment where the data is not.

vtkm::cont::ArrayHandle behaves like a shared smart pointer in that when the C++ object is copied, each
copy holds a reference to the same array. These copies are reference counted so that when all copies of the
vtkm::cont::ArrayHandle are destroyed, any allocated memory is released.

6.1 Creating Array Handles

vtkm::cont::ArrayHandle is a templated class with two template parameters. The first template parameter
is the only one required and specifies the base type of the entries in the array. The second template parameter
specifies the storage used when storing data in the control environment. Storage objects are discussed later in
Chapter 9, and for now we will use the default value.

Example 6.1: Declaration of the vtkm::cont::ArrayHandle templated class.
1 template <
2 typename T,
3 typename StorageTag = VTKM_DEFAULT_STORAGE_TAG >
4 class ArrayHandle ;

There are multiple ways to create and populate an array handle. The default vtkm::cont::ArrayHandle con-
structor will create an empty array with nothing allocated in either the control or execution environment. This
is convenient for creating arrays used as the output for algorithms.

DRAFT

6.1. Creating Array Handles

Example 6.2: Creating an ArrayHandle for output data.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > outputArray ;

Constructing an ArrayHandle that points to a provided C array or std::vector is straightforward with the
vtkm::cont::make ArrayHandle functions. These functions will make an array handle that points to the array
data that you provide.

Example 6.3: Creating an ArrayHandle that points to a provided C array.
1 vtkm :: Float32 dataBuffer [50];
2 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
3
4 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray =
5 vtkm :: cont :: make_ArrayHandle (dataBuffer , 50);

Example 6.4: Creating an ArrayHandle that points to a provided std::vector.
1 std :: vector <vtkm :: Float32 > dataBuffer ;
2 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
3
4 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray =
5 vtkm :: cont :: make_ArrayHandle (dataBuffer);

Be aware that vtkm::cont::make ArrayHandle makes a shallow pointer copy. This means that if you change or
delete the data provided, the internal state of ArrayHandle becomes invalid and undefined behavior can ensue.
The most common manifestation of this error happens when a std::vector goes out of scope. This subtle
interaction will cause the vtkm::cont::ArrayHandle to point to an unallocated portion of the memory heap.
For example, if the code in Example 6.4 where to be placed within a callable function or method, it could cause
the vtkm::cont::ArrayHandle to become invalid.

Common Errors
Because ArrayHandle does not manage data provided by make ArrayHandle, you should only use these
as temporary objects. Example 6.5 demonstrates a method of copying one of these temporary arrays into
safe managed memory, and Section 6.3 describes how to put data directly into an ArrayHandle object.

Example 6.5: Invalidating an ArrayHandle by letting the source std::vector leave scope.
1 VTKM_CONT_EXPORT
2 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > BadDataLoad ()
3 {
4 std :: vector <vtkm :: Float32 > dataBuffer ;
5 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
6
7 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray =
8 vtkm :: cont :: make_ArrayHandle (dataBuffer);
9

10 return inputArray ;
11 // THIS IS WRONG ! At this point dataBuffer goes out of scope and deletes its
12 // memory . However , inputArray has a pointer to that memory , which becomes an
13 // invalid pointer in the returned object . Bad things will happen when the
14 // ArrayHandle is used.
15 }
16
17 VTKM_CONT_EXPORT
18 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > SafeDataLoad ()
19 {
20 std :: vector <vtkm :: Float32 > dataBuffer ;

36 Chapter 6. Array Handles

DRAFT

6.2. Array Portals

21 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
22
23 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > tmpArray =
24 vtkm :: cont :: make_ArrayHandle (dataBuffer);
25
26 // This copies the data from one ArrayHandle to another (in the execution
27 // environment). Although it is an extraneous copy , it is usually pretty fast
28 // on a parallel device . Another option is to make sure that the buffer in
29 // the std :: vector never goes out of scope before all the ArrayHandle
30 // references , but this extra step allows the ArrayHandle to manage its own
31 // memory and ensure everything is valid .
32 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray ;
33 vtkm :: cont :: DeviceAdapterAlgorithm < VTKM_DEFAULT_DEVICE_ADAPTER_TAG >:: Copy(
34 tmpArray , inputArray);
35
36 return inputArray ;
37 // This is safe.
38 }

6.2 Array Portals

An array handle defines auxiliary structures called array portals that provide direct access into its data. An
array portal is a simple object that is somewhat functionally equivalent to an STL-type iterator, but with a
much simpler interface. Array portals can be read-only (const) or read-write and they can be accessible from
either the control environment or the execution environment. All these variants have similar interfaces although
some features that are not applicable can be left out.

An array portal object contains each of the following:

ValueType A typedef of the type for each item in the array.

GetNumberOfValues A method that returns the number of entries in the array.

Get A method that returns the value at a given index.

Set A method that changes the value at a given index. This method does not need to exist for read-only (const)
array portals.

The following code example defines an array portal for a simple C array of scalar values. This definition has no
practical value (it is covered by the more general vtkm::cont::internal::ArrayPortalFromIterators), but
demonstrates the function of each component.

Example 6.6: A simple array portal implementation.
1 template < typename T>
2 class SimpleScalarArrayPortal
3 {
4 public :
5 typedef T ValueType ;
6
7 // There is no specification for creating array portals , but they generally
8 // need a constructor like this to be practical .
9 VTKM_EXEC_CONT_EXPORT

10 SimpleScalarArrayPortal (ValueType *array , vtkm :: Id numberOfValues)
11 : Array (array), NumberOfValues (numberOfValues) { }
12
13 VTKM_EXEC_CONT_EXPORT
14 SimpleScalarArrayPortal () : Array (NULL), NumberOfValues (0) { }

Chapter 6. Array Handles 37

DRAFT

6.2. Array Portals

15
16 VTKM_EXEC_CONT_EXPORT
17 vtkm :: Id GetNumberOfValues () const { return this -> NumberOfValues ; }
18
19 VTKM_EXEC_CONT_EXPORT
20 ValueType Get(vtkm :: Id index) const { return this -> Array [index]; }
21
22 VTKM_EXEC_CONT_EXPORT
23 void Set(vtkm :: Id index , ValueType value) const {
24 this -> Array [index] = value ;
25 }
26
27 private :
28 ValueType * Array ;
29 vtkm :: Id NumberOfValues ;
30 };

Although array portals are simple to implement and use, and array portals’ functionality is similar to iterators,
there exists a great deal of code already based on STL iterators and it is often convienient to interface with an
array through an iterator rather than an array portal. The vtkm::cont::ArrayPortalToIterators class can
be used to convert an array portal to an STL-compatible iterator. The class is templated on the array portal
type and has a constructor that accepts an instance of the array portal. It contains the following features.

IteratorType A typedef of an STL-compatible random-access iterator that can provide the same access as the
array portal.

GetBegin A method that returns an STL-compatible iterator of type IteratorType that points to the beginning
of the array.

GetEnd A method that returns an STL-compatible iterator of type IteratorType that points to the end of the
array.

Example 6.7: Using ArrayPortalToIterators.
1 template < typename PortalType >
2 VTKM_CONT_EXPORT
3 std :: vector < typename PortalType :: ValueType >
4 CopyArrayPortalToVector (const PortalType & portal)
5 {
6 typedef typename PortalType :: ValueType ValueType ;
7 std :: vector <ValueType > result (portal . GetNumberOfValues ());
8
9 vtkm :: cont :: ArrayPortalToIterators < PortalType > iterators (portal);

10
11 std :: copy(iterators . GetBegin (), iterators . GetEnd (), result . begin ());
12
13 return result ;
14 }

As a convenience, vtkm/cont/ArrayPortalToIterators.h also defines a pair of functions named ArrayPortalToI-
teratorBegin and ArrayPortalToIteratorEnd that each take an array portal as an argument and return a
begin and end iterator, respectively.

Example 6.8: Using ArrayPortalToIteratorBegin and ArrayPortalToIteratorEnd.
1 std :: vector <vtkm :: Float32 > myContainer (portal . GetNumberOfValues ());
2
3 std :: copy(vtkm :: cont :: ArrayPortalToIteratorBegin (portal),
4 vtkm :: cont :: ArrayPortalToIteratorEnd (portal),
5 myContainer . begin ());

38 Chapter 6. Array Handles

DRAFT

6.3. Allocating and Populating Array Handles

ArrayHandle contains two typedefs for array portal types that are capable of interfacing with the underlying
data in the control environment. These are PortalControl and PortalConstControl, which define read-write
and read-only (const) array portals, respectively.

ArrayHandle also contains similar typedefs for array portals in the execution environment. Because these types
are dependent on the device adapter used for execution, these typedefs are embedded in a templated class named
ExecutionTypes. Within ExecutionTypes are the typedefs Portal and PortalConst defining the read-write
and read-only (const) array portals, respectively, for the execution environment for the given device adapter tag.

Because vtkm::cont::ArrayHandle is control environment object, it provides the methods GetPortalControl
and GetPortalConstControl to get the associated array portal objects. These methods also have the side effect
of refreshing the control environment copy of the data, so this can be a way of synchronizing the data. Be
aware that when an ArrayHandle is created with a pointer or std::vector, it is put in a read-only mode,
and GetPortalControl can fail (although GetPortalConstControl will still work). Also be aware that calling
GetPortalControl will invalidate any copy in the execution environment, meaning that any subsequent use will
cause the data to be copied back again.

Example 6.9: Using portals from an ArrayHandle.
1 template < typename T>
2 void SortCheckArrayHandle (vtkm :: cont :: ArrayHandle <T> arrayHandle)
3 {
4 typedef typename vtkm :: cont :: ArrayHandle <T >:: PortalControl
5 PortalType ;
6 typedef typename vtkm :: cont :: ArrayHandle <T >:: PortalConstControl
7 PortalConstType ;
8
9 PortalType readwritePortal = arrayHandle . GetPortalControl ();

10 // This is actually pretty dumb. Sorting would be generally faster in
11 // parallel in the execution environment using the device adapter algorithms .
12 std :: sort(vtkm :: cont :: ArrayPortalToIteratorBegin (readwritePortal),
13 vtkm :: cont :: ArrayPortalToIteratorEnd (readwritePortal));
14
15 PortalConstType readPortal = arrayHandle . GetPortalConstControl ();
16 for (vtkm :: Id index = 1; index < readPortal . GetNumberOfValues (); index ++)
17 {
18 if (readPortal .Get(index -1) > readPortal .Get(index))
19 {
20 std :: cout << " Sorting is wrong !" << std :: endl;
21 break ;
22 }
23 }
24 }

Did you know?
Most operations on arrays in VTK-m should really be done in the execution environment. Keep in mind
that whenever doing an operation using a control array portal, that operation will likely be slow for large
arrays. However, some operations, like performing file I/O, make sense in the control environment.

6.3 Allocating and Populating Array Handles

vtkm::cont::ArrayHandle is capable of allocating its own memory. The most straightforward way to allocate
memory is to call the Allocate method. The Allocate method takes a single argument, which is the number
of elements to make the array.

Chapter 6. Array Handles 39

DRAFT

6.4. Interface to Execution Environment

Example 6.10: Allocating an ArrayHandle.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > arrayHandle ;
2
3 const vtkm :: Id ARRAY_SIZE = 50;
4 arrayHandle . Allocate (ARRAY_SIZE);

Common Errors
The ability to allocate memory is a key difference between ArrayHandle and many other common forms
of smart pointers. When one ArrayHandle allocates new memory, all other ArrayHandles pointing to
the same managed memory get the newly allocated memory. This can be particularly surprising when
the originally managed memory is empty. For example, older versions of std::vector initialized all its
values by setting them to the same object. When a vector of ArrayHandles was created and one entry
was allocated, all entries changed to the same allocation.

Once an ArrayHandle is allocated, it can be populated by using the portal returned from GetPortalControl,
as described in Section 6.2. This is roughly the method used by the readers in the I/O package (Chapter 2).

Example 6.11: Populating a newly allocated ArrayHandle.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > arrayHandle ;
2
3 const vtkm :: Id ARRAY_SIZE = 50;
4 arrayHandle . Allocate (ARRAY_SIZE);
5
6 typedef vtkm :: cont :: ArrayHandle <vtkm :: Float32 >:: PortalControl PortalType ;
7 PortalType portal = arrayHandle . GetPortalControl ();
8
9 for (vtkm :: Id index = 0; index < ARRAY_SIZE ; index ++)

10 {
11 portal .Set(index , GetValueForArray (index));
12 }

6.4 Interface to Execution Environment

One of the main functions of the array handle is to allow an array to be defined in the control environment and
then be used in the execution environment. When using an ArrayHandle with filters or worklets, this transition
is handled automatically. However, it is also possible to invoke the transfer for use in your own scheduled
algorithms.

The ArrayHandle class manages the transition from control to execution with a set of three methods that
allocate, transfer, and ready the data in one operation. These methods all start with the prefix Prepare and are
meant to be called before some operation happens in the execution environment. The methods are as follows.

PrepareForInput Copies data from the control to the execution environment, if necessary, and readies the data
for read-only access.

PrepareForInPlace Copies the data from the control to the execution environment, if necessary, and readies
the data for both reading and writing.

PrepareForOutput Allocates space (the size of which is given as a parameter) in the execution environment, if
necessary, and readies the space for writing.

40 Chapter 6. Array Handles

DRAFT

6.4. Interface to Execution Environment

The PrepareForInput and PrepareForInPlace methods each take a single argument that is the device adapter
tag where execution will take place (see Section 7.1 for more information on device adapter tags). Prepare-
ForOutput takes two arguments: the size of the space to allocate and the device adapter tag. Each of these meth-
ods returns an array portal that can be used in the execution environment. PrepareForInput returns an object
of type ArrayHandle::ExecutionTypes<DeviceAdapterTag>::PortalConst whereas PrepareForInPlace and
PrepareForOutput each return an object of type ArrayHandle::ExecutionTypes<DeviceAdapterTag>::Por-
tal.

Although these Prepare methods are called in the control environment, the returned array portal can only
be used in the execution environment. Thus, the portal must be passed to an invocation of the execution
environment. Typically this is done with a call to Schedule in vtkm::cont::DeviceAdapterAlgorithm. This
and other device adapter algorithms are described in detail in Section 7.2, but here is a quick example of using
these execution array portals in a simple functor.

Example 6.12: Using an execution array portal from an ArrayHandle.
1 template < typename T, typename Device >
2 struct DoubleFunctor : public vtkm :: exec :: FunctorBase
3 {
4 typedef typename vtkm :: cont :: ArrayHandle <T >::
5 template ExecutionTypes <Device >:: PortalConst InputPortalType ;
6 typedef typename vtkm :: cont :: ArrayHandle <T >::
7 template ExecutionTypes <Device >:: Portal OutputPortalType ;
8
9 VTKM_CONT_EXPORT

10 DoubleFunctor (InputPortalType inputPortal , OutputPortalType outputPortal)
11 : InputPortal (inputPortal), OutputPortal (outputPortal) { }
12
13 VTKM_EXEC_EXPORT
14 void operator ()(vtkm :: Id index) const {
15 this -> OutputPortal .Set(index , 2* this -> InputPortal .Get(index));
16 }
17
18 InputPortalType InputPortal ;
19 OutputPortalType OutputPortal ;
20 };
21
22 template < typename T, typename Device >
23 void DoubleArray (vtkm :: cont :: ArrayHandle <T> inputArray ,
24 vtkm :: cont :: ArrayHandle <T> outputArray ,
25 Device)
26 {
27 vtkm :: Id numValues = inputArray . GetNumberOfValues ();
28
29 DoubleFunctor <T, Device > functor (
30 inputArray . PrepareForInput (Device ()) ,
31 outputArray . PrepareForOutput (numValues , Device ()));
32
33 vtkm :: cont :: DeviceAdapterAlgorithm <Device >:: Schedule (functor , numValues);
34 }

It should be noted that the array handle will expect any use of the execution array portal to finish before the next
call to any ArrayHandle method. Since these Prepare methods are typically used in the process of scheduling
an algorithm in the execution environment, this is seldom an issue.

Chapter 6. Array Handles 41

DRAFT

6.4. Interface to Execution Environment

Common Errors
There are many operations on ArrayHandle that can invalidate the array portals, so do not keep them
around indefinitely. It is generally better to keep a reference to the ArrayHandle and use one of the
Prepare each time the data are accessed in the execution environment.

42 Chapter 6. Array Handles

DRAFT
CHAPTER

SEVEN

DEVICE ADAPTERS

As multiple vendors vie to provide accelerator-type processors, a great variance in the computer architecture
exists. Likewise, there exist multiple compiler environments and libraries for these devices such as CUDA,
OpenMP, and various threading libraries. These compiler technologies also vary from system to system.

To make porting among these systems at all feasible, we require a base language support, and the language we
use is C++. The majority of the code in VTK-m is constrained to the standard C++ language constructs to
minimize the specialization from one system to the next.

Each device and device technology requires some level of code specialization, and that specialization is encapsu-
lated in a unit called a device adapter. Thus, porting VTK-m to a new architecture can be done by adding only
a device adapter.

The device adapter is shown diagrammatically as the connection between the control and execution environments
in Figure 5.1 on page 22. The functionality of the device adapter comprises two main parts: a collection of parallel
algorithms run in the execution environment and a module to transfer data between the control and execution
environments.

This chapter describes how tags are used to specify which devices to use for operations within VTK-m. The
chapter also outlines the features provided by a device adapter that allow you to directly control a device. Finally,
we document how to create a new device adapter to port or specialize VTK-m for a different device or system.

7.1 Device Adapter Tag

A device adapter is identified by a device adapter tag. This tag, which is simply an empty struct type, is used as
the template parameter for several classes in the VTK-m control environment and causes these classes to direct
their work to a particular device.

There are two ways to select a device adapter. The first is to make a global selection of a default device adapter.
The second is to specify a specific device adapter as a template parameter.

7.1.1 Default Device Adapter

A default device adapter tag is specified in vtkm/cont/DeviceAdapter.h (although it can also by specified in many
other VTK-m headers via header dependencies). If no other information is given, VTK-m attempts to choose
a default device adapter that is a best fit for the system it is compiled on. VTK-m currently select the default
device adapter with the following sequence of conditions.

• If the source code is being compiled by CUDA, the CUDA device is used.

DRAFT

7.1. Device Adapter Tag

• If the CUDA compiler is not being used and the current compiler supports OpenMP, then the OpenMP
device is used. [Technically, OpenMP is not yet supported in VTK-m, so this will never
actually be picked. But once it is implemented, this will be the chain.]

• If the compiler supports neither CUDA nor OpenMP and VTK-m was configured to use Intel Threading
Building Blocks, then that device is used.

• If no parallel device adapters are found, then VTK-m falls back to a serial device.

You can also set the default device adapter specifically by setting the VTKM DEVICE ADAPTER macro. This macro
must be set before including any VTK-m files. You can set VTKM DEVICE ADAPTER to any one of the following.

VTKM DEVICE ADAPTER SERIAL Performs all computation on the same single thread as the control environment.
This device is useful for debugging. This device is always available.

VTKM DEVICE ADAPTER CUDA Uses a CUDA capable GPU device. For this device to work, VTK-m must be
configured to use CUDA and the code must be compiled by the CUDA nvcc compiler.

VTKM DEVICE ADAPTER OPENMP Uses OpenMP compiler extensions to run algorithms on multiple threads. For
this device to work, VTK-m must be configured to use OpenMP and the code must be compiled with a
compiler that supports OpenMP pragmas. [Not currently implemented.]

VTKM DEVICE ADAPTER TBB Uses the Intel Threading Building Blocks library to run algorithms on multiple
threads. For this device to work, VTK-m must be configured to use TBB and the executable must be
linked to the TBB library.

These macros provide a useful mechanism for quickly reconfiguring code to run on different devices. The following
example shows a typical block of code at the top of a source file that could be used for quick reconfigurations.

Example 7.1: Macros to port VTK-m code among different devices
1 // Uncomment one (and only one) of the following to reconfigure the Dax
2 // code to use a particular device . Comment them all to automatically pick a
3 // device .
4 # define VTKM_DEVICE_ADAPTER VTKM_DEVICE_ADAPTER_SERIAL
5 //# define VTKM_DEVICE_ADAPTER VTKM_DEVICE_ADAPTER_CUDA
6 //# define VTKM_DEVICE_ADAPTER VTKM_DEVICE_ADAPTER_OPENMP
7 //# define VTKM_DEVICE_ADAPTER VTKM_DEVICE_ADAPTER_TBB
8
9 # include <vtkm/cont/ DeviceAdapter .h>

Did you know?
Filters do not actually use the default device adapter tag. They have a more sophisticated device selection
mechanism that determines the devices available at runtime and will attempt running on multiple devices.

The default device adapter can always be overridden by specifying a device adapter tag, as described in the next
section. There is actually one more internal default device adapter named VTKM DEVICE ADAPTER ERROR that
will cause a compile error if any component attempts to use the default device adapter. This feature is most
often used in testing code to check when device adapters should be specified.

44 Chapter 7. Device Adapters

DRAFT

7.1. Device Adapter Tag

7.1.2 Specifying Device Adapter Tags

In addition to setting a global default device adapter, it is possible to explicitly set which device adapter to use
in any feature provided by VTK-m. This is done by providing a device adapter tag as a template argument to
VTK-m templated objects. The following device adapter tags are available in VTK-m.

vtkm::cont::DeviceAdapterTagSerial Performs all computation on the same single thread as the control
environment. This device is useful for debugging. This device is always available. This tag is defined in
vtkm/cont/DeviceAdapterSerial.h.

vtkm::cont::DeviceAdapterTagCuda Uses a CUDA capable GPU device. For this device to work, VTK-m
must be configured to use CUDA and the code must be compiled by the CUDA nvcc compiler. This tag is
defined in vtkm/cont/cuda/DeviceAdapterCuda.h.

vtkm::cont::DeviceAdapterTagOpenMP Uses OpenMP compiler extensions to run algorithms on multiple
threads. For this device to work, VTK-m must be configured to use OpenMP and the code must be
compiled with a compiler that supports OpenMP pragmas. This tag is defined in vtkm/openmp/cont/De-
viceAdapterOpenMP.h. [Not currently implemented.]

vtkm::cont::DeviceAdapterTagTBB Uses the Intel Threading Building Blocks library to run algorithms on
multiple threads. For this device to work, VTK-m must be configured to use TBB and the executable must
be linked to the TBB library. This tag is defined in vtkm/cont/tbb/DeviceAdapterTBB.h.

The following example uses the tag for the Intel Threading Building blocks device adapter to prepare an output
array for that device. In this case, the device adapter tag is passed as a parameter for the PrepareForOutput
method of vtkm::cont::ArrayHandle.

Example 7.2: Specifying a device using a device adapter tag.
1 arrayHandle . PrepareForOutput (50 , vtkm :: cont :: DeviceAdapterTagTBB ());

When structuring your code to always specify a particular device adapter, consider setting the default device
adapter (with the VTKM DEVICE ADAPTER macro) to VTKM DEVICE ADAPTER ERROR. This will cause the compiler
to produce an error if any object is instantiated with the default device adapter, which checks to make sure the
code properly specifies every device adapter parameter.

VTK-m also defines a macro named VTKM DEFAULT DEVICE ADAPTER TAG, which can be used in place of an
explicit device adapter tag to use the default tag. This macro is used to create new templates that have template
parameters for device adapters that can use the default. The following example defines a functor to be used with
the Schedule operation (to be described later) that is templated on the device it uses.

Example 7.3: Specifying a default device for template parameters.
1 template < typename Device = VTKM_DEFAULT_DEVICE_ADAPTER_TAG >
2 struct SetPortalFunctor : vtkm :: exec :: FunctorBase
3 {
4 VTKM_IS_DEVICE_ADAPTER_TAG (Device);
5
6 typedef typename vtkm :: cont :: ArrayHandle <vtkm ::Id >::
7 ExecutionTypes <Device >:: Portal ExecPortalType ;
8 ExecPortalType Portal ;
9

10 VTKM_CONT_EXPORT
11 SetPortalFunctor (vtkm :: cont :: ArrayHandle <vtkm ::Id > array , vtkm :: Id size)
12 : Portal (array . PrepareForOutput (size , Device ()))
13 { }
14
15 VTKM_EXEC_EXPORT

Chapter 7. Device Adapters 45

DRAFT

7.2. Device Adapter Algorithms

16 void operator ()(vtkm :: Id index) const
17 {
18 typedef typename ExecPortalType :: ValueType ValueType ;
19 this -> Portal .Set(index , TestValue (index , ValueType ()));
20 }
21 };

Common Errors
A device adapter tag is a class just like every other type in C++. Thus it is possible to accidently use a
type that is not a device adapter tag when one is expected. This leads to unexpected errors in strange parts
of the code. To help identify these errors, it is good practice to use the VTKM IS DEVICE ADAPTER TAG
macro to verify the type is a valid device adapter tag. Example 7.3 uses this macro on line 4.

7.2 Device Adapter Algorithms

VTK-m comes with the templated class vtkm::cont::DeviceAdapterAlgorithm that provides a set of algo-
rithms that can be invoked in the control environment and are run on the execution environment. The template
has a single argument that specifies the device adapter tag.

Example 7.4: Prototype for vtkm::cont::DeviceAdapterAlgorithm.
1 namespace vtkm {
2 namespace cont {
3
4 template < typename DeviceAdapterTag >
5 struct DeviceAdapterAlgorithm ;
6
7 }
8 } // namespace vtkm :: cont

DeviceAdapterAlgorithm contains no state. It only has a set of static methods that implement its algorithms.
The following methods are available.

Did you know?
Many of the following device adapter algorithms take input and output ArrayHandles, and these functions
will handle their own memory management. This means that it is unnecessary to allocate output arrays.
For example, it is unnecessary to call ArrayHandle::Allocate() for the output array passed to the Copy
method.

Copy Copies data from an input array to an output array. The copy takes place in the execution environment.

LowerBounds The LowerBounds method takes three arguments. The first argument is an ArrayHandle of sorted
values. The second argument is another ArrayHandle of items to find in the first array. LowerBounds find
the index of the first item that is greater than or equal to the target value, much like the std::lower bound
STL algorithm. The results are returned in an ArrayHandle given in the third argument.
There are two specializations of LowerBounds. The first takes an additional comparison function that
defines the less-than operation. The second takes only two parameters. The first is an ArrayHandle of

46 Chapter 7. Device Adapters

DRAFT

7.2. Device Adapter Algorithms

sorted vtkm::Ids and the second is an ArrayHandle of vtkm::Ids to find in the first list. The results are
written back out to the second array. This second specialization is useful for inverting index maps.

Reduce The Reduce method takes an input array, initial value, and a binary function and computes a “total” of
applying the binary function to all entries in the array. The provided binary function must be associative
(but it need not be commutative). There is a specialization of Reduce that does not take a binary function
and computes the sum.

ReduceByKey The ReduceByKey method works similarly to the Reduce method except that it takes an additional
array of keys, which must be the same length as the values being reduced. The arrays are partitioned into
segments that have identical adjacent keys, and a separate reduction is performed on each partition. The
unique keys and reduced values are returned in separate arrays.

ScanInclusive The ScanInclusive method takes an input and an output ArrayHandle and performs a running
sum on the input array. The first value in the output is the same as the first value in the input. The second
value in the output is the sum of the first two values in the input. The third value in the output is the sum
of the first three values of the input, and so on. ScanInclusive returns the sum of all values in the input.
There are two forms of ScanInclusive: one performs the sum using addition whereas the other accepts a
custom binary function to use as the sum operator.

ScanExclusive The ScanExclusive method takes an input and an output ArrayHandle and performs a running
sum on the input array. The first value in the output is always 0. The second value in the output is the
same as the first value in the input. The third value in the output is the sum of the first two values in
the input. The fourth value in the output is the sum of the first three values of the input, and so on.
ScanExclusive returns the sum of all values in the input. There are two forms of ScanExclusive: one
performs the sum using addition whereas the other accepts a custom binary function to use as the sum
operator and a custom initial value to use in the running sum.

Schedule The Schedule method takes a functor as its first argument and invokes it a number of times specified
by the second argument. It should be assumed that each invocation of the functor occurs on a separate
thread although in practice there could be some thread sharing.
There are two versions of the Schedule method. The first version takes a vtkm::Id and invokes the functor
that number of times. The second version takes a vtkm::Id3 and invokes the functor once for every entry
in a 3D array of the given dimensions.
The functor is expected to be an object with a const overloaded parentheses operator. The operator
takes as a parameter the index of the invocation, which is either a vtkm::Id or a vtkm::Id3 depending on
what version of Schedule is being used. The functor must also subclass vtkm::exec::FunctorBase, which
provides the error handling facilities for the execution environment. FunctorBase contains a public method
named RaiseError that takes a message and will cause a vtkm::cont::ErrorExecution exception to be
thrown in the control environment.

Sort The Sort method provides an unstable sort of an array. There are two forms of the Sort method. The
first takes an ArrayHandle and sorts the values in place. The second takes an additional argument that is
a functor that provides the comparison operation for the sort.

SortByKey The SortByKey method works similarly to the Sort method except that it takes two ArrayHandles:
an array of keys and a corresponding array of values. The sort orders the array of keys in ascending values
and also reorders the values so they remain paired with the same key. Like Sort, SortByKey has a version
that sorts by the default less-than operator and a version that accepts a custom comparison functor.

StreamCompact The StreamCompact method selectively removes values from an array. The first argument is
an ArrayHandle to be compacted and the second argument is an ArrayHandle of equal size with flags
indicating whether the corresponding input value is to be copied to the output. The third argument is an

Chapter 7. Device Adapters 47

DRAFT

7.3. Implementing Device Adapters

output ArrayHandle whose length is set to the number of true flags in the stencil and the passed values
are put in order to the output array.
There is also a second form of StreamCompact that only has the stencil and output as arguments. In this
version, the output gets the corresponding index of where the input should be taken from.

Synchronize The Synchronize method waits for any asynchronous operations running on the device to complete
and then returns.

Unique The Unique method removes all duplicate values in an ArrayHandle. The method will only find dupli-
cates if they are adjacent to each other in the array. The easiest way to ensure that duplicate values are
adjacent is to sort the array first.
There are two versions of Unique. The first uses the equals operator to compare entries. The second
accepts a binary functor to perform the comparisons.

UpperBounds The UpperBounds method takes three arguments. The first argument is an ArrayHandle of sorted
values. The second argument is another ArrayHandle of items to find in the first array. UpperBounds find
the index of the first item that is greater than to the target value, much like the std::upper bound STL
algorithm. The results are returned in an ArrayHandle given in the third argument.
There are two specializations of UpperBounds. The first takes an additional comparison function that
defines the less-than operation. The second takes only two parameters. The first is an ArrayHandle of
sorted vtkm::Ids and the second is an ArrayHandle of vtkm::Ids to find in the first list. The results are
written back out to the second array. This second specialization is useful for inverting index maps.

7.3 Implementing Device Adapters

VTK-m comes with several implementations of device adapters so that it may be ported to a variety of platforms.
It is also possible to provide new device adapters to support yet more devices, compilers, and libraries. A new
device adapter provides a tag, a class to manage arrays in the execution environment, a collection of algorithms
that run in the execution environment, and (optionally) a timer.

Most device adapters are associated with some type of device or library, and all source code related directly to
that device is placed in a subdirectory of vtkm/cont. For example, files associated with CUDA are in vtkm/con-
t/cuda and files associated with the Intel Threading Building Blocks (TBB) are located in vtkm/cont/tbb. The
documentation here assumes that you are adding a device adapter to the VTK-m source code and following these
file conventions. However, it is also possible to define a device adapter outside of the core VTK-m, in which case
the file paths might be different.

For the purposes of discussion in this section, we will give a simple example of implementing a device adapter
using the std::thread class provided by C++11. We will call our device Cxx11Thread and place it in the
directory vtkm/cont/cxx11.

By convention the implementation of device adapters within VTK-m are divided into 3 header files with the
names DeviceAdapterTag∗.h, ArrayManagerExecution∗.h and DeviceAdapterAlgorithm∗.h, which are hidden in in-
ternal directories. The DeviceAdapter∗.h that most code includes is a trivial header that simply includes
these other three files. For our example std::thread device, we will create the base header at vtkm/con-
t/cxx11/DeviceAdapterCxx11Thread.h. The contents are the following (with minutia like include guards removed).

Example 7.5: Contents of the base header for a device adapter.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2 # include <vtkm/cont/ cxx11 / internal / ArrayManagerExecutionCxx11Thread .h>
3 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterAlgorithmCxx11Thread .h>

48 Chapter 7. Device Adapters

DRAFT

7.3. Implementing Device Adapters

The reason VTK-m breaks up the code for its device adapters this way is that there is an interdependence between
the implementation of each device adapter and the mechanism to pick a default device adapter. Breaking up
the device adapter code in this way maintains an acyclic dependence among header files.

7.3.1 Tag

The device adapter tag, as described in Section 7.1 is a simple empty type that is used as a template parameter
to identify the device adapter. Every device adapter implementation provides one. The device adapter tag is
typically defined in an internal header file with a prefix of DeviceAdapterTag.

The device adapter tag should be created with the macro VTKM VALID DEVICE ADAPTER. This adapter takes
an abbreviated name that it will append to DeviceAdapterTag to make the tag structure. It will also create
some support classes that allow VTK-m to introspect the device adapter. The macro also expects a unique
integer identifier that is usually stored in a macro prefixed with VTKM DEVICE ADAPTER . These identifiers for
the device adapters provided by the core VTK-m are declared in vtkm/cont/internal/DeviceAdapterTag.h.

The following example gives the implementation of our custom device adapter, which by convention would be
placed in the vtkm/cont/cxx11/internal/DeviceAdapterTagCxx11Thread.h header file.

Example 7.6: Implementation of a device adapter tag.
1 # include <vtkm/cont/ internal / DeviceAdapterTag .h>
2
3 // If this device adapter were to be contributed to VTK -m, then this macro
4 // declaration should be moved to DeviceAdapterTag .h and given a unique
5 // number .
6 # define VTKM_DEVICE_ADAPTER_CXX11_THREAD 101
7
8 VTKM_VALID_DEVICE_ADAPTER (Cxx11Thread , VTKM_DEVICE_ADAPTER_CXX11_THREAD);

7.3.2 Array Manager Execution

VTK-m defines a template named vtkm::cont::internal::ArrayManagerExecution that is responsible for al-
locating memory in the execution environment and copying data between the control and execution environment.
The execution array manager is typically defined in an internal header file with a prefix of ArrayManagerExecution.

Example 7.7: Prototype for vtkm::cont::internal::ArrayManagerExecution.
1 namespace vtkm {
2 namespace cont {
3 namespace internal {
4
5 template < typename T, typename StorageTag , typename DeviceAdapterTag >
6 class ArrayManagerExecution ;
7
8 }
9 }

10 } // namespace vtkm :: cont :: internal

A device adapter must provide a partial specialization of ArrayManagerExecution for its device adapter tag.
The implementation for ArrayManagerExecution is expected to manage the resources for a single array. All
ArrayManagerExecution specializations must have a constructor that takes a pointer to a vtkm::cont::inter-
nal::Storage object. The ArrayManagerExecution should store a reference to this Storage object and use it
to pass data between control and execution environments. Additionally, ArrayManagerExecution must provide
the following elements.

Chapter 7. Device Adapters 49

DRAFT

7.3. Implementing Device Adapters

ValueType A typedef of the type for each item in the array. This is the same type as the first template
argument.

PortalType The type of an array portal that can be used in the execution environment to access the array.

PortalConstType A read-only (const) version of PortalType.

GetNumberOfValues A method that returns the number of values stored in the array. The results are undefined
if the data has not been loaded or allocated.

PrepareForInput A method that ensures an array is allocated in the execution environment and valid data
is there. The method takes a bool flag that specifies whether data needs to be copied to the execution
environment. (If false, then data for this array has not changed since the last operation.) The method
returns a PortalConstType that points to the data.

PrepareForInPlace A method that ensures an array is allocated in the execution environment and valid data
is there. The method takes a bool flag that specifies whether data needs to be copied to the execution
environment. (If false, then data for this array has not changed since the last operation.) The method
returns a PortalType that points to the data.

PrepareForOutput A method that takes an array size and allocates an array in the execution environment of
the specified size. The initial memory may be uninitialized. The method returns a PortalType to the
data.

RetrieveOutputData This method takes a storage object, allocates memory in the control environment, and
copies data from the execution environment into it. If the control and execution environments share arrays,
then this can be a no-operation.

CopyInto This method takes an STL-compatible iterator and copies data from the execution environment into
it.

Shrink A method that adjusts the size of the array in the execution environment to something that is a smaller
size. All the data up to the new length must remain valid. Typically, no memory is actually reallocated.
Instead, a different end is marked.

ReleaseResources A method that frees any resources (typically memory) in the execution environment.

Specializations of this template typically take on one of two forms. If the control and execution environments
have separate memory spaces, then this class behaves by copying memory in methods such as PrepareForInput
and RetrieveOutputData. This might require creating buffers in the control environment to efficiently move
data from control array portals.

However, if the control and execution environments share the same memory space, the execution array manager
can, and should, delegate all of its operations to the Storage it is constructed with. VTK-m comes with a class
called vtkm::cont::internal::ArrayManagerExecutionShareWithControl that provides the implementation
for an execution array manager that shares a memory space with the control environment. In this case, making
the ArrayManagerExecution specialization be a trivial subclass is sufficient. Continuing our example of a device
adapter based on C++11’s std::thread class, here is the implementation of ArrayManagerExecution, which by
convention would be placed in the vtkm/cont/cxx11/internal/ArrayManagerExecutionCxx11Thread.h header file.

Example 7.8: Specialization of ArrayManagerExecution.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ internal / ArrayManagerExecution .h>
4 # include <vtkm/cont/ internal / ArrayManagerExecutionShareWithControl .h>
5

50 Chapter 7. Device Adapters

DRAFT

7.3. Implementing Device Adapters

6 namespace vtkm {
7 namespace cont {
8 namespace internal {
9

10 template < typename T, typename StorageTag >
11 class ArrayManagerExecution <
12 T, StorageTag , vtkm :: cont :: DeviceAdapterTagCxx11Thread >
13 : public vtkm :: cont :: internal :: ArrayManagerExecutionShareWithControl <
14 T, StorageTag >
15 {
16 typedef vtkm :: cont :: internal :: ArrayManagerExecutionShareWithControl
17 <T, StorageTag > Superclass ;
18
19 public :
20 VTKM_CONT_EXPORT
21 ArrayManagerExecution (typename Superclass :: StorageType * storage)
22 : Superclass (storage) { }
23 };
24
25 }
26 }
27 } // namespace vtkm :: cont :: internal

7.3.3 Algorithms

A device adapter implementation must also provide a specialization of vtkm::cont::DeviceAdapterAlgorithm,
which is documented in Section 7.2. The implementation for the device adapter algorithms is typically placed
in a header file with a prefix of DeviceAdapterAlgorithm.

Although there are many methods in DeviceAdapterAlgorithm, it is seldom necessary to implement them all.
Instead, VTK-m comes with vtkm::cont::internal::DeviceAdapterAlgorithmGeneral that provides generic
implementation for most of the required algorithms. By deriving the specialization of DeviceAdapterAlgorithm
from DeviceAdapterAlgorithmGeneral, only the implementations for Schedule and Synchronize need to be
implemented. All other algorithms can be derived from those.

That said, not all of the algorithms implemented in DeviceAdapterAlgorithmGeneral are optimized for all
types of devices. Thus, it is worthwhile to provide algorithms optimized for the specific device when possible.
In particular, it is best to provide specializations for the sort, scan, and reduce algorithms.

One point to note when implementing the Schedule methods is to make sure that errors handled in the execution
environment are handled correctly. As described in Section 14.9, errors are signaled in the execution environment
by calling RaiseError on a functor or worklet object. This is handled internally by the vtkm::exec::inter-
nal::ErrorMessageBuffer class. ErrorMessageBuffer really just holds a small string buffer, which must be
provided by the device adapter’s Schedule method.

So, before Schedule executes the functor it is given, it should allocate a small string array in the execution
environment, initialize it to the empty string, encapsulate the array in an ErrorMessageBuffer object, and set
this buffer object in the functor. When the execution completes, Schedule should check to see if an error exists
in this buffer and throw a vtkm::cont::ErrorExecution if an error has been reported.

Chapter 7. Device Adapters 51

DRAFT

7.3. Implementing Device Adapters

Common Errors
Exceptions are generally not supposed to be thrown in the execution environment, but it could happen on
devices that support them. Nevertheless, few thread schedulers work well when an exception is thrown in
them. Thus, when implementing adapters for devices that do support exceptions, it is good practice to catch
them within the thread and report them through the ErrorMessageBuffer.

The following example is a minimal implementation of device adapter algorithms using C++11’s std::thread
class. Note that no attempt at providing optimizations has been attempted (and many are possible). By
convention this code would be placed in the vtkm/cont/cxx11/internal/DeviceAdapterAlgorithmCxx11Thread.h
header file.

Example 7.9: Minimal specialization of DeviceAdapterAlgorithm.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ DeviceAdapterAlgorithm .h>
4 # include <vtkm/cont/ internal / DeviceAdapterAlgorithmGeneral .h>
5
6 # include <thread >
7
8 namespace vtkm {
9 namespace cont {

10
11 template <>
12 struct DeviceAdapterAlgorithm <vtkm :: cont :: DeviceAdapterTagCxx11Thread >
13 : vtkm :: cont :: internal :: DeviceAdapterAlgorithmGeneral <
14 DeviceAdapterAlgorithm <vtkm :: cont :: DeviceAdapterTagCxx11Thread >,
15 vtkm :: cont :: DeviceAdapterTagCxx11Thread >
16 {
17 private :
18 template < typename FunctorType >
19 struct ScheduleKernel1D
20 {
21 VTKM_CONT_EXPORT
22 ScheduleKernel1D (const FunctorType & functor)
23 : Functor (functor)
24 { }
25
26 VTKM_EXEC_EXPORT
27 void operator ()() const
28 {
29 try
30 {
31 for (vtkm :: Id threadId = this -> BeginId ;
32 threadId < this -> EndId ;
33 threadId ++)
34 {
35 this -> Functor (threadId);
36 // If an error is raised , abort execution .
37 if (this -> ErrorMessage . IsErrorRaised ()) { return ; }
38 }
39 }
40 catch (vtkm :: cont :: Error error)
41 {
42 this -> ErrorMessage . RaiseError (error . GetMessage (). c_str ());
43 }
44 catch (std :: exception error)
45 {
46 this -> ErrorMessage . RaiseError (error .what ());
47 }

52 Chapter 7. Device Adapters

DRAFT

7.3. Implementing Device Adapters

48 catch (...)
49 {
50 this -> ErrorMessage . RaiseError (" Unknown exception raised .");
51 }
52 }
53
54 FunctorType Functor ;
55 vtkm :: exec :: internal :: ErrorMessageBuffer ErrorMessage ;
56 vtkm :: Id BeginId ;
57 vtkm :: Id EndId ;
58 };
59
60 template < typename FunctorType >
61 struct ScheduleKernel3D
62 {
63 VTKM_CONT_EXPORT
64 ScheduleKernel3D (const FunctorType &functor , vtkm :: Id3 maxRange)
65 : Functor (functor), MaxRange (maxRange)
66 { }
67
68 VTKM_EXEC_EXPORT
69 void operator ()() const
70 {
71 vtkm :: Id3 threadId3D (this -> BeginId %this -> MaxRange [0] ,
72 (this -> BeginId /this -> MaxRange [0])% this -> MaxRange [1] ,
73 this -> BeginId /(this -> MaxRange [0]* this -> MaxRange [1]));
74
75 try
76 {
77 for (vtkm :: Id threadId = this -> BeginId ;
78 threadId < this -> EndId ;
79 threadId ++)
80 {
81 this -> Functor (threadId3D);
82 // If an error is raised , abort execution .
83 if (this -> ErrorMessage . IsErrorRaised ()) { return ; }
84
85 threadId3D [0]++;
86 if (threadId3D [0] >= MaxRange [0])
87 {
88 threadId3D [0] = 0;
89 threadId3D [1]++;
90 if (threadId3D [1] >= MaxRange [1])
91 {
92 threadId3D [1] = 0;
93 threadId3D [2]++;
94 }
95 }
96 }
97 }
98 catch (vtkm :: cont :: Error error)
99 {

100 this -> ErrorMessage . RaiseError (error . GetMessage (). c_str ());
101 }
102 catch (std :: exception error)
103 {
104 this -> ErrorMessage . RaiseError (error .what ());
105 }
106 catch (...)
107 {
108 this -> ErrorMessage . RaiseError (" Unknown exception raised .");
109 }
110 }
111

Chapter 7. Device Adapters 53

DRAFT

7.3. Implementing Device Adapters

112 FunctorType Functor ;
113 vtkm :: exec :: internal :: ErrorMessageBuffer ErrorMessage ;
114 vtkm :: Id BeginId ;
115 vtkm :: Id EndId ;
116 vtkm :: Id3 MaxRange ;
117 };
118
119 template < typename KernelType >
120 VTKM_CONT_EXPORT
121 static void DoSchedule (KernelType kernel ,
122 vtkm :: Id numInstances)
123 {
124 if (numInstances < 1) { return ; }
125
126 const vtkm :: Id MESSAGE_SIZE = 1024;
127 char errorString [MESSAGE_SIZE];
128 errorString [0] = ’\0’;
129 vtkm :: exec :: internal :: ErrorMessageBuffer errorMessage (errorString ,
130 MESSAGE_SIZE);
131 kernel . Functor . SetErrorMessageBuffer (errorMessage);
132 kernel . ErrorMessage = errorMessage ;
133
134 vtkm :: Id numThreads =
135 static_cast <vtkm ::Id >(std :: thread :: hardware_concurrency ());
136 if (numThreads > numInstances)
137 {
138 numThreads = numInstances ;
139 }
140 vtkm :: Id numInstancesPerThread = (numInstances + numThreads -1)/ numThreads ;
141
142 std :: thread * threadPool = new std :: thread [numThreads];
143 vtkm :: Id beginId = 0;
144 for (vtkm :: Id threadIndex = 0; threadIndex < numThreads ; threadIndex ++)
145 {
146 vtkm :: Id endId = std :: min(beginId + numInstancesPerThread , numInstances);
147 KernelType threadKernel = kernel ;
148 threadKernel . BeginId = beginId ;
149 threadKernel . EndId = endId ;
150 std :: thread newThread (threadKernel);
151 threadPool [threadIndex]. swap(newThread);
152 beginId = endId ;
153 }
154
155 for (vtkm :: Id threadIndex = 0; threadIndex < numThreads ; threadIndex ++)
156 {
157 threadPool [threadIndex]. join ();
158 }
159
160 delete [] threadPool ;
161
162 if (errorMessage . IsErrorRaised ())
163 {
164 throw vtkm :: cont :: ErrorExecution (errorString);
165 }
166 }
167
168 public :
169 template < typename FunctorType >
170 VTKM_CONT_EXPORT
171 static void Schedule (FunctorType functor , vtkm :: Id numInstances)
172 {
173 DoSchedule (ScheduleKernel1D < FunctorType >(functor), numInstances);
174 }
175

54 Chapter 7. Device Adapters

DRAFT

7.3. Implementing Device Adapters

176 template < typename FunctorType >
177 VTKM_CONT_EXPORT
178 static void Schedule (FunctorType functor , vtkm :: Id3 maxRange)
179 {
180 vtkm :: Id numInstances = maxRange [0]* maxRange [1]* maxRange [2];
181 DoSchedule (ScheduleKernel3D < FunctorType >(functor , maxRange), numInstances);
182 }
183
184 VTKM_CONT_EXPORT
185 static void Synchronize ()
186 {
187 // Nothing to do. This device schedules all of its operations using a
188 // split /join paradigm . This means that the if the control threaad is
189 // calling this method , then nothing should be running in the execution
190 // environment .
191 }
192 };
193
194 }
195 } // namespace vtkm :: cont

7.3.4 Timer Implementation

The VTK-m timer, described in Section ??, delegates to an internal class named vtkm::cont::DeviceAdapter-
TimerImplementation. The interface for this class is the same as that for vtkm::cont::Timer. A default im-
plementation of this templated class uses the system timer and the Synchronize method in the device adapter
algorithms.

However, some devices might provide alternate or better methods for implementing timers. For example, the TBB
and CUDA libraries come with high resolution timers that have better accuracy than the standard system timers.
Thus, the device adapter can optionally provide a specialization of DeviceAdapterTimerImplementation, which
is typically placed in the same header file as the device adapter algorithms.

Continuing our example of a custom device adapter using C++11’s std::thread class, we could use the de-
fault timer and it would work fine. But C++11 also comes with a std::chrono package that contains some
portable time functions. The following code demonstrates creating a custom timer for our device adapter us-
ing this package. By convention, DeviceAdapterTimerImplementation is placed in the same header file as
DeviceAdapterAlgorithm.

Example 7.10: Specialization of DeviceAdapterTimerImplementation.
1 # include <chrono >
2
3 namespace vtkm {
4 namespace cont {
5
6 template <>
7 class DeviceAdapterTimerImplementation <vtkm :: cont :: DeviceAdapterTagCxx11Thread >
8 {
9 public :

10 VTKM_CONT_EXPORT
11 DeviceAdapterTimerImplementation ()
12 {
13 this -> Reset ();
14 }
15
16 VTKM_CONT_EXPORT
17 void Reset ()
18 {
19 vtkm :: cont :: DeviceAdapterAlgorithm <vtkm :: cont :: DeviceAdapterTagCxx11Thread >

Chapter 7. Device Adapters 55

DRAFT

7.3. Implementing Device Adapters

20 :: Synchronize ();
21 this -> StartTime = std :: chrono :: high_resolution_clock :: now ();
22 }
23
24 VTKM_CONT_EXPORT
25 vtkm :: Float64 GetElapsedTime ()
26 {
27 vtkm :: cont :: DeviceAdapterAlgorithm <vtkm :: cont :: DeviceAdapterTagCxx11Thread >
28 :: Synchronize ();
29 std :: chrono :: high_resolution_clock :: time_point endTime =
30 std :: chrono :: high_resolution_clock :: now ();
31
32 std :: chrono :: high_resolution_clock :: duration elapsedTicks =
33 endTime - this -> StartTime ;
34
35 std :: chrono :: duration <vtkm :: Float64 > elapsedSeconds (elapsedTicks);
36
37 return elapsedSeconds . count ();
38 }
39
40 private :
41 std :: chrono :: high_resolution_clock :: time_point StartTime ;
42 };
43
44 }
45 } // namespace vtkm :: cont

56 Chapter 7. Device Adapters

DRAFT
CHAPTER

EIGHT

TIMERS

It is often the case that you need to measure the time it takes for an operation to happen. This could be for
performing measurements for algorithm study or it could be to dynamically adjust scheduling.

Performing timing in a multi-threaded environment can be tricky because operations happen asynchronously.
In the VTK-m control environment timing is simplified because the control environment operates on a single
thread. However, operations invoked in the execution environment may run asynchronously to operations in the
control environment.

To ensure that accurate timings can be made, VTK-m provides a vtkm::cont::Timer class that is templated on
the device adapter to provide an accurate measurement of operations that happen on the device. If not template
parameter is provided, the default device adapter is used.

The timing starts when the Timer is constructed. The time elapsed can be retrieved with a call to the GetE-
lapsedTime method. This method will block until all operations in the execution environment complete so as
to return an accurate time. The timer can be restarted with a call to the Reset method.

Example 8.1: Using vtkm::cont::Timer.
1 vtkm :: filter :: PointElevation elevationFilter ;
2
3 vtkm :: cont :: Timer <> timer ;
4
5 vtkm :: filter :: ResultField result =
6 elevationFilter . Execute (dataSet , dataSet . GetCoordinateSystem ());
7
8 // This code makes sure data is pulled back to the host in a host/ device
9 // architecture .

10 vtkm :: cont :: ArrayHandle <vtkm :: Float64 > outArray ;
11 result . FieldAs (outArray);
12 outArray . GetPortalConstControl ();
13
14 vtkm :: Float64 elapsedTime = timer . GetElapsedTime ();
15
16 std :: cout << "Time to run: " << elapsedTime << std :: endl;

Common Errors
Make sure the Timer being used is match to the device adapter used for the computation. This will ensure
that the parallel computation is synchronized.

DRAFT
Common Errors
Some device require data to be copied between the host CPU and the device. In this case you might want
to measure the time to copy data back to the host. This can be done by “touching” the data on the host by
getting a control portal.

58 Chapter 8. Timers

DRAFT
CHAPTER

NINE

FANCY ARRAY STORAGE

Chapter 6 introduces the vtkm::cont::ArrayHandle class. In it, we learned how an ArrayHandle manages the
memory allocation of an array, provides access to the data via array portals, and supervises the movement of
data between the control and execution environments.

In addition to these data management features, ArrayHandle also provides a configurable storage mechanism
that allows you, through efficient template configuration, to redefine how data are stored and retrieved. The
storage object provides an encapsulated interface around the data so that any necessary strides, offsets, or other
access patterns may be handled internally. The relationship between array handles and their storage object is
shown in Figure 9.1.

Array Handle

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Basic
Storage x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Permutation
Storage x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

2 9 3 0 2 1 9 7 2 6Array Handle

x2 x9 x3 x0 x2 x1 x9 x7 x2 x6

Array Handle

x0 y0 z0 x1 y1 z1 x2 y2 z2

Composite Vector
Storage y0 y1 y2

x0 x1 x2

z0 z1 z2

Array Handle

0 1 2 3 4 5 6 7 8 9

Index
Storage

Figure 9.1: Array handles, storage objects, and the underlying data source.

One interesting consequence of using a generic storage object to manage data within an array handle is that
the storage can be defined functionally rather than point to data stored in physical memory. Thus, implicit
array handles are easily created by adapting to functional “storage.” For example, the point coordinates of a
uniform rectilinear grid are implicit based on the topological position of the point. Thus, the point coordinates
for uniform rectilinear grids can be implemented as an implicit array with the same interface as explicit arrays
(where unstructured grid points would be stored). In this chapter we explore the many ways you can manipulate

DRAFT

9.1. Basic Storage

the ArrayHandle storage.

Did you know?
VTK-m comes with many “fancy” array handles that can change the data in other arrays without modifying
the memory or can generate data on the fly to behave like an array without actually using any memory.
These fancy array handles are documented later in this chapter, and they can be very handy when developing
with VTK-m.

9.1 Basic Storage

As previously discussed in Chapter 6, vtkm::cont::ArrayHandle takes two template arguments.

Example 9.1: Declaration of the vtkm::cont::ArrayHandle templated class (again).
1 template <
2 typename T,
3 typename StorageTag = VTKM_DEFAULT_STORAGE_TAG >
4 class ArrayHandle ;

The first argument is the only one required and has been demonstrated multiple times before. The second (op-
tional) argument specifies something called a storage, which provides the interface between the generic vtkm::-
cont::ArrayHandle class and a specific storage mechanism in the control environment.

In this and the following sections we describe this storage mechanism. A default storage is specified in much the
same way as a default device adapter is defined (as described in Section 7.1.1. It is done by setting the VTKM -
STORAGE macro. This macro must be set before including any VTK-m header files. Currently the only practical
storage provided by VTK-m is the basic storage, which simply allocates a continuous section of memory of the
given base type. This storage can be explicitly specified by setting VTKM STORAGE to VTKM STORAGE BASIC
although the basic storage will also be used as the default if no other storage is specified (which is typical).

The default storage can always be overridden by specifying an array storage tag. The tag for the basic storage
is located in the vtkm/cont/StorageBasic.h header file and is named vtkm::cont::StorageTagBasic. Here is an
example of specifying the storage type when declaring an array handle.

Example 9.2: Specifying the storage type for an ArrayHandle.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 ,vtkm :: cont :: StorageTagBasic > arrayHandle ;

VTK-m also defines a macro named VTKM DEFAULT STORAGE TAG that can be used in place of an explicit storage
tag to use the default tag. This macro is used to create new templates that have template parameters for storage
that can use the default.

9.2 Provided Fancy Arrays

The generic array handle and storage templating in VTK-m allows for any type of operations to retrieve a
particular value. Typically this is used to convert an index to some location or locations in memory. However,
it is also possible to do many other operations. Arrays can be augmented on the fly by mutating their indices or
values. Or values could be computed directly from the index so that no storage is required for the array at all.
This modified behavior for arrays is called “fancy” arrays.

VTK-m provides many of the fancy arrays, which we explore in this section. Later Section 9.3 describes many
different ways in which new fancy arrays can be implemented.

60 Chapter 9. Fancy Array Storage

DRAFT

9.2. Provided Fancy Arrays

9.2.1 Constant Arrays

A constant array is a fancy array handle that has the same value in all of its entries. The constant array provides
this array without actually using any memory.

Specifying a constant array in VTK-m is straightforward. VTK-m has a class named vtkm::cont::ArrayHan-
dleConstant. ArrayHandleConstant is a templated class with a single template argument that is the type of
value for each element in the array. The constructor for ArrayHandleConstant takes the value to provide by
the array and the number of values the array should present. The following example is a simple demonstration
of the constant array handle.

Example 9.3: Using ArrayHandleConstant.
1 // Create an array of 50 entries , all containing the number 3. This could be
2 // used , for example , to represent the sizes of all the polygons in a set
3 // where we know all the polygons are triangles .
4 vtkm :: cont :: ArrayHandleConstant <vtkm ::Id > constantArray (3, 50);

The vtkm/cont/ArrayHandleConstant.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleConstant that takes a value and a size for the array. This function can sometimes be used
to avoid having to declare the full array type.

Example 9.4: Using make ArrayHandleConstant.
1 // Create an array of 50 entries , all containing the number 3.
2 vtkm :: cont :: make_ArrayHandleConstant (3, 50)

9.2.2 Counting Arrays

A counting array is a fancy array handle that provides a sequence of numbers. These fancy arrays can represent
the data without actually using any memory.

VTK-m provides two versions of a counting array. The first version is an index array that provides a specialized
but common form of a counting array called an index array. An index array has values of type vtkm::Id that
start at 0 and count up by 1 (i.e. 0,1,2,3, . . .). The index array mirrors the array’s index.

Specifying an index array in VTK-m is done with a class named vtkm::cont::ArrayHandleIndex. The construc-
tor for ArrayHandleIndex takes the size of the array to create. The following example is a simple demonstration
of the index array handle.

Example 9.5: Using ArrayHandleIndex.
1 // Create an array containing [0, 1, 2, 3, ... , 49].
2 vtkm :: cont :: ArrayHandleIndex indexArray (50);

The vtkm::cont::ArrayHandleCounting class provides a more general form of counting. ArrayHandleCounting
is a templated class with a single template argument that is the type of value for each element in the array.
The constructor for ArrayHandleCounting takes three arguments: the start value (used at index 0), the step
from one value to the next, and the length of the array. The following example is a simple demonstration of the
counting array handle.

Example 9.6: Using ArrayHandleCounting.
1 // Create an array containing [-1.0 , -0.9, -0.8, ... , 0.9 , 1.0]
2 vtkm :: cont :: ArrayHandleCounting <vtkm :: Float32 > sampleArray (-1.0f, 0.1f, 21);

Chapter 9. Fancy Array Storage 61

DRAFT

9.2. Provided Fancy Arrays

Did you know?
In addition to being simpler to declare, ArrayHandleIndex is slightly faster than ArrayHandleCounting.
Thus, when applicable, you should prefer using ArrayHandleIndex.

The vtkm/cont/ArrayHandleCounting.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleCounting that also takes the start value, step, and length as arguments. This function can
sometimes be used to avoid having to declare the full array type.

Example 9.7: Using make ArrayHandleCounting.
1 // Create an array of 50 entries , all containing the number 3.
2 vtkm :: cont :: make_ArrayHandleCounting (-1.0f, 0.1f, 21)

There are no fundamental limits on how ArrayHandleCounting counts. For example, it is possible to count
backwards.

Example 9.8: Counting backwards with ArrayHandleCounting.
1 // Create an array containing [49 , 48, 47, 46, ... , 0].
2 vtkm :: cont :: ArrayHandleCounting <vtkm ::Id > backwardIndexArray (49 , -1, 50);

It is also possible to use ArrayHandleCounting to make sequences of vtkm::Vec values with piece-wise counting
in each of the components.

Example 9.9: Using ArrayHandleCounting with vtkm::Vec objects.
1 // Create an array containg [(0 , -3 ,75) , (1 ,2 ,25) , (3 ,7 , -25)]
2 vtkm :: cont :: make_ArrayHandleCounting (vtkm :: make_Vec (0, -3, 75) ,
3 vtkm :: make_Vec (1, 5, -50),
4 3)

9.2.3 Cast Arrays

A cast array is a fancy array that changes the type of the elements in an array. The cast array provides this
re-typed array without actually copying or generating any data. Instead, casts are performed as the array is
accessed.

VTK-m has a class named vtkm::cont::ArrayHandleCast to perform this implicit casting. ArrayHandleCast
is a templated class with two template arguments. The first argument is the type to cast values to. The second
argument is the type of the original ArrayHandle. The constructor to ArrayHandleCast takes the ArrayHandle
to modify by casting.

Example 9.10: Using ArrayHandleCast.
1 template < typename T>
2 VTKM_CONT_EXPORT
3 void Foo(const std :: vector <T> & inputData)
4 {
5 vtkm :: cont :: ArrayHandle <T> originalArray =
6 vtkm :: cont :: make_ArrayHandle (inputData);
7
8 vtkm :: cont :: ArrayHandleCast <vtkm :: Float64 , vtkm :: cont :: ArrayHandle <T> >
9 castArray (originalArray);

The vtkm/cont/ArrayHandleCast.h header also contains the templated convenience function vtkm::cont::make -
ArrayHandleCast that constructs the cast array. The first argument is the original ArrayHandle original array
to cast. The optional second argument is of the type to cast to (or you can optionally specify the cast-to type
as a template argument.

62 Chapter 9. Fancy Array Storage

DRAFT

9.2. Provided Fancy Arrays

Example 9.11: Using make ArrayHandleCast.
1 vtkm :: cont :: make_ArrayHandleCast <vtkm :: Float64 >(originalArray)

9.2.4 Permuted Arrays

A permutation array is a fancy array handle that reorders the elements in an array. Elements in the array can
be skipped over or replicated. The permutation array provides this reordered array without actually coping any
data. Instead, indices are adjusted as the array is accessed.

Specifying a permutation array in VTK-m is straightforward. VTK-m has a class named vtkm::cont::Array-
HandlePermutation that takes two arrays: an array of values and an array of indices that maps an index in the
permutation to an index of the original values. The index array is specified first. The following example is a
simple demonstration of the permutation array handle.

Example 9.12: Using ArrayHandlePermutation.
1 typedef vtkm :: cont :: ArrayHandle <vtkm ::Id > IdArrayType ;
2 typedef IdArrayType :: PortalControl IdPortalType ;
3
4 typedef vtkm :: cont :: ArrayHandle <vtkm :: Float32 > ValueArrayType ;
5 typedef ValueArrayType :: PortalControl ValuePortalType ;
6
7 // Create array with values [0.0 , 0.1 , 0.2 , 0.3]
8 ValueArrayType valueArray ;
9 valueArray . Allocate (4);

10 ValuePortalType valuePortal = valueArray . GetPortalControl ();
11 valuePortal .Set (0, 0.0);
12 valuePortal .Set (1, 0.1);
13 valuePortal .Set (2, 0.2);
14 valuePortal .Set (3, 0.3);
15
16 // Use ArrayHandlePermutation to make an array = [0.3 , 0.0 , 0.1].
17 IdArrayType idArray1 ;
18 idArray1 . Allocate (3);
19 IdPortalType idPortal1 = idArray1 . GetPortalControl ();
20 idPortal1 .Set (0, 3);
21 idPortal1 .Set (1, 0);
22 idPortal1 .Set (2, 1);
23 vtkm :: cont :: ArrayHandlePermutation < IdArrayType , ValueArrayType >
24 permutedArray1 (idArray1 , valueArray);
25
26 // Use ArrayHandlePermutation to make an array = [0.1 , 0.2 , 0.2 , 0.3 , 0.0]
27 IdArrayType idArray2 ;
28 idArray2 . Allocate (5);
29 IdPortalType idPortal2 = idArray2 . GetPortalControl ();
30 idPortal2 .Set (0, 1);
31 idPortal2 .Set (1, 2);
32 idPortal2 .Set (2, 2);
33 idPortal2 .Set (3, 3);
34 idPortal2 .Set (4, 0);
35 vtkm :: cont :: ArrayHandlePermutation < IdArrayType , ValueArrayType >
36 permutedArray2 (idArray2 , valueArray);

The vtkm/cont/ArrayHandlePermutation.h header also contains the templated convenience function vtkm::-
cont::make ArrayHandlePermutation that takes instances of the index and value array handles and returns a
permutation array. This function can sometimes be used to avoid having to declare the full array type.

Example 9.13: Using make ArrayHandlePermutation.
1 vtkm :: cont :: make_ArrayHandlePermutation (idArray , valueArray)

Chapter 9. Fancy Array Storage 63

DRAFT

9.2. Provided Fancy Arrays

Common Errors
When using an ArrayHandlePermutation, take care that all the provided indices in the index array point
to valid locations in the values array. Bad indices can cause reading from or writing to invalid memory
locations, which can be difficult to debug.

Did you know?
You can write to a ArrayHandlePermutation by, for example, using it as an output array. Writes to
the ArrayHandlePermutation will go to the respective location in the source array. However, ArrayHan-
dlePermutation cannot be resized.

9.2.5 Zipped Arrays

A zip array is a fancy array handle that combines two arrays of the same size to pair up the corresponding values.
Each element in the zipped array is a vtkm::Pair containing the values of the two respective arrays. These pairs
are not stored in their own memory space. Rather, the pairs are generated as the array is used. Writing a pair
to the zipped array writes the values in the two source arrays.

Specifying a zipped array in VTK-m is straightforward. VTK-m has a class named vtkm::cont::ArrayHan-
dleZip that takes the two arrays providing values for the first and second entries in the pairs. The following
example is a simple demonstration of creating a zip array handle.

Example 9.14: Using ArrayHandleZip.
1 typedef vtkm :: cont :: ArrayHandle <vtkm ::Id > ArrayType1 ;
2 typedef ArrayType1 :: PortalControl PortalType1 ;
3
4 typedef vtkm :: cont :: ArrayHandle <vtkm :: Float32 > ArrayType2 ;
5 typedef ArrayType2 :: PortalControl PortalType2 ;
6
7 // Create an array of vtkm :: Id with values [3, 0, 1]
8 ArrayType1 array1 ;
9 array1 . Allocate (3);

10 PortalType1 portal1 = array1 . GetPortalControl ();
11 portal1 .Set (0, 3);
12 portal1 .Set (1, 0);
13 portal1 .Set (2, 1);
14
15 // Create a second array of vtkm :: Float32 with values [0.0 , 0.1 , 0.2]
16 ArrayType2 array2 ;
17 array2 . Allocate (3);
18 PortalType2 portal2 = array2 . GetPortalControl ();
19 portal2 .Set (0, 0.0);
20 portal2 .Set (1, 0.1);
21 portal2 .Set (2, 0.2);
22
23 // Zip the two arrays together to create an array of
24 // vtkm :: Pair <vtkm ::Id , vtkm :: Float32 > with values [(3 ,0.0) , (0 ,0.1) , (1 ,0.2)]
25 vtkm :: cont :: ArrayHandleZip < ArrayType1 , ArrayType2 > zipArray (array1 , array2);

The vtkm/cont/ArrayHandleZip.h header also contains the templated convenience function vtkm::cont::make -
ArrayHandleZip that takes instances of the two array handles and returns a zip array. This function can
sometimes be used to avoid having to declare the full array type.

64 Chapter 9. Fancy Array Storage

DRAFT

9.2. Provided Fancy Arrays

Example 9.15: Using make ArrayHandleZip.
1 vtkm :: cont :: make_ArrayHandleZip (array1 , array2)

9.2.6 Coordinate System Arrays

Many of the data structures we use in VTK-m are described in a 3D coordinate system. Although, as we will
see in Chapter 11, we can use any ArrayHandle to store point coordinates, including a raw array of 3D vectors,
there are some common patterns for point coordinates that we can use specialized arrays to better represent the
data.

There are two fancy array handles that each handle a special form of coordinate system. The first such array
handle is vtkm::cont::ArrayHandleUniformPointCoordinates, which represents a uniform sampling of space.
The constructor for ArrayHandleUniformPointCoordinates takes three arguments. The first argument is a
vtkm::Id3 that specifies the number of samples in the x, y, and z directions. The second argument, which is
optional, specifies the origin (the location of the first point at the lower left corner). If not specified, the origin
is set to [0,0,0]. The third argument, which is also optional, specifies the distance between samples in the x, y,
and z directions. If not specified, the spacing is set to 1 in each direction.

Example 9.16: Using ArrayHandleUniformPointCoordinates.
1 // Create a set of point coordinates for a uniform grid in the space between
2 // -5 and 5 in the x direction and -3 and 3 in the y and z directions . The
3 // uniform sampling is spaced in 0.08 unit increments in the x direction (for
4 // 126 samples), 0.08 unit increments in the y direction (for 76 samples) and
5 // 0.24 unit increments in the z direction (for 26 samples). That makes
6 // 248 ,976 values in the array total .
7 vtkm :: cont :: ArrayHandleUniformPointCoordinates uniformCoordinates (
8 vtkm :: Id3 (126 , 76, 26) ,
9 vtkm :: make_Vec <vtkm :: FloatDefault >(-5.0f, -3.0f, -3.0f),

10 vtkm :: make_Vec <vtkm :: FloatDefault >(0.08f, 0.08f, 0.24f)
11);

The second fancy array handle for special coordinate systems is vtkm::cont::ArrayHandleCartesianProduct,
which represents a rectilinear sampling of space where the samples are axis aligned but have variable spacing.
Sets of coordinates of this type are most efficiently represented by having a separate array for each component
of the axis, and then for each [i, j,k] index of the array take the value for each component from each array using
the respective index. This is equivalent to performing a Cartesian product on the arrays.

ArrayHandleCartesianProduct is a templated class. It has three template parameters, which are the types of
the arrays used for the x, y, and z axes. The constructor for ArrayHandleCartesianProduct takes the three
arrays.

Example 9.17: Using a ArrayHandleCartesianProduct.
1 typedef vtkm :: cont :: ArrayHandle <vtkm :: Float32 > AxisArrayType ;
2 typedef AxisArrayType :: PortalControl AxisPortalType ;
3
4 // Create array for x axis coordinates with values [0.0 , 1.1 , 5.0]
5 AxisArrayType xAxisArray ;
6 xAxisArray . Allocate (3);
7 AxisPortalType xAxisPortal = xAxisArray . GetPortalControl ();
8 xAxisPortal .Set (0, 0.0f);
9 xAxisPortal .Set (1, 1.1f);

10 xAxisPortal .Set (2, 5.0f);
11
12 // Create array for y axis coordinates with values [0.0 , 2.0]
13 AxisArrayType yAxisArray ;
14 yAxisArray . Allocate (2);
15 AxisPortalType yAxisPortal = yAxisArray . GetPortalControl ();

Chapter 9. Fancy Array Storage 65

DRAFT

9.2. Provided Fancy Arrays

16 yAxisPortal .Set (0, 0.0f);
17 yAxisPortal .Set (1, 2.0f);
18
19 // Create array for z axis coordinates with values [0.0 , 0.5]
20 AxisArrayType zAxisArray ;
21 zAxisArray . Allocate (2);
22 AxisPortalType zAxisPortal = zAxisArray . GetPortalControl ();
23 zAxisPortal .Set (0, 0.0f);
24 zAxisPortal .Set (1, 0.5f);
25
26 // Create point coordinates for a " rectilinear grid" with axis - aligned points
27 // with variable spacing by taking the Cartesian product of the three
28 // previously defined arrays . This generates the following 3x2x2 = 12 values :
29 //
30 // [0.0 , 0.0 , 0.0] , [1.1 , 0.0 , 0.0] , [5.0 , 0.0 , 0.0] ,
31 // [0.0 , 2.0 , 0.0] , [1.1 , 2.0 , 0.0] , [5.0 , 2.0 , 0.0] ,
32 // [0.0 , 0.0 , 0.5] , [1.1 , 0.0 , 0.5] , [5.0 , 0.0 , 0.5] ,
33 // [0.0 , 2.0 , 0.5] , [1.1 , 2.0 , 0.5] , [5.0 , 2.0 , 0.5]
34 vtkm :: cont :: ArrayHandleCartesianProduct <
35 AxisArrayType , AxisArrayType , AxisArrayType > rectilinearCoordinates (
36 xAxisArray , yAxisArray , zAxisArray);

The vtkm/cont/ArrayHandleCartesianProduct.h/header also contains the templated convenience function vtkm::-
cont::make ArrayHandleCartesianProduct that takes the three axis arrays and returns an array of the Carte-
sian product. This function can sometimes be used to avoid having to declare the full array type.

Example 9.18: Using make ArrayHandleCartesianProduct.
1 vtkm :: cont :: make_ArrayHandleCartesianProduct (xAxisArray , yAxisArray , zAxisArray)

Did you know?
These specialized arrays for coordinate systems greatly reduce the code duplication in VTK-m. Most sci-
entific visualization systems need separate implementations of algorithms for uniform, rectilinear, and
unstructured grids. But in VTK-m an algorithm can be written once and then applied to all these different
grid structures by using these specialized array handles and letting the compiler’s templates optimize the
code.

9.2.7 Composite Vector Arrays

A composite vector array is a fancy array handle that combines two to four arrays of the same size and value
type and combines their corresponding values to form a vtkm::Vec. A composite vector array is similar in
nature to a zipped array (described in Section 9.2.5) except that values are combined into vtkm::Vecs instead
of vtkm::Pairs. The created vtkm::Vecs are not stored in their own memory space. Rather, the Vecs are
generated as the array is used. Writing Vecs to the composite vector array writes values into the components of
the source arrays.

A composite vector array can be created using the vtkm::cont::ArrayHandleCompositeVector class. This
class has a single template argument that is a “signature” for the arrays to be combined. These signatures can
be tricky to prototype, so vtkm/cont/ArrayHandleCompositeVector.h/header also contains a helper struct named
vtkm::cont::ArrayHandleCompositeVectorType to define the type. ArrayHandleCompositeVectorType takes
a variable number of ArrayHandle types that compose the vector. ArrayHandleCompositeVectorType has an
internal type named type that is the appropriately defined ArrayHandleCompositeVector.

The constructor for ArrayHandleCompositeVector takes instances of the array handles to combine along with

66 Chapter 9. Fancy Array Storage

DRAFT

9.2. Provided Fancy Arrays

the component from each array to use. If the array handles being combined contain scalar data, then the
appropriate component to use is 0.

Example 9.19: Using ArrayHandleCompositeVector.
1 // Create an array with [0, 1, 2, 3, 4]
2 typedef vtkm :: cont :: ArrayHandleIndex ArrayType1 ;
3 ArrayType1 array1 (5);
4
5 // Create an array with [3, 1, 4, 1, 5]
6 typedef vtkm :: cont :: ArrayHandle <vtkm ::Id > ArrayType2 ;
7 ArrayType2 array2 ;
8 array2 . Allocate (5);
9 ArrayType2 :: PortalControl arrayPortal2 = array2 . GetPortalControl ();

10 arrayPortal2 .Set (0, 3);
11 arrayPortal2 .Set (1, 1);
12 arrayPortal2 .Set (2, 4);
13 arrayPortal2 .Set (3, 1);
14 arrayPortal2 .Set (4, 5);
15
16 // Create an array with [2, 7, 1, 8, 2]
17 typedef vtkm :: cont :: ArrayHandle <vtkm ::Id > ArrayType3 ;
18 ArrayType3 array3 ;
19 array3 . Allocate (5);
20 ArrayType2 :: PortalControl arrayPortal3 = array3 . GetPortalControl ();
21 arrayPortal3 .Set (0, 2);
22 arrayPortal3 .Set (1, 7);
23 arrayPortal3 .Set (2, 1);
24 arrayPortal3 .Set (3, 8);
25 arrayPortal3 .Set (4, 2);
26
27 // Create an array with [0, 0, 0, 0]
28 typedef vtkm :: cont :: ArrayHandleConstant <vtkm ::Id > ArrayType4 ;
29 ArrayType4 array4 (0, 5);
30
31 // Use ArrayhandleCompositeVector to create the array
32 // [(0 ,3 ,2 ,0) , (1 ,1 ,7 ,0) , (2 ,4 ,1 ,0) , (3 ,1 ,8 ,0) , (4 ,5 ,2 ,0)].
33 typedef vtkm :: cont :: ArrayHandleCompositeVectorType <
34 ArrayType1 , ArrayType2 , ArrayType3 , ArrayType4 >:: type CompositeArrayType ;
35 CompositeArrayType compositeArray (array1 , 0,
36 array2 , 0,
37 array3 , 0,
38 array4 , 0);

The vtkm/cont/ArrayHandleCompositeVector.h header also contains the templated convenience function vtkm::-
cont::make ArrayHandleCompositeVector which takes two to four array handles and returns an ArrayHan-
dleCompositeVector. This function can sometimes be used to avoid having to declare the full array type.

Example 9.20: Using make ArrayHandleCompositeVector.
1 vtkm :: cont :: make_ArrayHandleCompositeVector (array1 , 0,
2 array2 , 0,
3 array3 , 0,
4 array4 , 0)

ArrayHandleCompositeVector is often used to combine scalar arrays into vector arrays, but it can also be used
to pull components out of other vector arrays. The following example uses this feature to convert an array of
2D x,y coordinates and an array of elevations to 3D x,y,z coordinates.

Example 9.21: Combining vector components with ArrayHandleCompositeVector.
1 template < typename CoordinateArrayType , typename ElevationArrayType >
2 VTKM_CONT_EXPORT
3 typename vtkm :: cont :: ArrayHandleCompositeVectorType <

Chapter 9. Fancy Array Storage 67

DRAFT

9.3. Implementing Fancy Arrays

4 CoordinateArrayType , CoordinateArrayType , ElevationArrayType >:: type
5 ElevateCoordianteArray (const CoordinateArrayType & coordinateArray ,
6 const ElevationArrayType & elevationArray)
7 {
8 VTKM_IS_ARRAY_HANDLE (CoordinateArrayType);
9 VTKM_IS_ARRAY_HANDLE (ElevationArrayType);

10
11 return vtkm :: cont :: make_ArrayHandleCompositeVector (coordinateArray , 0,
12 coordinateArray , 1,
13 elevationArray , 0);
14 }

9.2.8 Grouped Vector Arrays

A grouped vector array is a fancy array handle that groups consecutive values of an array together to form
a vtkm::Vec. The source array must be of a length that is divisible by the requested Vec size. The created
vtkm::Vecs are not stored in their own memory space. Rather, the Vecs are generated as the array is used.
Writing Vecs to the grouped vector array writes values into the the source array.

A grouped vector array is created using the vtkm::cont::ArrayHandleGroupVec class. This templated class
has two template arguments. The first argument is the type of array being grouped and the second argument is
an integer specifying the size of the Vecs to create (the number of values to group together).

Example 9.22: Using ArrayHandleGroupVec.
1 // Create an array containing [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
2 typedef vtkm :: cont :: ArrayHandleIndex ArrayType ;
3 ArrayType sourceArray (12);
4
5 // Create an array containing [(0 ,1) , (2 ,3) , (4 ,5) , (6 ,7) , (8 ,9) , (10 ,11)]
6 vtkm :: cont :: ArrayHandleGroupVec <ArrayType ,2> vec2Array (sourceArray);
7
8 // Create an array containing [(0 ,1 ,2) , (3 ,4 ,5) , (6 ,7 ,8) , (9 ,10 ,11)]
9 vtkm :: cont :: ArrayHandleGroupVec <ArrayType ,3> vec3Array (sourceArray);

The vtkm/cont/ArrayHandleGroupVec.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleGroupVec that takes an instance of the array to group into Vecs. You must specify the size
of the Vecs as a template parameter when using vtkm::cont::make ArrayHandleGroupVec.

Example 9.23: Using make ArrayHandleGroupVec.
1 // Create an array containing [(0 ,1 ,2 ,3) , (4 ,5 ,6 ,7) , (8 ,9 ,10 ,11)]
2 vtkm :: cont :: make_ArrayHandleGroupVec <4 >(sourceArray)

9.3 Implementing Fancy Arrays

Although the behavior of fancy arrays might seem complicated, they are actually straightforward to implement.
VTK-m provides several mechanisms to implement fancy arrays.

9.3.1 Implicit Array Handles

The generic array handle and storage templating in VTK-m allows for any type of operations to retrieve a
particular value. Typically this is used to convert an index to some location or locations in memory. However,
it is also possible to compute a value directly from an index rather than look up some value in memory. Such

68 Chapter 9. Fancy Array Storage

DRAFT

9.3. Implementing Fancy Arrays

an array is completely functional and requires no storage in memory at all. Such a functional array is called
an implicit array handle. Implicit arrays are an example of fancy array handles, which are array handles that
behave like regular arrays but do special processing under the covers to provide values.

Specifying a functional or implicit array in VTK-m is straightforward. VTK-m has a special class named
vtkm::cont::ArrayHandleImplicit that makes an implicit array containing values generated by a user-specified
functor. A functor is simply a C++ class or struct that contains an overloaded parenthesis operator so that it
can be used syntactically like a function.

To demonstrate the use of ArrayHandleImplicit, let us say we want an array of even numbers. The array has
the values [0,2,4,6, . . .] (double the index) up to some given size. Although we could easily create this array in
memory, we can save space and possibly time by computing these values on demand.

Did you know?
VTK-m already comes with an implicit array handle named vtkm::cont::ArrayHandleCounting that can
make implicit even numbers as well as other more general counts. So in practice you would not have to
create a special implicit array, but we are doing so here for demonstrative purposes.

The first step to using ArrayHandleImplicit is to declare a functor. The functor’s parenthesis operator should
accept a single argument of type vtkm::Id and return a value appropriate for that index. The parenthesis
operator should also be declared const because it is not allowed to change the class’ state.

Example 9.24: Functor that doubles an index.
1 struct DoubleIndexFunctor
2 {
3 VTKM_EXEC_CONT_EXPORT
4 vtkm :: Id operator ()(vtkm :: Id index) const
5 {
6 return 2* index ;
7 }
8 };

Once the functor is defined, an implicit array can be declared using the templated vtkm::cont::ArrayHan-
dleImplicit class. The first template argument is the type of the array’s values (which should match the return
value for the functor), and the second template argument is the functor type.

Example 9.25: Declaring a ArrayHandleImplicit.
1 vtkm :: cont :: ArrayHandleImplicit <vtkm ::Id , DoubleIndexFunctor >
2 implicitArray (DoubleIndexFunctor (), 50);

For convenience, vtkm/cont/ArrayHandleImplicit.h also declares the vtkm::cont::make ArrayHandleImplicit
function. This function takes a functor and the size of the array and returns the implicit array. When using this
function, you also have to declare the first template argument, which is the array’s value type, since this type
does not appear in any of the arguments.

Example 9.26: Using make ArrayHandleImplicit.
1 vtkm :: cont :: make_ArrayHandleImplicit <vtkm ::Id >(DoubleIndexFunctor (), 50);

If the implicit array you are creating tends to be generally useful and is something you use multiple times, it
might be worthwhile to make a convenience subclass of vtkm::cont::ArrayHandleImplicit for your array.

Example 9.27: Custom implicit array handle for even numbers.
1 # include <vtkm/cont/ ArrayHandleImplicit .h>
2

Chapter 9. Fancy Array Storage 69

DRAFT

9.3. Implementing Fancy Arrays

3 class ArrayHandleDoubleIndex
4 : public vtkm :: cont :: ArrayHandleImplicit <vtkm ::Id , DoubleIndexFunctor >
5 {
6 public :
7 VTKM_ARRAY_HANDLE_SUBCLASS_NT (
8 ArrayHandleDoubleIndex ,
9 (vtkm :: cont :: ArrayHandleImplicit <vtkm ::Id , DoubleIndexFunctor >));

10
11 VTKM_CONT_EXPORT
12 ArrayHandleDoubleIndex (vtkm :: Id numberOfValues)
13 : Superclass (DoubleIndexFunctor (), numberOfValues) { }
14 };

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. Both of these macros define the typedefs Superclass, ValueType, and StorageTag as well as
a set of constructors and operators expected of all ArrayHandle classes. The difference between these two macros
is that VTKM ARRAY HANDLE SUBCLASS is used in templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT
is used in non-templated classes.

The ArrayHandle subclass in Example 9.27 is not templated, so it uses the VTKM ARRAY HANDLE SUBCLASS NT
macro. (The other macro is described in Section 9.3.2 on page 72). This macro takes two parameters. The first
parameter is the name of the subclass where the macro is defined and the second parameter is the immediate
superclass including the full template specification. The second parameter of the macro must be enclosed in
parentheses so that the C pre-processor correctly handles commas in the template specification.

9.3.2 Transformed Arrays

Another type of fancy array handle is the transformed array. A transformed array takes another array and
applies a function to all of the elements to produce a new array. A transformed array behaves much like a map
operation except that a map operation writes its values to a new memory location whereas the transformed array
handle produces its values on demand so that no additional storage is required.

Specifying a transformed array in VTK-m is straightforward. VTK-m has a special class named vtkm::cont::-
ArrayHandleTransform that takes an array handle and a functor and provides an interface to a new array
comprising values of the first array applied to the functor.

To demonstrate the use of ArrayHandleTransform, let us say that we want to scale and bias all of the values in
a target array. That is, each value in the target array is going to be multiplied by a given scale and then offset
by adding a bias value. (The scale and bias are uniform across all entries.) We could, of course, easily create a
worklet to apply this scale and bias to each entry in the target array and save the result in a new array, but we
can save space and possibly time by computing these values on demand.

The first step to using ArrayHandleTransform is to declare a functor. The functor’s parenthesis operator should
accept a single argument of the type of the target array and return the transformed value. For more generally
applicable transform functors, it is often useful to make the parenthesis operator a template. The parenthesis
operator should also be declared const because it is not allowed to change the class’ state.

Example 9.28: Functor to scale and bias a value.
1 template < typename T>
2 struct ScaleBiasFunctor
3 {
4 VTKM_EXEC_CONT_EXPORT
5 ScaleBiasFunctor (T scale = T(1) , T bias = T(0))
6 : Scale (scale), Bias(bias) { }
7
8 VTKM_EXEC_CONT_EXPORT

70 Chapter 9. Fancy Array Storage

DRAFT

9.3. Implementing Fancy Arrays

9 T operator ()(T x) const
10 {
11 return this -> Scale *x + this ->Bias;
12 }
13
14 T Scale ;
15 T Bias;
16 };

Once the functor is defined, a transformed array can be declared using the templated vtkm::cont::ArrayHan-
dleTransform class. The first template argument is the type of the array’s values (which should match the
return value for the functor). The second template argument is the type of array being transformed. The third
and final template argument is the type of functor used for the transformation.

That said, it is generally easier to use the vtkm::cont::make ArrayHandleTransform convenience function.
This function takes an array and a functor and returns a transformed array. When using this function, you also
have to declare the first template argument, which is the transformed array’s value type, since this type does
not appear in any of the arguments.

Example 9.29: Using make ArrayHandleTransform.
1 vtkm :: cont :: make_ArrayHandleTransform <vtkm :: Float32 >(
2 array , ScaleBiasFunctor <vtkm :: Float32 >(2 ,3))

If the transformed array you are creating tends to be generally useful and is something you use multiple times,
it might be worthwhile to make a convenience subclass of vtkm::cont::ArrayHandleTransform or convenience
make ArrayHandle* function for your array.

Example 9.30: Custom transform array handle for scale and bias.
1 # include <vtkm/cont/ ArrayHandleTransform .h>
2
3 template < typename ArrayHandleType >
4 class ArrayHandleScaleBias
5 : public vtkm :: cont :: ArrayHandleTransform <
6 typename ArrayHandleType :: ValueType ,
7 ArrayHandleType ,
8 ScaleBiasFunctor < typename ArrayHandleType :: ValueType > >
9 {

10 public :
11 VTKM_ARRAY_HANDLE_SUBCLASS (
12 ArrayHandleScaleBias ,
13 (ArrayHandleScaleBias < ArrayHandleType >),
14 (vtkm :: cont :: ArrayHandleTransform <
15 typename ArrayHandleType :: ValueType ,
16 ArrayHandleType ,
17 ScaleBiasFunctor < typename ArrayHandleType :: ValueType > >)
18);
19
20 VTKM_CONT_EXPORT
21 ArrayHandleScaleBias (const ArrayHandleType &array ,
22 ValueType scale ,
23 ValueType bias)
24 : Superclass (array , ScaleBiasFunctor <ValueType >(scale , bias)) { }
25 };
26
27 template < typename ArrayHandleType >
28 VTKM_CONT_EXPORT
29 ArrayHandleScaleBias < ArrayHandleType >
30 make_ArrayHandleScaleBias (const ArrayHandleType &array ,
31 typename ArrayHandleType :: ValueType scale ,
32 typename ArrayHandleType :: ValueType bias)
33 {

Chapter 9. Fancy Array Storage 71

DRAFT

9.3. Implementing Fancy Arrays

34 return ArrayHandleScaleBias < ArrayHandleType >(array , scale , bias);
35 }

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. Both of these macros define the typedefs Superclass, ValueType, and StorageTag as well as
a set of constructors and operators expected of all ArrayHandle classes. The difference between these two macros
is that VTKM ARRAY HANDLE SUBCLASS is used in templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT
is used in non-templated classes.

The ArrayHandle subclass in Example 9.30 is templated, so it uses the VTKM ARRAY HANDLE SUBCLASS macro.
(The other macro is described in Section 9.4 on page 83). This macro takes three parameters. The first parameter
is the name of the subclass where the macro is defined, the second parameter is the type of the subclass including
the full template specification, and the third parameter is the immediate superclass including the full template
specification. The second and third parameters of the macro must be enclosed in parentheses so that the C
pre-processor correctly handles commas in the template specification.

9.3.3 Derived Storage

A derived storage is a type of fancy array that takes one or more other arrays and changes their behavior in
some way. A transformed array (Section 9.3.2) is a specific type of derived array with a simple mapping. In
this section we will demonstrate the steps required to create a more general derived storage. When applicable,
it is much easier to create a derived array as a transformed array or using the other fancy arrays than to create
your own derived storage. However, if these pre-existing fancy arrays do not work work, for example if your
derivation uses multiple arrays or requires general lookups, you can do so by creating your own derived storage.
For the purposes of the example in this section, let us say we want 2 array handles to behave as one array with
the contents concatenated together. We could of course actually copy the data, but we can also do it in place.

The first step to creating a derived storage is to build an array portal that will take portals from arrays being
derived. The portal must work in both the control and execution environment (or have a separate version for
control and execution).

Example 9.31: Derived array portal for concatenated arrays.
1 # include <vtkm/cont/ ArrayHandle .h>
2 # include <vtkm/cont/ ArrayPortal .h>
3
4 template < typename P1 , typename P2 >
5 class ArrayPortalConcatenate
6 {
7 public :
8 typedef P1 PortalType1 ;
9 typedef P2 PortalType2 ;

10 typedef typename PortalType1 :: ValueType ValueType ;
11
12 VTKM_SUPPRESS_EXEC_WARNINGS
13 VTKM_EXEC_CONT_EXPORT
14 ArrayPortalConcatenate () : Portal1 (), Portal2 () { }
15
16 VTKM_SUPPRESS_EXEC_WARNINGS
17 VTKM_EXEC_CONT_EXPORT
18 ArrayPortalConcatenate (const PortalType1 &portal1 , const PortalType2 portal2)
19 : Portal1 (portal1), Portal2 (portal2) { }
20
21 /// Copy constructor for any other ArrayPortalConcatenate with a portal type
22 /// that can be copied to this portal type. This allows us to do any type
23 /// casting that the portals do (like the non - const to const cast).
24 VTKM_SUPPRESS_EXEC_WARNINGS

72 Chapter 9. Fancy Array Storage

DRAFT

9.3. Implementing Fancy Arrays

25 template < typename OtherP1 , typename OtherP2 >
26 VTKM_EXEC_CONT_EXPORT
27 ArrayPortalConcatenate (const ArrayPortalConcatenate <OtherP1 ,OtherP2 > &src)
28 : Portal1 (src. GetPortal1 ()) , Portal2 (src. GetPortal2 ()) { }
29
30 VTKM_SUPPRESS_EXEC_WARNINGS
31 VTKM_EXEC_CONT_EXPORT
32 vtkm :: Id GetNumberOfValues () const {
33 return
34 this -> Portal1 . GetNumberOfValues () + this -> Portal2 . GetNumberOfValues ();
35 }
36
37 VTKM_SUPPRESS_EXEC_WARNINGS
38 VTKM_EXEC_CONT_EXPORT
39 ValueType Get(vtkm :: Id index) const {
40 if (index < this -> Portal1 . GetNumberOfValues ())
41 {
42 return this -> Portal1 .Get(index);
43 }
44 else
45 {
46 return this -> Portal2 .Get(index - this -> Portal1 . GetNumberOfValues ());
47 }
48 }
49
50 VTKM_SUPPRESS_EXEC_WARNINGS
51 VTKM_EXEC_CONT_EXPORT
52 void Set(vtkm :: Id index , const ValueType & value) const {
53 if (index < this -> Portal1 . GetNumberOfValues ())
54 {
55 this -> Portal1 .Set(index , value);
56 }
57 else
58 {
59 this -> Portal2 .Set(index - this -> Portal1 . GetNumberOfValues (), value);
60 }
61 }
62
63 VTKM_EXEC_CONT_EXPORT
64 const PortalType1 & GetPortal1 () const { return this -> Portal1 ; }
65 VTKM_EXEC_CONT_EXPORT
66 const PortalType2 & GetPortal2 () const { return this -> Portal2 ; }
67
68 private :
69 PortalType1 Portal1 ;
70 PortalType2 Portal2 ;
71 };

Like in an adapter storage, the next step in creating a derived storage is to define a tag for the adapter. We
shall call ours StorageTagConcatenate and it will be templated on the two array handle types that we are
deriving. Then, we need to create a specialization of the templated vtkm::cont::internal::Storage class.
The implementation for a Storage for a derived storage is usually trivial compared to an adapter storage
because the majority of the work is deferred to the derived arrays.

Example 9.32: Storage for derived container of concatenated arrays.
1 template < typename ArrayHandleType1 , typename ArrayHandleType2 >
2 struct StorageTagConcatenate { };
3
4 namespace vtkm {
5 namespace cont {
6 namespace internal {
7
8 template < typename ArrayHandleType1 , typename ArrayHandleType2 >

Chapter 9. Fancy Array Storage 73

DRAFT

9.3. Implementing Fancy Arrays

9 class Storage <
10 typename ArrayHandleType1 :: ValueType ,
11 StorageTagConcatenate < ArrayHandleType1 , ArrayHandleType2 > >
12 {
13 public :
14 typedef typename ArrayHandleType1 :: ValueType ValueType ;
15
16 typedef ArrayPortalConcatenate <
17 typename ArrayHandleType1 :: PortalControl ,
18 typename ArrayHandleType2 :: PortalControl > PortalType ;
19 typedef ArrayPortalConcatenate <
20 typename ArrayHandleType1 :: PortalConstControl ,
21 typename ArrayHandleType2 :: PortalConstControl > PortalConstType ;
22
23 VTKM_CONT_EXPORT
24 Storage () : Valid (false) { }
25
26 VTKM_CONT_EXPORT
27 Storage (const ArrayHandleType1 array1 , const ArrayHandleType2 array2)
28 : Array1 (array1), Array2 (array2), Valid (true) { }
29
30 VTKM_CONT_EXPORT
31 PortalType GetPortal () {
32 VTKM_ASSERT (this -> Valid);
33 return PortalType (this -> Array1 . GetPortalControl (),
34 this -> Array2 . GetPortalControl ());
35 }
36
37 VTKM_CONT_EXPORT
38 PortalConstType GetPortalConst () const {
39 VTKM_ASSERT (this -> Valid);
40 return PortalConstType (this -> Array1 . GetPortalConstControl (),
41 this -> Array2 . GetPortalConstControl ());
42 }
43
44 VTKM_CONT_EXPORT
45 vtkm :: Id GetNumberOfValues () const {
46 VTKM_ASSERT (this -> Valid);
47 return this -> Array1 . GetNumberOfValues () + this -> Array2 . GetNumberOfValues ();
48 }
49
50 VTKM_CONT_EXPORT
51 void Allocate (vtkm :: Id numberOfValues) {
52 VTKM_ASSERT (this -> Valid);
53 // This implementation of allocate , which allocates the same amount in both
54 // arrays , is arbitrary . It could , for example , leave the size of Array1
55 // alone and change the size of Array2 . Or , probably most likely , it could
56 // simply throw an error and state that this operation is invalid .
57 vtkm :: Id half = numberOfValues /2;
58 this -> Array1 . Allocate (numberOfValues -half);
59 this -> Array2 . Allocate (half);
60 }
61
62 VTKM_CONT_EXPORT
63 void Shrink (vtkm :: Id numberOfValues) {
64 VTKM_ASSERT (this -> Valid);
65 if (numberOfValues < this -> Array1 . GetNumberOfValues ())
66 {
67 this -> Array1 . Shrink (numberOfValues);
68 this -> Array2 . Shrink (0);
69 }
70 else
71 {
72 this -> Array2 . Shrink (numberOfValues - this -> Array1 . GetNumberOfValues ());

74 Chapter 9. Fancy Array Storage

DRAFT

9.3. Implementing Fancy Arrays

73 }
74 }
75
76 VTKM_CONT_EXPORT
77 void ReleaseResources () {
78 VTKM_ASSERT (this -> Valid);
79 this -> Array1 . ReleaseResources ();
80 this -> Array2 . ReleaseResources ();
81 }
82
83 // Requried for later use in ArrayTransfer class .
84 VTKM_CONT_EXPORT
85 const ArrayHandleType1 & GetArray1 () const {
86 VTKM_ASSERT (this -> Valid);
87 return this -> Array1 ;
88 }
89 VTKM_CONT_EXPORT
90 const ArrayHandleType2 & GetArray2 () const {
91 VTKM_ASSERT (this -> Valid);
92 return this -> Array2 ;
93 }
94
95 private :
96 ArrayHandleType1 Array1 ;
97 ArrayHandleType2 Array2 ;
98 bool Valid ;
99 };

100
101 }
102 }
103 } // namespace vtkm :: cont :: internal

One of the responsibilities of an array handle is to copy data between the control and execution environments.
The default behavior is to request the device adapter to copy data items from one environment to another.
This might involve transferring data between a host and device. For an array of data resting in memory, this is
necessary. However, implicit storage (described in the previous section) overrides this behavior to pass nothing
but the functional array portal. Likewise, it is undesirable to do a raw transfer of data with derived storage. The
underlying arrays being derived may be used in other contexts, and it would be good to share the data wherever
possible. It is also sometimes more efficient to copy data independently from the arrays being derived than from
the derived storage itself.

The mechanism that controls how a particular storage gets transferred to and from the execution environment
is encapsulated in the templated vtkm::cont::internal::ArrayTransfer class. By creating a specialization
of vtkm::cont::internal::ArrayTransfer, we can modify the transfer behavior to instead transfer the arrays
being derived and use the respective copies in the control and execution environments.

vtkm::cont::internal::ArrayTransfer has three template arguments: the base type of the array, the storage
tag, and the device adapter tag.

Example 9.33: Prototype for vtkm::cont::internal::ArrayTransfer.
1 namespace vtkm {
2 namespace cont {
3 namespace internal {
4
5 template < typename T, typename StorageTag , typename DeviceAdapterTag >
6 class ArrayTransfer ;
7
8 }
9 }

10 } // namespace vtkm :: cont :: internal

Chapter 9. Fancy Array Storage 75

DRAFT

9.3. Implementing Fancy Arrays

All vtkm::cont::internal::ArrayTransfer implementations must have a constructor method that accepts a
pointer to a vtkm::cont::internal::Storage object templated to the same base type and storage tag as the
ArrayTransfer object. Assuming that an ArrayHandle is templated using the parameters in Example 9.33, the
prototype for the constructor must be equivalent to the following.

Example 9.34: Prototype for ArrayTransfer constructor.
1 ArrayTransfer (vtkm :: cont :: internal :: Storage <T, StorageTag > * storage);

Typically the constructor either saves the Storage pointer or other relevant objects from the Storage for later
use in the methods.

In addition to this non-default constructor, the vtkm::cont::internal::ArrayTransfer specialization must
define the following items.

ValueType A typedef of the type for each item in the array. This is the same type as the first template
argument.

PortalControl The type of an array portal that is used to access the underlying data in the control environment.

PortalConstControl A read-only (const) version of PortalControl.

PortalExecution The type of an array portal that is used to access the underlying data in the execution
environment.

PortalConstExecution A read-only (const) version of PortalExecution.

GetNumberOfValues A method that returns the number of values currently allocated in the execution environ-
ment. The results may be undefined if none of the load or allocate methods have yet been called.

PrepareForInput A method responsible for transferring data from the control to the execution for input. Pre-
pareForInput has one Boolean argument that controls whether this transfer should actually take place.
When true, data from the Storage object given in the constructor should be transferred to the execution
environment; otherwise the data should not be copied. An ArrayTransfer for a derived array typically
ignores this parameter since the arrays being derived manages this transfer already. Regardless of the
Boolean flag, a PortalConstExecution is returned.

PrepareForInPlace A method that behaves just like PrepareForInput except that the data in the execution
environment is used for both reading and writing so the method returns a PortalExecution. If the array
is considered read-only, which is common for derived arrays, then this method should throw a vtkm::-
cont::ErrorControlBadValue.

PrepareForOutput A method that takes a size (in a vtkm::Id) and allocates an array in the execution environ-
ment of the specified size. The initial memory can be uninitialized. The method returns a PortalExecution
for the allocated data. If the array is considered read-only, which is common for derived arrays, then this
method should throw a vtkm::cont::ErrorControlBadValue.

RetrieveOutputData This method takes an array storage pointer (which is the same as that passed to the
constructor, but provided for convenience), allocates memory in the control environment, and copies data
from the execution environment into it. If the derived array is considered read-only and both Prepare-
ForInPlace and PrepareForOutput throw exceptions, then this method should never be called. If it is,
then that is probably a bug in ArrayHandle, and it is OK to throw vtkm::cont::ErrorControlInternal.

Shrink A method that adjusts the size of the array in the execution environment to something that is a smaller
size. All the data up to the new length must remain valid. Typically, no memory is actually reallocated.
Instead, a different end is marked. If the derived array is considered read-only, then this method should
throw a vtkm::cont::ErrorControlBadValue.

76 Chapter 9. Fancy Array Storage

DRAFT

9.3. Implementing Fancy Arrays

ReleaseResources A method that frees any resources (typically memory) in the execution environment.

Continuing our example derived storage that concatenates two arrays started in Examples 9.31 and 9.32, the
following provides an ArrayTransfer appropriate for the derived storage.

Example 9.35: ArrayTransfer for derived storage of concatenated arrays.
1 namespace vtkm {
2 namespace cont {
3 namespace internal {
4
5 template < typename ArrayHandleType1 ,
6 typename ArrayHandleType2 ,
7 typename Device >
8 class ArrayTransfer <
9 typename ArrayHandleType1 :: ValueType ,

10 StorageTagConcatenate < ArrayHandleType1 , ArrayHandleType2 >,
11 Device >
12 {
13 public :
14 typedef typename ArrayHandleType1 :: ValueType ValueType ;
15
16 private :
17 typedef StorageTagConcatenate < ArrayHandleType1 , ArrayHandleType2 >
18 StorageTag ;
19 typedef vtkm :: cont :: internal :: Storage <ValueType , StorageTag >
20 StorageType ;
21
22 public :
23 typedef typename StorageType :: PortalType PortalControl ;
24 typedef typename StorageType :: PortalConstType PortalConstControl ;
25
26 typedef ArrayPortalConcatenate <
27 typename ArrayHandleType1 :: template ExecutionTypes <Device >:: Portal ,
28 typename ArrayHandleType2 :: template ExecutionTypes <Device >:: Portal >
29 PortalExecution ;
30 typedef ArrayPortalConcatenate <
31 typename ArrayHandleType1 :: template ExecutionTypes <Device >:: PortalConst ,
32 typename ArrayHandleType2 :: template ExecutionTypes <Device >:: PortalConst >
33 PortalConstExecution ;
34
35 VTKM_CONT_EXPORT
36 ArrayTransfer (StorageType * storage)
37 : Array1 (storage -> GetArray1 ()) , Array2 (storage -> GetArray2 ())
38 { }
39
40 VTKM_CONT_EXPORT
41 vtkm :: Id GetNumberOfValues () const {
42 return this -> Array1 . GetNumberOfValues () + this -> Array2 . GetNumberOfValues ();
43 }
44
45 VTKM_CONT_EXPORT
46 PortalConstExecution PrepareForInput (bool vtkmNotUsed (updateData)) {
47 return PortalConstExecution (this -> Array1 . PrepareForInput (Device ()) ,
48 this -> Array2 . PrepareForInput (Device ()));
49 }
50
51 VTKM_CONT_EXPORT
52 PortalExecution PrepareForInPlace (bool vtkmNotUsed (updateData)) {
53 return PortalExecution (this -> Array1 . PrepareForInPlace (Device ()) ,
54 this -> Array2 . PrepareForInPlace (Device ()));
55 }
56
57 VTKM_CONT_EXPORT

Chapter 9. Fancy Array Storage 77

DRAFT

9.3. Implementing Fancy Arrays

58 PortalExecution PrepareForOutput (vtkm :: Id numberOfValues)
59 {
60 // This implementation of allocate , which allocates the same amount in both
61 // arrays , is arbitrary . It could , for example , leave the size of Array1
62 // alone and change the size of Array2 . Or , probably most likely , it could
63 // simply throw an error and state that this operation is invalid .
64 vtkm :: Id half = numberOfValues /2;
65 return PortalExecution (
66 this -> Array1 . PrepareForOutput (numberOfValues -half , Device ()) ,
67 this -> Array2 . PrepareForOutput (half , Device ()));
68 }
69
70 VTKM_CONT_EXPORT
71 void RetrieveOutputData (StorageType * vtkmNotUsed (storage)) const {
72 // Implementation of this method should be unnecessary . The internal
73 // array handles should automatically retrieve the output data as
74 // necessary .
75 }
76
77 VTKM_CONT_EXPORT
78 void Shrink (vtkm :: Id numberOfValues) {
79 if (numberOfValues < this -> Array1 . GetNumberOfValues ())
80 {
81 this -> Array1 . Shrink (numberOfValues);
82 this -> Array2 . Shrink (0);
83 }
84 else
85 {
86 this -> Array2 . Shrink (numberOfValues - this -> Array1 . GetNumberOfValues ());
87 }
88 }
89
90 VTKM_CONT_EXPORT
91 void ReleaseResources () {
92 this -> Array1 . ReleaseResourcesExecution ();
93 this -> Array2 . ReleaseResourcesExecution ();
94 }
95
96 private :
97 ArrayHandleType1 Array1 ;
98 ArrayHandleType2 Array2 ;
99 };

100
101 }
102 }
103 } // namespace vtkm :: cont :: internal

The final step to make a derived storage is to create a mechanism to construct an ArrayHandle with a storage
derived from the desired arrays. This can be done by creating a trivial subclass of vtkm::cont::ArrayHandle
that simply constructs the array handle to the state of an existing storage. It uses a protected constructor of
vtkm::cont::ArrayHandle that accepts a constructed storage.

Example 9.36: ArrayHandle for derived storage of concatenated arrays.
1 template < typename ArrayHandleType1 , typename ArrayHandleType2 >
2 class ArrayHandleConcatenate
3 : public vtkm :: cont :: ArrayHandle <
4 typename ArrayHandleType1 :: ValueType ,
5 StorageTagConcatenate < ArrayHandleType1 , ArrayHandleType2 > >
6 {
7 public :
8 VTKM_ARRAY_HANDLE_SUBCLASS (
9 ArrayHandleConcatenate ,

10 (ArrayHandleConcatenate < ArrayHandleType1 , ArrayHandleType2 >),

78 Chapter 9. Fancy Array Storage

DRAFT

9.4. Adapting Data Structures

11 (vtkm :: cont :: ArrayHandle <
12 typename ArrayHandleType1 :: ValueType ,
13 StorageTagConcatenate < ArrayHandleType1 , ArrayHandleType2 > >));
14
15 private :
16 typedef vtkm :: cont :: internal :: Storage <ValueType , StorageTag > StorageType ;
17
18 public :
19 VTKM_CONT_EXPORT
20 ArrayHandleConcatenate (const ArrayHandleType1 &array1 ,
21 const ArrayHandleType2 & array2)
22 : Superclass (StorageType (array1 , array2)) { }
23 };

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. Both of these macros define the typedefs Superclass, ValueType, and StorageTag as well as
a set of constructors and operators expected of all ArrayHandle classes. The difference between these two macros
is that VTKM ARRAY HANDLE SUBCLASS is used in templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT
is used in non-templated classes.

The ArrayHandle subclass in Example 9.36 is templated, so it uses the VTKM ARRAY HANDLE SUBCLASS macro.
(The other macro is described in Section 9.4 on page 83). This macro takes three parameters. The first parameter
is the name of the subclass where the macro is defined, the second parameter is the type of the subclass including
the full template specification, and the third parameter is the immediate superclass including the full template
specification. The second and third parameters of the macro must be enclosed in parentheses so that the C
pre-processor correctly handles commas in the template specification.

vtkm::cont::ArrayHandleCompositeVector is an example of a derived array handle provided by VTK-m. It
references some fixed number of other arrays, pulls a specified component out of each, and produces a new
component that is a tuple of these retrieved components.

9.4 Adapting Data Structures

The intention of the storage parameter for vtkm::cont::ArrayHandle is to implement the strategy design
pattern to enable VTK-m to interface directly with the data of any third party code source. VTK-m is designed
to work with data originating in other libraries or applications. By creating a new type of storage, VTK-m can
be entirely adapted to new kinds of data structures.

Common Errors
Keep in mind that memory layout used can have an effect on the running time of algorithms in VTK-m.
Different data layouts and memory access can change cache performance and introduce memory affinity
problems. The example code given in this section will likely have poorer cache performance than the basic
storage provided by VTK-m. However, that might be an acceptable penalty to avoid data copies.

In this section we demonstrate the steps required to adapt the array handle to a data structure provided by a
third party. For the purposes of the example, let us say that some fictitious library named “foo” has a simple
structure named FooFields that holds the field values for a particular part of a mesh, and then maintain the
field values for all locations in a mesh in a std::deque object.

Example 9.37: Fictitious field storage used in custom array storage examples.

Chapter 9. Fancy Array Storage 79

DRAFT

9.4. Adapting Data Structures

1 # include <deque >
2
3 struct FooFields {
4 float Pressure ;
5 float Temperature ;
6 float Velocity [3];
7 // And so on ...
8 };
9

10 typedef std :: deque < FooFields > FooFieldsDeque ;

VTK-m expects separate arrays for each of the fields rather than a single array containing a structure holding
all of the fields. However, rather than copy each field to its own array, we can create a storage for each field that
points directly to the data in a FooFieldsDeque object.

The first step in creating an adapter storage is to create a control environment array portal to the data. This is
described in more detail in Section 6.2 and is generally straightforward for simple containers like this. Here is
an example implementation for our FooFieldsDeque container.

Example 9.38: Array portal to adapt a third-party container to VTK-m.
1 # include <vtkm/cont/ internal / IteratorFromArrayPortal .h>
2 # include <vtkm/ Assert .h>
3
4 // DequeType expected to be either FooFieldsDeque or const FooFieldsDeque
5 template < typename DequeType >
6 class ArrayPortalFooPressure
7 {
8 public :
9 typedef float ValueType ;

10
11 VTKM_CONT_EXPORT
12 ArrayPortalFooPressure () : Container (NULL) { }
13
14 VTKM_CONT_EXPORT
15 ArrayPortalFooPressure (DequeType * container) : Container (container) { }
16
17 // Required to copy compatible types of ArrayPortalFooPressure . Really needed
18 // to copy from non - const to const versions of array portals .
19 template < typename OtherDequeType >
20 VTKM_CONT_EXPORT
21 ArrayPortalFooPressure (const ArrayPortalFooPressure < OtherDequeType > & other)
22 : Container (other . GetContainer ()) { }
23
24 VTKM_CONT_EXPORT
25 vtkm :: Id GetNumberOfValues () const {
26 return static_cast <vtkm ::Id >(this ->Container ->size ());
27 }
28
29 VTKM_CONT_EXPORT
30 ValueType Get(vtkm :: Id index) const {
31 VTKM_ASSERT (index >= 0);
32 VTKM_ASSERT (index < this -> GetNumberOfValues ());
33 return (* this -> Container)[index]. Pressure ;
34 }
35
36 VTKM_CONT_EXPORT
37 void Set(vtkm :: Id index , ValueType value) const {
38 VTKM_ASSERT (index >= 0);
39 VTKM_ASSERT (index < this -> GetNumberOfValues ());
40 (* this -> Container)[index]. Pressure = value ;
41 }
42
43 // Here for the copy constructor .

80 Chapter 9. Fancy Array Storage

DRAFT

9.4. Adapting Data Structures

44 VTKM_CONT_EXPORT
45 DequeType * GetContainer () const { return this -> Container ; }
46
47 private :
48 DequeType * Container ;
49 };

The next step in creating an adapter storage is to define a tag for the adapter. We shall call ours Storage-
TagFooPressure. Then, we need to create a specialization of the templated vtkm::cont::internal::Storage
class. The ArrayHandle will instantiate an object using the array container tag we give it, and we define our
own specialization so that it runs our interface into the code.

vtkm::cont::internal::Storage has two template arguments: the base type of the array and the storage tag.

Example 9.39: Prototype for vtkm::cont::internal::Storage.
1 namespace vtkm {
2 namespace cont {
3 namespace internal {
4
5 template < typename T, class StorageTag >
6 class Storage ;
7
8 }
9 }

10 } // namespace vtkm :: cont :: internal

The vtkm::cont::internal::Storage must define the following items.

ValueType A typedef of the type for each item in the array. This is the same type as the first template
argument.

PortalType The type of an array portal that can be used to access the underlying data. This array portal needs
to work only in the control environment.

PortalConstType A read-only (const) version of PortalType.

GetPortal A method that returns an array portal of type PortalType that can be used to access the data
manged in this storage.

GetPortalConst Same as GetPortal except it returns a read-only (const) array portal.

GetNumberOfValues A method that returns the number of values the storage is currently allocated for.

Allocate A method that allocates the array to a given size. An values stored in the previous allocation may be
destroyed.

Shrink A method like Allocate with two differences. First, the size of the allocation must be smaller than the
existing allocation when the method is called. Second, any values currently stored in the array will be valid
after the array is resized. This constrained form of allocation allows the array to be resized and values
valid without ever having to copy data.

ReleaseResources A method that instructs the storage to free all of its memory.

The following provides an example implementation of our adapter to a FooFieldsDeque. It relies on the Array-
PortalFooPressure provided in Example 9.38.

Chapter 9. Fancy Array Storage 81

DRAFT

9.4. Adapting Data Structures

Example 9.40: Storage to adapt a third-party container to VTK-m.
1 // Includes or definition for ArrayPortalFooPressure
2
3 struct StorageTagFooPressure { };
4
5 namespace vtkm {
6 namespace cont {
7 namespace internal {
8
9 template <>

10 class Storage <float , StorageTagFooPressure >
11 {
12 public :
13 typedef float ValueType ;
14
15 typedef ArrayPortalFooPressure < FooFieldsDeque > PortalType ;
16 typedef ArrayPortalFooPressure < const FooFieldsDeque > PortalConstType ;
17
18 VTKM_CONT_EXPORT
19 Storage () : Container (NULL) { }
20
21 VTKM_CONT_EXPORT
22 Storage (FooFieldsDeque * container) : Container (container) { }
23
24 VTKM_CONT_EXPORT
25 PortalType GetPortal () { return PortalType (this -> Container); }
26
27 VTKM_CONT_EXPORT
28 PortalConstType GetPortalConst () const {
29 return PortalConstType (this -> Container);
30 }
31
32 VTKM_CONT_EXPORT
33 vtkm :: Id GetNumberOfValues () const {
34 return static_cast <vtkm ::Id >(this ->Container ->size ());
35 }
36
37 VTKM_CONT_EXPORT
38 void Allocate (vtkm :: Id numberOfValues) {
39 this ->Container -> resize (numberOfValues);
40 }
41
42 VTKM_CONT_EXPORT
43 void Shrink (vtkm :: Id numberOfValues) {
44 this ->Container -> resize (numberOfValues);
45 }
46
47 VTKM_CONT_EXPORT
48 void ReleaseResources () { this ->Container -> clear (); }
49
50 private :
51 FooFieldsDeque * Container ;
52 };
53
54 }
55 }
56 } // namespace vtkm :: cont :: internal

The final step to make a storage adapter is to make a mechanism to construct an ArrayHandle that points to
a particular storage. This can be done by creating a trivial subclass of vtkm::cont::ArrayHandle that simply
constructs the array handle to the state of an existing container.

Example 9.41: Array handle to adapt a third-party container to VTK-m.

82 Chapter 9. Fancy Array Storage

DRAFT

9.4. Adapting Data Structures

1 class ArrayHandleFooPressure
2 : public vtkm :: cont :: ArrayHandle <float , StorageTagFooPressure >
3 {
4 private :
5 typedef vtkm :: cont :: internal :: Storage <float , StorageTagFooPressure >
6 StorageType ;
7
8 public :
9 VTKM_ARRAY_HANDLE_SUBCLASS_NT (

10 ArrayHandleFooPressure ,
11 (vtkm :: cont :: ArrayHandle <float , StorageTagFooPressure >));
12
13 VTKM_CONT_EXPORT
14 ArrayHandleFooPressure (FooFieldsDeque * container)
15 : Superclass (StorageType (container)) { }
16 };

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. Both of these macros define the typedefs Superclass, ValueType, and StorageTag as well as
a set of constructors and operators expected of all ArrayHandle classes. The difference between these two macros
is that VTKM ARRAY HANDLE SUBCLASS is used in templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT
is used in non-templated classes.

The ArrayHandle subclass in Example 9.41 is not templated, so it uses the VTKM ARRAY HANDLE SUBCLASS NT
macro. (The other macro is described in Section 9.3.2 on page 72). This macro takes two parameters. The first
parameter is the name of the subclass where the macro is defined and the second parameter is the immediate
superclass including the full template specification. The second parameter of the macro must be enclosed in
parentheses so that the C pre-processor correctly handles commas in the template specification.

With this new version of ArrayHandle, VTK-m can now read to and write from the FooFieldsDeque structure
directly. Note, however, that when writing to an array handle, it is necessary to call GetPortalControl or
GetPortalConstControl to flush data from the execution environment to the control environment. [Should
probably make this easier.]

Example 9.42: Using an ArrayHandle with custom container.
1 VTKM_CONT_EXPORT
2 void GetElevationAirPressure (vtkm :: cont :: DataSet grid , FooFieldsDeque * fields)
3 {
4 // Make an array handle that points to the pressure values in the fields .
5 ArrayHandleFooPressure pressureHandle (fields);
6
7 // Use the elevation worklet to estimate atmospheric pressure based on the
8 // height of the point coordinates . Atmospheric pressure is 101325 Pa at
9 // sea level and drops about 12 Pa per meter .

10 vtkm :: worklet :: PointElevation elevation ;
11 elevation . SetLowPoint (vtkm :: make_Vec (0.0 , 0.0 , 0.0));
12 elevation . SetHighPoint (vtkm :: make_Vec (0.0 , 0.0 , 2000.0));
13 elevation . SetRange (101325.0 , 77325.0);
14
15 vtkm :: worklet :: DispatcherMapField <vtkm :: worklet :: PointElevation >
16 dispatcher (elevation);
17 dispatcher . Invoke (grid. GetCoordinateSystem (). GetData (), pressureHandle);
18
19 // Make sure the values are flushed back to the control environment .
20 pressureHandle . GetPortalConstControl ();
21
22 // Now the pressure field is in the fields container .
23 }

Chapter 9. Fancy Array Storage 83

DRAFT

9.4. Adapting Data Structures

Most of the code in VTK-m will create ArrayHandles using the default storage, which is set to the basic storage
if not otherwise specified. If you wish to replace the default storage used, then set the VTKM STORAGE macro to
VTKM STORAGE UNDEFINED and set the VTKM DEFAULT STORAGE TAG to your tag class. These definitions have
to happen before including any VTK-m header files. You will also have to declare the tag class (or at least a
prototype of it) before including VTK-m header files.

Example 9.43: Redefining the default array handle storage.
1 # define VTKM_STORAGE VTKM_STORAGE_UNDEFINED
2 # define VTKM_DEFAULT_STORAGE_TAG StorageTagFooPressure
3
4 struct StorageTagFooPressure ;

Common Errors
ArrayHandles are often stored in dynamic objects like dynamic arrays (Chapter 10) or data sets (Chap-
ter 11). When this happens, the array’s type information, including the storage used, is lost. VTK-m will
have to guess the storage, and if you do not tell VTK-m to try your custom storage, you will get a runtime
error when the array is used. The most common ways of doing this are to change the default storage tag
(described here), adding the storage tag to the default storage list (Section 10.3) or specifying the storage
tag in the policy when executing filters ([Add reference when documented.]).

84 Chapter 9. Fancy Array Storage

DRAFT
CHAPTER

TEN

DYNAMIC ARRAY HANDLES

The ArrayHandle class uses templating to make very efficient and type-safe access to data. However, it is some-
times inconvenient or impossible to specify the element type and storage at run-time. The DynamicArrayHandle
class provides a mechanism to manage arrays of data with unspecified types.

vtkm::cont::DynamicArrayHandle holds a reference to an array. Unlike ArrayHandle, DynamicArrayHandle
is not templated. Instead, it uses C++ run-type type information to store the array without type and cast it
when appropriate.

A DynamicArrayHandle can be established by constructing it with or assigning it to an ArrayHandle. The
following example demonstrates how a DynamicArrayHandle might be used to load an array whose type is not
known until run-time.

Example 10.1: Creating a DynamicArrayHandle.
1 VTKM_CONT_EXPORT
2 vtkm :: cont :: DynamicArrayHandle
3 LoadDynamicArray (const void *buffer , vtkm :: Id length , std :: string type)
4 {
5 vtkm :: cont :: DynamicArrayHandle handle ;
6 if (type == " float ")
7 {
8 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > concreteArray =
9 vtkm :: cont :: make_ArrayHandle (

10 reinterpret_cast < const vtkm :: Float32 *>(buffer), length);
11 handle = concreteArray ;
12 } else if (type == "int ") {
13 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > concreteArray =
14 vtkm :: cont :: make_ArrayHandle (
15 reinterpret_cast < const vtkm :: Int32 *>(buffer), length);
16 handle = concreteArray ;
17 }
18 return handle ;
19 }

10.1 Querying and Casting

Data pointed to by a DynamicArrayHandle is not directly accessible. However, there are a few generic queries
you can make without directly knowing the data type. The GetNumberOfValues method returns the length of
the array with respect to its base data type. It is also common in VTK-m to use data types, such as vtkm::Vec,
with multiple components per value. The GetNumberOfComponents method returns the number of components
in a vector-like type (or 1 for scalars).

DRAFT

10.1. Querying and Casting

Example 10.2: Non type-specific queries on DynamicArrayHandle.
1 std :: vector <vtkm :: Float32 > scalarBuffer (10);
2 vtkm :: cont :: DynamicArrayHandle scalarDynamicHandle (
3 vtkm :: cont :: make_ArrayHandle (scalarBuffer));
4
5 // This returns 10.
6 vtkm :: Id scalarArraySize = scalarDynamicHandle . GetNumberOfValues ();
7
8 // This returns 1.
9 vtkm :: IdComponent scalarComponents =

10 scalarDynamicHandle . GetNumberOfComponents ();
11
12 std :: vector <vtkm ::Vec <vtkm :: Float32 ,3> > vectorBuffer (20);
13 vtkm :: cont :: DynamicArrayHandle vectorDynamicHandle (
14 vtkm :: cont :: make_ArrayHandle (vectorBuffer));
15
16 // This returns 20.
17 vtkm :: Id vectorArraySize = vectorDynamicHandle . GetNumberOfValues ();
18
19 // This returns 3.
20 vtkm :: IdComponent vectorComponents =
21 vectorDynamicHandle . GetNumberOfComponents ();

It is also often desirable to create a new array based on the underlying type of a DynamicArrayHandle. For
example, when a filter creates a field, it is common to make this output field the same type as the input. To
satisfy this use case, DynamicArrayHandle has a method named NewInstance that creates a new empty array
with the same underlying type as the original array.

Example 10.3: Using DynamicArrayHandle::NewInstance().
1 std :: vector <vtkm :: Float32 > scalarBuffer (10);
2 vtkm :: cont :: DynamicArrayHandle dynamicHandle (
3 vtkm :: cont :: make_ArrayHandle (scalarBuffer));
4
5 // This creates a new empty array of type Float32 .
6 vtkm :: cont :: DynamicArrayHandle newDynamicArray = dynamicHandle . NewInstance ();

Before the data with a DynamicArrayHandle can be accessed, the type and storage of the array must be estab-
lished. This is usually done internally within VTK-m when a worklet [or filter?] is invoked. However, it is
also possible to query the types and cast to a concrete ArrayHandle.

You can query the component type and storage type using the IsArrayHandleType, IsSameType, and IsTy-
peAndStorage methods. IsArrayHandleType takes an example array handle type and returns whether the
underlying array matches the given static array type. IsSameType behaves the same as IsArrayHandleType but
accepts an instances of an ArrayHandle object to automatically resolve the template parameters. IsTypeAnd-
Storage takes an example component type and an example storage type as arguments and returns whether the
underlying array matches both types.

Example 10.4: Querying the component and storage types of a DynamicArrayHandle.
1 std :: vector <vtkm :: Float32 > scalarBuffer (10);
2 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > concreteHandle =
3 vtkm :: cont :: make_ArrayHandle (scalarBuffer);
4 vtkm :: cont :: DynamicArrayHandle dynamicHandle (concreteHandle);
5
6 // This returns true
7 bool isFloat32Array = dynamicHandle . IsSameType (concreteHandle);
8
9 // This returns false

10 bool isIdArray =
11 dynamicHandle . IsArrayHandleType <vtkm :: cont :: ArrayHandle <vtkm ::Id > >();
12

86 Chapter 10. Dynamic Array Handles

DRAFT

10.2. Casting to Unknown Types

13 // This returns true
14 bool isFloat32 =
15 dynamicHandle . IsTypeAndStorage <vtkm :: Float32 , VTKM_DEFAULT_STORAGE_TAG >();
16
17 // This returns false
18 bool isId =
19 dynamicHandle . IsTypeAndStorage <vtkm ::Id , VTKM_DEFAULT_STORAGE_TAG >();
20
21 // This returns false
22 bool isErrorStorage = dynamicHandle . IsTypeAndStorage <
23 vtkm :: Float32 ,
24 vtkm :: cont :: internal :: StorageTagError >();

Once the type of the DynamicArrayHandle is known, it can be cast to a concrete ArrayHandle, which has
access to the data as described in Chapter 6. The easiest way to do this is to use the CopyTo method. This
templated method takes a reference to an ArrayHandle as an argument and sets that array handle to point
to the array in DynamicArrayHandle. If the given types are incorrect, then CopyTo throws a vtkm::cont::-
ErrorControlBadValue exception.

Example 10.5: Casting a DynamicArrayHandle to a concrete ArrayHandle.
1 dynamicHandle . CopyTo (concreteHandle);

Common Errors
Remember that ArrayHandle and DynamicArrayHandle represent pointers to the data, so this “copy” is
a shallow copy. There is still only one copy of the data, and if you change the data in one array handle
that change is reflected in the other.

10.2 Casting to Unknown Types

Using CopyTo is fine as long as the correct types are known, but often times they are not. For this use case
DynamicArrayHandle has a method named CastAndCall that attempts to cast the array to some set of types.

The CastAndCall method accepts a functor to run on the appropriately cast array. The functor must have an
overloaded const parentheses operator that accepts an ArrayHandle of the appropriate type.

Example 10.6: Operating on DynamicArrayHandle with CastAndCall.
1 struct PrintArrayContentsFunctor
2 {
3 template < typename T, typename Storage >
4 VTKM_CONT_EXPORT
5 void operator ()(const vtkm :: cont :: ArrayHandle <T,Storage > & array) const
6 {
7 this -> PrintArrayPortal (array . GetPortalConstControl ());
8 }
9

10 private :
11 template < typename PortalType >
12 VTKM_CONT_EXPORT
13 void PrintArrayPortal (const PortalType & portal) const
14 {
15 for (vtkm :: Id index = 0; index < portal . GetNumberOfValues (); index ++)
16 {
17 // All ArrayPortal objects have ValueType for the type of each value .

Chapter 10. Dynamic Array Handles 87

DRAFT

10.3. Specifying Cast Lists

18 typedef typename PortalType :: ValueType ValueType ;
19
20 ValueType value = portal .Get(index);
21
22 vtkm :: IdComponent numComponents =
23 vtkm :: VecTraits <ValueType >:: GetNumberOfComponents (value);
24 for (vtkm :: IdComponent componentIndex = 0;
25 componentIndex < numComponents ;
26 componentIndex ++)
27 {
28 std :: cout << " "
29 << vtkm :: VecTraits <ValueType >:: GetComponent (value ,
30 componentIndex);
31 }
32 std :: cout << std :: endl;
33 }
34 }
35 };
36
37 template < typename DynamicArrayType >
38 void PrintArrayContents (const DynamicArrayType & array)
39 {
40 array . CastAndCall (PrintArrayContentsFunctor ());
41 }

Common Errors
It is possible to store any form of ArrayHandle in a DynamicArrayHandle, but it is not possible for
CastAndCall to check every possible form of ArrayHandle. If CastAndCall cannot determine the Array-
Handle type, then an ErrorControlBadValue is thrown. The following section describes how to specify
the forms of ArrayHandle to try.

10.3 Specifying Cast Lists

The CastAndCall method can only check a finite number of types. The default form of CastAndCall uses a
default set of common types. These default lists can be overridden using the VTK-m list tags facility, which is
discussed at length in Section 5.7. There are separate lists for value types and for storage types.

Common type lists for value are defined in vtkm/TypeListTag.h and are documented in Section 5.7.2. This header
also defines VTKM DEFAULT TYPE LIST TAG, which defines the default list of value types tried in CastAndCall.

Common storage lists are defined in vtkm/cont/StorageListTag.h. There is only one common storage distributed
with VTK-m: StorageBasic. A list tag containing this type is defined as vtkm::cont::StorageListTagBasic.

As with other lists, it is possible to create new storage type lists using the existing type lists and the list bases
from Section 5.7.1.

The vtkm/cont/StorageListTag.h header also defines a macro named VTKM DEFAULT STORAGE LIST TAG that
defines a default list of types to use in classes like DynamicArrayHandle. This list can be overridden by defining
the VTKM DEFAULT STORAGE LIST TAG macro before any VTK-m headers are included. If included after a VTK-
m header, the list is not likely to take effect. Do not ignore compiler warnings about the macro being redefined,
which you will not get if defined correctly.

There is a form of CastAndCall that accepts tags for the list of component types and storage types. This can

88 Chapter 10. Dynamic Array Handles

DRAFT

10.3. Specifying Cast Lists

be used when the specific lists are known at the time of the call. However, when creating generic operations like
the PrintArrayContents function in Example 10.6, passing these tags is inconvenient at best.

To address this use case, DynamicArrayHandle has a pair of methods named ResetTypeList and ResetStor-
ageList. These methods return a new object with that behaves just like a DynamicArrayHandle with identical
state except that the cast and call functionality uses the specified component type or storage type instead of the
default. (Note that PrintArrayContents in Example 10.6 is templated on the type of DynamicArrayHandle.
This is to accommodate using the objects from the Reset*List methods, which have the same behavior but
different type names.)

So the default component type list contains a subset of the basic VTK-m types. If you wanted to accommodate
more types, you could use ResetTypeList.

Example 10.7: Trying all component types in a DynamicArrayHandle.
1 PrintArrayContents (dynamicArray . ResetTypeList (vtkm :: TypeListTagAll ()));

Likewise, if you happen to know a particular type of the dynamic array, that can be specified to reduce the
amount of object code created by templates in the compiler.

Example 10.8: Specifying a single component type in a DynamicArrayHandle.
1 PrintArrayContents (dynamicArray . ResetTypeList (vtkm :: TypeListTagId ()));

Storage type lists can be changed similarly.

Example 10.9: Specifying different storage types in a DynamicArrayHandle.
1 struct MyIdStorageList :
2 vtkm :: ListTagBase <
3 vtkm :: cont :: StorageTagBasic ,
4 vtkm :: cont :: ArrayHandleIndex :: StorageTag >
5 { };
6
7 void PrintIds (vtkm :: cont :: DynamicArrayHandle array)
8 {
9 PrintArrayContents (array . ResetStorageList (MyIdStorageList ()));

10 }

Common Errors
The ResetTypeList and ResetStorageList do not change the object they are called on. Rather, they
return a new object with different type information. Calling these methods has no effect unless you do
something with the returned value.

Both the component type list and the storage type list can be modified by chaining these reset calls.

Example 10.10: Specifying both component and storage types in a DynamicArrayHandle.
1 PrintArrayContents (dynamicArray .
2 ResetTypeList (vtkm :: TypeListTagId ()).
3 ResetStorageList (MyIdStorageList ()));

The ResetTypeList and ResetStorageList work by returning a vtkm::cont::DynamicArrayHandleBase ob-
ject. DynamicArrayHandleBase specifies the value and storage tag lists as template arguments and otherwise
behaves just like DynamicArrayHandle.

Chapter 10. Dynamic Array Handles 89

DRAFT

10.3. Specifying Cast Lists

Did you know?
I lied earlier when I said at the beginning of this chapter that DynamicArrayHandle is a class that is not
templated. This symbol is really just a typedef of DynamicArrayHandleBase. Because the DynamicAr-
rayHandle fully specifies the template arguments, it behaves like a class, but if you get a compiler error it
will show up as DynamicArrayHandleBase.

Most code does not need to worry about working directly with DynamicArrayHandleBase. However, it is
sometimes useful to declare it in templated functions that accept dynamic array handles so that works with
every type list. The function in Example 10.6 did this by making the dynamic array handle class itself the
template argument. This will work, but it is prone to error because the template will resolve to any type of
argument. When passing objects that are not dynamic array handles will result in strange and hard to diagnose
errors. Instead, we can define the same function using DyamicArrayHandleBase so that the template will only
match dynamic array handle types.

Example 10.11: Using DynamicArrayHandleBase to accept generic dynamic array handles.
1 template < typename TypeList , typename StorageList >
2 void PrintArrayContents (
3 const vtkm :: cont :: DynamicArrayHandleBase <TypeList , StorageList > & array)
4 {
5 array . CastAndCall (PrintArrayContentsFunctor ());
6 }

90 Chapter 10. Dynamic Array Handles

DRAFT
CHAPTER

ELEVEN

DATA SETS

A data set, implemented with the vtkm::cont::DataSet class, contains and manages the geometric data struc-
tures that VTK-m operates on. A data set comprises the following 3 data structures.

Cell Set A cell set describes topological connections. A cell set defines some number of points in space and how
they connect to form cells, filled regions of space. A data set must have at least one cell set, but can have
more than one cell set defined. This makes it possible to define groups of cells with different properties.
For example, a simulation might model some subset of elements as boundary that contain properties the
other elements do not. Another example is the representation of a molecule that requires atoms and bonds,
each having very different properties associated with them.

Field A field describes numerical data associated with the topological elements in a cell set. The field is
represented as an array, and each entry in the field array corresponds to a topological element (point, edge,
face, or cell). Together the cell set topology and discrete data values in the field provide an interpolated
function throughout the volume of space covered by the data set. A cell set can have any number of fields.

Coordinate System A coordinate system is a special field that describes the physical location of the points
in a data set. Although it is most common for a data set to contain a single coordinate system, VTK-m
supports data sets with no coordinate system such as abstract data structures like graphs that might not
have positions in a space. DataSet also supports multiple coordinate systems for data that have multiple
representations for position. For example, geospatial data could simultaneously have coordinate systems
defined by 3D position, latitude-longitude, and any number of 2D projections.

11.1 Building Data Sets

Before we go into detail on the cell sets, fields, and coordinate systems that make up a data set in VTK-m, let
us first discuss how to build a data set. One simple way to build a data set is to load data from a file using the
vtkm::io module. Reading files is discussed in detail in Chapter 2.

This section describes building data sets of different types using a set of classes named DataSetBuilder*, which
provide a convenience layer on top of vtkm::cont::DataSet to make it easier to create data sets.

11.1.1 Creating Uniform Grids

Uniform grids are meshes that have a regular array structure with points uniformly spaced parallel to the axes.
Uniform grids are also sometimes called regular grids or images.

DRAFT

11.1. Building Data Sets

The vtkm::cont::DataSetBuilderUniform class can be used to easily create 2- or 3-dimensional uniform grids.
DataSetBuilderUniform has several versions of a method named Create that takes the number of points in
each dimension, the origin, and the spacing. The origin is the location of the first point of the data (in the lower
left corner), and the spacing is the distance between points in the x, y, and z directions. The Create methods
also take an optional name for the coordinate system and an optional name for the cell set.

The following example creates a vtkm::cont::DataSet containing a uniform grid of 101×101×26 points.

Example 11.1: Creating a uniform grid.
1 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
2
3 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create (vtkm :: Id3 (101 , 101 , 26));

If not specified, the origin will be at the coordinates (0,0,0) and the spacing will be 1 in each direction. Thus,
in the previous example the width, height, and depth of the mesh in physical space will be 100, 100, and 25,
respectively, and the mesh will be centered at (50,50,12.5). Let us say we actually want a mesh of the same
dimensions, but we want the z direction to be stretched out so that the mesh will be the same size in each
direction, and we want the mesh centered at the origin.

Example 11.2: Creating a uniform grid with custom origin and spacing.
1 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
2
3 vtkm :: cont :: DataSet dataSet =
4 dataSetBuilder . Create (
5 vtkm :: Id3 (101 , 101 , 26) ,
6 vtkm ::Vec <vtkm :: FloatDefault ,3 >(-50.0 , -50.0 , -50.0) ,
7 vtkm ::Vec <vtkm :: FloatDefault ,3 >(1.0 , 1.0 , 4.0));

11.1.2 Creating Rectilinear Grids

A rectilinear grid is similar to a uniform grid except that a rectilinear grid can adjust the spacing between
adjacent grid points. This allows the rectilinear grid to have tighter sampling in some areas of space, but the
points are still constrained to be aligned with the axes and each other. The irregular spacing of a rectilinear grid
is specified by providing a separate array each for the x, y, and z coordinates.

The vtkm::cont::DataSetBuilderRectilinear class can be used to easily create 2- or 3-dimensional rectilinear
grids. DataSetBuilderRectilinear has several versions of a method named Create that takes these coordinate
arrays and builds a vtkm::cont::DataSet out of them. The arrays can be supplied as either standard C arrays
or as std::vector objects, in which case the data in the arrays are copied into the DataSet. These arrays can
also be passed as ArrayHandle objects, in which case the data are shallow copied.

The following example creates a vtkm::cont::DataSet containing a rectilinear grid with 201×201×101 points
with different irregular spacing along each axis.

Example 11.3: Creating a rectilinear grid.
1 // Make x coordinates range from -4 to 4 with tighter spacing near 0.
2 std :: vector <vtkm :: Float32 > xCoordinates ;
3 for (vtkm :: Float32 x = -2.0f; x <= 2.0f; x += 0.02f)
4 {
5 xCoordinates . push_back (vtkm :: CopySign (x*x, x));
6 }
7
8 // Make y coordinates range from 0 to 2 with tighter spacing near 2.
9 std :: vector <vtkm :: Float32 > yCoordinates ;

10 for (vtkm :: Float32 y = 0.0f; y <= 4.0f; y += 0.02f)
11 {

92 Chapter 11. Data Sets

DRAFT

11.1. Building Data Sets

12 yCoordinates . push_back (vtkm :: Sqrt(y));
13 }
14
15 // Make z coordinates rangefrom -1 to 1 with even spacing .
16 std :: vector <vtkm :: Float32 > zCoordinates ;
17 for (vtkm :: Float32 z = -1.0f; z <= 1.0f; z += 0.02f)
18 {
19 zCoordinates . push_back (z);
20 }
21
22 vtkm :: cont :: DataSetBuilderRectilinear dataSetBuilder ;
23
24 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create (xCoordinates ,
25 yCoordinates ,
26 zCoordinates);

11.1.3 Creating Explicit Meshes

An explicit mesh is an arbitrary collection of cells with arbitrary connections. It can have multiple different
types of cells. Explicit meshes are also known as unstructured grids.

The cells of an explicit mesh are defined by providing the shape, number of indices, and the points that comprise
it for each cell. These three things are stored in separate arrays. Figure 11.1 shows an example of an explicit
mesh and the arrays that can be used to define it.

0

1
2

3
4

5
6

7

0 1

2

3

4

Connectivity
0
2
1
0
4
3
2
1
2
5
2
3
7
6
5
3
4
7

Cell 0
Cell 1
Cell 2
Cell 3
Cell 4

vtk::CELL_SHAPE_TRIANGLE
vtk::CELL_SHAPE_QUAD
vtk::CELL_SHAPE_TRIANGLE
vtk::CELL_SHAPE_POLYGON
vtk::CELL_SHAPE_TRIANGLE

Shape
3

Num Indices

4
3
5
3

Figure 11.1: An example explicit mesh.

The vtkm::cont::DataSetBuilderExplicit class can be used to create data sets with explicit meshes.
DataSetBuilderExplicit has several versions of a method named Create. Generally, these methods take
the shapes, number of indices, and connectivity arrays as well as an array of point coordinates. These arrays
can be given in std::vector objects, and the data are copied into the DataSet created.

The following example creates a mesh like the one shown in Figure 11.1.

Example 11.4: Creating an explicit mesh with DataSetBuilderExplicit.
1 // Array of point coordinates .

Chapter 11. Data Sets 93

DRAFT

11.1. Building Data Sets

2 std :: vector <vtkm ::Vec <vtkm :: Float32 ,3> > pointCoordinates ;
3 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(1.1f, 0.0f, 0.0f));
4 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(0.2f, 0.4f, 0.0f));
5 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(0.9f, 0.6f, 0.0f));
6 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(1.4f, 0.5f, 0.0f));
7 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(1.8f, 0.3f, 0.0f));
8 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(0.4f, 1.0f, 0.0f));
9 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(1.0f, 1.2f, 0.0f));

10 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(1.5f, 0.9f, 0.0f));
11
12 // Array of shapes .
13 std :: vector <vtkm :: UInt8 > shapes ;
14 shapes . push_back (vtkm :: CELL_SHAPE_TRIANGLE);
15 shapes . push_back (vtkm :: CELL_SHAPE_QUAD);
16 shapes . push_back (vtkm :: CELL_SHAPE_TRIANGLE);
17 shapes . push_back (vtkm :: CELL_SHAPE_POLYGON);
18 shapes . push_back (vtkm :: CELL_SHAPE_TRIANGLE);
19
20 // Array of number of indices per cell.
21 std :: vector <vtkm :: IdComponent > numIndices ;
22 numIndices . push_back (3);
23 numIndices . push_back (4);
24 numIndices . push_back (3);
25 numIndices . push_back (5);
26 numIndices . push_back (3);
27
28 // Connectivity array .
29 std :: vector <vtkm ::Id > connectivity ;
30 connectivity . push_back (0); // Cell 0
31 connectivity . push_back (2);
32 connectivity . push_back (1);
33 connectivity . push_back (0); // Cell 1
34 connectivity . push_back (4);
35 connectivity . push_back (3);
36 connectivity . push_back (2);
37 connectivity . push_back (1); // Cell 2
38 connectivity . push_back (2);
39 connectivity . push_back (5);
40 connectivity . push_back (2); // Cell 3
41 connectivity . push_back (3);
42 connectivity . push_back (7);
43 connectivity . push_back (6);
44 connectivity . push_back (5);
45 connectivity . push_back (3); // Cell 4
46 connectivity . push_back (4);
47 connectivity . push_back (7);
48
49 // Copy these arrays into a DataSet .
50 vtkm :: cont :: DataSetBuilderExplicit dataSetBuilder ;
51
52 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create (pointCoordinates ,
53 shapes ,
54 numIndices ,
55 connectivity);

Often it is awkward to build your own arrays and then pass them to DataSetBuilderExplicit. There also
exists an alternate builder class named vtkm::cont::DataSetBuilderExplicitIterative that allows you to
specify each cell and point one at a time rather than all at once. This is done by calling one of the versions of
AddPoint and one of the versions of AddCell for each point and cell, respectively. The next example also builds
the mesh shown in Figure 11.1 except this time using DataSetBuilderExplicitIterative.

Example 11.5: Creating an explicit mesh with DataSetBuilderExplicitIterative.
1 vtkm :: cont :: DataSetBuilderExplicitIterative dataSetBuilder ;

94 Chapter 11. Data Sets

DRAFT

11.1. Building Data Sets

2
3 dataSetBuilder . AddPoint (1.1 , 0.0 , 0.0);
4 dataSetBuilder . AddPoint (0.2 , 0.4 , 0.0);
5 dataSetBuilder . AddPoint (0.9 , 0.6 , 0.0);
6 dataSetBuilder . AddPoint (1.4 , 0.5 , 0.0);
7 dataSetBuilder . AddPoint (1.8 , 0.3 , 0.0);
8 dataSetBuilder . AddPoint (0.4 , 1.0 , 0.0);
9 dataSetBuilder . AddPoint (1.0 , 1.2 , 0.0);

10 dataSetBuilder . AddPoint (1.5 , 0.9 , 0.0);
11
12 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_TRIANGLE);
13 dataSetBuilder . AddCellPoint (0);
14 dataSetBuilder . AddCellPoint (2);
15 dataSetBuilder . AddCellPoint (1);
16
17 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_QUAD);
18 dataSetBuilder . AddCellPoint (0);
19 dataSetBuilder . AddCellPoint (4);
20 dataSetBuilder . AddCellPoint (3);
21 dataSetBuilder . AddCellPoint (2);
22
23 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_TRIANGLE);
24 dataSetBuilder . AddCellPoint (1);
25 dataSetBuilder . AddCellPoint (2);
26 dataSetBuilder . AddCellPoint (5);
27
28 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_POLYGON);
29 dataSetBuilder . AddCellPoint (2);
30 dataSetBuilder . AddCellPoint (3);
31 dataSetBuilder . AddCellPoint (7);
32 dataSetBuilder . AddCellPoint (6);
33 dataSetBuilder . AddCellPoint (5);
34
35 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_TRIANGLE);
36 dataSetBuilder . AddCellPoint (3);
37 dataSetBuilder . AddCellPoint (4);
38 dataSetBuilder . AddCellPoint (7);
39
40 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create ();

11.1.4 Add Fields

In addition to creating the geometric structure of a data set, it is usually important to add fields to the data.
Fields describe numerical data associated with the topological elements in a cell. They often represent a physical
quantity (such as temperature, mass, or volume fraction) but can also represent other information (such as
indices or classifications).

The easiest way to define fields in a data set is to use the vtkm::cont::DataSetFieldAdd class. This class works
on DataSets of any type. It has methods named AddPointField and AddCellField that define a field for either
points or cells. Every field must have an associated field name.

Both AddPointField and AddCellField are overloaded to accept arrays of data in different structures. Field
arrays can be passed as standard C arrays or as std::vectors, in which case the data are copied. Field arrays
can also be passed in a ArrayHandle, in which case the data are not copied.

The following (somewhat contrived) example defines fields for a uniform grid that identify which points and cells
are on the boundary of the mesh.

Example 11.6: Adding fields to a DataSet.
1 // Make a simple structured data set.

Chapter 11. Data Sets 95

DRAFT

11.2. Cell Sets

2 const vtkm :: Id3 pointDimensions (20 , 20, 10);
3 const vtkm :: Id3 cellDimensions = pointDimensions - vtkm :: Id3 (1, 1, 1);
4 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
5 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create (pointDimensions);
6
7 // This is the helper object to add fields to a data set.
8 vtkm :: cont :: DataSetFieldAdd dataSetFieldAdd ;
9

10 // Create a field that identifies points on the boundary .
11 std :: vector <vtkm :: UInt8 > boundaryPoints ;
12 for (vtkm :: Id zIndex = 0; zIndex < pointDimensions [2]; zIndex ++)
13 {
14 for (vtkm :: Id yIndex = 0; yIndex < pointDimensions [1]; yIndex ++)
15 {
16 for (vtkm :: Id xIndex = 0; xIndex < pointDimensions [0]; xIndex ++)
17 {
18 if ((xIndex == 0) || (xIndex == pointDimensions [0] -1) ||
19 (yIndex == 0) || (yIndex == pointDimensions [1] -1) ||
20 (zIndex == 0) || (zIndex == pointDimensions [2] -1))
21 {
22 boundaryPoints . push_back (1);
23 }
24 else
25 {
26 boundaryPoints . push_back (0);
27 }
28 }
29 }
30 }
31
32 dataSetFieldAdd . AddPointField (dataSet , " boundary_points ", boundaryPoints);
33
34 // Create a field that identifies cells on the boundary .
35 std :: vector <vtkm :: UInt8 > boundaryCells ;
36 for (vtkm :: Id zIndex = 0; zIndex < cellDimensions [2]; zIndex ++)
37 {
38 for (vtkm :: Id yIndex = 0; yIndex < cellDimensions [1]; yIndex ++)
39 {
40 for (vtkm :: Id xIndex = 0; xIndex < cellDimensions [0]; xIndex ++)
41 {
42 if ((xIndex == 0) || (xIndex == cellDimensions [0] -1) ||
43 (yIndex == 0) || (yIndex == cellDimensions [1] -1) ||
44 (zIndex == 0) || (zIndex == cellDimensions [2] -1))
45 {
46 boundaryCells . push_back (1);
47 }
48 else
49 {
50 boundaryCells . push_back (0);
51 }
52 }
53 }
54 }
55
56 dataSetFieldAdd . AddCellField (dataSet , " boundary_cells ", boundaryCells);

11.2 Cell Sets

A cell set determines the topological structure of the data in a data set. Fundamentally, any cell set is a
collection of cells, which typically (but not always) represent some region in space. 3D cells are made up of

96 Chapter 11. Data Sets

DRAFT

11.2. Cell Sets

points, edges, and faces. (2D cells have only points and edges, and 1D cells have only points.) Figure 11.2 shows
the relationship between a cell’s shape and these topological elements. The arrangement of these points, edges,
and faces is defined by the shape of the cell, which prescribes a specific ordering of each. The basic cell shapes
provided by VTK-m are discussed in detail in Section 17.1 starting on page 145.

[TODO: Add figure showing relationship between a cell and its points, edges, and faces. I
think I had one on my last EC proposal.]

Figure 11.2: The relationship between a cell shape and its topological elements (points, edges, and faces).

There are multiple ways to express the connections of a cell set, each with different benefits and restrictions.
These different cell set types are managed by different cell set classes in VTK-m. All VTK-m cell set classes
inherit from vtkm::cont::CellSet. The two basic types of cell sets are structured and explicit, and there are
several variations of these types.

11.2.1 Structured Cell Sets

A vtkm::cont::CellSetStructured defines a 1-, 2-, or 3-dimensional grid of points with lines, quadrilaterals,
or hexahedra, respectively, connecting them. The topology of a CellSetStructured is specified by simply
providing the dimensions, which is the number of points in the i, j, and k directions of the grid of points. The
number of points is implicitly i× j× k and the number of cells is implicitly (i− 1)× (j− 1)× (k− 1) (for 3D
grids). Figure 11.3 demonstrates this arrangement.

i

j

k

Cell

Point

Figure 11.3: The arrangement of points and cells in a 3D structured grid.

The big advantage of using vtkm::cont::CellSetStructured to define a cell set is that it is very space efficient
because the entire topology can be defined by the three integers specifying the dimensions. Also algorithms

Chapter 11. Data Sets 97

DRAFT

11.2. Cell Sets

can be optimized for CellSetStructured’s regular nature. However, CellSetStructured’s strictly regular grid
structure also limits its applicability. A structured cell set can only be a dense grid of lines, quadrilaterals, or
hexahedra. It cannot represent irregular data well.

Many data models in other software packages, such as the one for VTK, make a distinction between uniform,
rectilinear, and curvilinear grids. VTK-m’s cell sets do not. All three of these grid types are represented by
CellSetStructured. This is because in a VTK-m data set the cell set and the coordinate system are defined
independently and used interchangeably. A structured cell set with uniform point coordinates makes a uniform
grid. A structured cell set with point coordinates defined irregularly along coordinate axes makes a rectilinear
grid. And a structured cell set with arbitrary point coordinates makes a curvilinear grid. The point coordinates
are defined by the data set’s coordinate system, which is discussed in Section 11.4 starting on page 101.

11.2.2 Explicit Cell Sets

A vtkm::cont::CellSetExplicit defines an irregular collection of cells. The cells can be of different types and
connected in arbitrary ways. This is done by explicitly providing for each cell a sequence of points that defines
the cell.

An explicit cell set is defined with a minimum of three arrays. The first array identifies the shape of each cell.
(Cell shapes are discussed in detail in Section 17.1 starting on page 145.) The second array identifies how many
points are in each cell. The third array has a sequence of point indices that make up each cell. Figure 11.4 shows
a simple example of an explicit cell set.

0

1
2

3
4

5
6

7

0 1

2

3

4

Connectivity
0
2
1
0
4
3
2
1
2
5
2
3
7
6
5
3
4
7

Cell 0
Cell 1
Cell 2
Cell 3
Cell 4

vtk::CELL_SHAPE_TRIANGLE
vtk::CELL_SHAPE_QUAD
vtk::CELL_SHAPE_TRIANGLE
vtk::CELL_SHAPE_POLYGON
vtk::CELL_SHAPE_TRIANGLE

Shape
3

Num Indices

4
3
5
3

Figure 11.4: Example of cells in a CellSetExplict and the arrays that define them.

An explicit cell set may also have other topological arrays such as an array of offsets of each cell into the
connectivity array or an array of cells incident on each point. Although these arrays can be provided, they are
optional and can be internally derived from the shape, num indices, and connectivity arrays.

vtkm::cont::ExplicitCellSet is a powerful representation for a cell set because it can represent an arbitrary
collection of cells. However, because all connections must be explicitly defined, ExplicitCellSet requires a
significant amount of memory to represent the topology.

An important specialization of an explicit cell set is vtkm::cont::CellSetSingleType. CellSetSingleType is

98 Chapter 11. Data Sets

DRAFT

11.2. Cell Sets

an explicit cell set constrained to contain cells that all have the same shape and all have the same number of
points. So for example if you are creating a surface that you know will contain only triangles, CellSetSingleType
is a good representation for these data.

Using CellSetSingleType saves memory because the array of cell shapes and the array of point counts no longer
need to be stored. CellSetSingleType also allows VTK-m to skip some processing and other storage required
for general explicit cell sets.

11.2.3 Cell Set Permutations

A vtkm::cont::CellSetPermutation rearranges the cells of one cell set to create another cell set. This re-
structuring of cells is not done by copying data to a new structure. Rather, CellSetPermutation establishes a
look-up from one cell structure to another. Cells are permuted on the fly while algorithms are run.

A CellSetPermutation is established by providing a mapping array that for every cell index provides the
equivalent cell index in the cell set being permuted. CellSetPermutation is most often used to mask out cells
in a data set so that algorithms will skip over those cells when running.

Did you know?
Although CellSetPermutation can mask cells, it cannot mask points. All points from the original cell set
are available in the permuted cell set regardless of whether they are used.

The following example uses vtkm::cont::CellSetPermutation with a counting array to expose every tenth
cell. This provides a simple way to subsample a data set.

Example 11.7: Subsampling a data set with CellSetPermutation.
1 // Create a simple data set.
2 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
3 vtkm :: cont :: DataSet originalDataSet =
4 dataSetBuilder . Create (vtkm :: Id3 (33 ,33 ,26));
5 vtkm :: cont :: CellSetStructured <3> originalCellSet ;
6 originalDataSet . GetCellSet (). CopyTo (originalCellSet);
7
8 // Create a permutation array for the cells . Each value in the array refers
9 // to a cell in the original cell set. This particular array selects every

10 // 10 th cell.
11 vtkm :: cont :: ArrayHandleCounting <vtkm ::Id > permutationArray (0, 10, 2560);
12
13 // Create a permutation of that cell set containing only every 10 th cell.
14 vtkm :: cont :: CellSetPermutation <
15 vtkm :: cont :: CellSetStructured <3>,
16 vtkm :: cont :: ArrayHandleCounting <vtkm ::Id > >
17 permutedCellSet (permutationArray , originalCellSet);

11.2.4 Dynamic Cell Sets

vtkm::cont::DataSet must hold an arbitrary collection of vtkm::cont::CellSet objects, which it cannot do
while knowing their types at compile time. To manage storing CellSets without knowing their types, DataSet
actually holds references using vtkm::cont::DynamicCellSet.

DynamicCellSet is similar in nature to DynamicArrayHandle except that it, of course, holds CellSets instead
of ArrayHandles. The interface for the two classes is similar, and you should review the documentation for
DynamicArrayHandle (in Chapter 10 starting on page 85) to understand DynamicCellSet.

Chapter 11. Data Sets 99

DRAFT

11.3. Fields

vtkm::cont::DynamicCellSet has a method named GetCellSet that returns a const reference to the held cell
set as the abstract CellSet class. This can be used to easily access the virtual methods in the CellSet interface.
You can also create a new instance of a cell set with the same type using the NewInstance method.

The DynamicCellSet::IsType() method can be used to determine whether the cell set held in the dynamic cell
set is of a given type. If the cell set type is known, DynamicCellSet::CastTo() can be used to safely downcast
the cell set object.

When a typed version of the cell set stored in the DynamicCellSet is needed but the type is not known, which
happens regularly in the internal workings of VTK-m, the CastAndCall method can be used to make this
transition. CastAndCall works by taking a functor and calls it with the appropriately cast cell set object.

The CastAndCall method works by attempting to cast to a known set of types. This set of types used is defined by
the macro VTKM DEFAULT CELL SET LIST TAG, which is declared in vtkm/cont/CellSetListTag.h. This list can
be overridden globally by defining the VTKM DEFAULT CELL SET LIST TAG macro before any VTK-m headers
are included.

The set of types used in a CastAndCall can also be changed only for a particular instance of a dynamic cell set
by calling its ResetCellSetList. This method takes a list of cell types and returns a new dynamic array handle
of a slightly different type that will use this new list of cells for dynamic casting.

11.2.5 Blocks and Assemblies

Rather than just one cell set, a vtkm::cont::DataSet can hold multiple cell sets. This can be used to construct
multiblock data structures or assemblies of parts. Multiple cell sets can also be used to represent subsets of the
data with particular properties such as all cells filled with a material of a certain type. Or these multiple cells
might represent particular features in the data, such as the set of faces representing a boundary in the simulation.

11.2.6 Zero Cell Sets

It is also possible to construct a vtkm::cont::DataSet that contains no cell set objects whatsoever. This can
be used to manage data that does not contain any topological structure. For example, a collection of series that
come from columns in a table could be stored as multiple fields in a data set with no cell set.

11.3 Fields

A field on a data set provides a value on every point in space on the mesh. Fields are often used to describe
physical properties such as pressure, temperature, mass, velocity, and much more. Fields are represented in a
VTK-m data set as an array where each value is associated with a particular element type of a mesh (such as
points or cells). This association of field values to mesh elements and the structure of the cell set determines
how the field is interpolated throughout the space of the mesh.

Fields are manged by the vtkm::cont::Field class. Field holds its data with a DynamicArrayHandle, which
itself is a container for an ArrayHandle. Field also maintains the association and, optionally, the name of a cell
set for which the field is valid.

The data array can be retrieved as a DynamicArrayHandle using the GetData method of Field. Field also has
a convenience method named GetBounds that finds the range of values stored in the field array.

100 Chapter 11. Data Sets

DRAFT

11.4. Coordinate Systems

11.4 Coordinate Systems

A coordinate system determines the location of a mesh’s elements in space. The spatial location is described
by providing a 3D vector at each point that gives the coordinates there. The point coordinates can then be
interpolated throughout the mesh.

Coordinate systems are managed by the vtkm::cont::CoordinateSystem class. In actuality, a coordinate
system is just a field with a special meaning, and so the CoordinateSystem class inherits from the Field class.
CoordinateSystem constrains the field to be associated with points and typically has 3D floating point vectors
for values.

It is typical for a DataSet to have one coordinate system defined, but it is possible to define multiple coordinate
systems. This is helpful when there are multiple ways to express coordinates. For example, positions in geographic
may be expressed as Cartesian coordinates or as latitude-longitude coordinates. Both are valid and useful in
different ways.

It is also valid to have a DataSet with no coordinate system. This is useful when the structure is not rooted in
physical space. For example, if the cell set is representing a graph structure, there might not be any physical
space that has meaning for the graph.

Chapter 11. Data Sets 101

DRAFT

DRAFT
CHAPTER

TWELVE

FILTER POLICIES

DRAFT

DRAFT
CHAPTER

THIRTEEN

OPENGL INTEROPERABILITY

DRAFT

DRAFTPart III

Developing with VTK-m

DRAFT

DRAFT
CHAPTER

FOURTEEN

WORKLETS

The simplest way to implement an algorithm in VTK-m is to create a worklet. A worklet is fundamentally a
functor that operates on an element of data. Thus, it is a class or struct that has an overloaded parenthesis
operator (which must be declared const for thread safety). However, worklets are also embedded with a sig-
nificant amount of metadata on how the data should be managed and how the execution should be structured.
This chapter explains the basic mechanics of defining and using worklets.

14.1 Worklet Types

Different operations in visualization can have different data access patterns, perform different execution flow,
and require different provisions. VTK-m manages these different accesses, execution, and provisions by grouping
visualization algorithms into common classes of operation and supporting each class with its own worklet type.

Each worklet type has a generic superclass that worklets of that particular type must inherit. This makes the
type of the worklet easy to identify. The following list describes each worklet type provided by VTK-m and the
superclass that supports it. Details on how to create worklets of each type are given in Section 14.5. It is also
possible to create new worklet types in VTK-m. This is an advanced topic covered in Chapter 18.

Field Map A worklet deriving vtkm::worklet::WorkletMapField performs a basic mapping operation that
applies a function (the operator in the worklet) on all the field values at a single point or cell and creates a
new field value at that same location. Although the intention is to operate on some variable over a mesh,
a WorkletMapField may actually be applied to any array. Thus, a field map can be used as a basic map
operation.

Topology Map A worklet deriving vtkm::worklet::WorkletMapTopology or one of its sibling classes performs
a mapping operation that applies a function (the operator in the worklet) on all elements of a particular
type (such as points or cells) and creates a new field for those elements. The basic operation is similar to
a field map except that in addition to access fields being mapped on, the worklet operation also has access
to incident fields.
There are multiple convenience classes available for the most common types of topology mapping. vtkm::-
worklet::WorkletMapPointToCell calls the worklet operation for each cell and makes every incident point
available. This type of map also has access to cell structures and can interpolate point fields.

DRAFT

14.2. Dispatchers

14.2 Dispatchers

Worklets, both those provided by VTK-m as listed in Section 14.3 and ones created by a user as described in
Section 14.4, are instantiated in the control environment and run in the execution environment. This means that
the control environment must have a means to invoke worklets that start running in the execution environment.

This invocation is done through a set of dispatcher objects. A dispatcher object is an object in the control
environment that has an instance of a worklet and can invoke that worklet with a set of arguments. There
are multiple types of dispatcher objects, each corresponding to a type of worklet object. All dispatcher objects
have at least two template parameters: the worklet class being invoked, which is always the first argument, and
the device adapter tag, which is always the last argument and will be set to the default device adapter if not
specified.

All dispatcher classes have a method named Invoke that launches the worklet in the execution environment.
The arguments to Invoke must match those expected by the worklet, which is specified by something called a
control signature. The expected arguments for worklets provided by VTK-m are documented in Section 14.3.
Also, for any worklet, the Invoke arguments can be gleaned from the control signature, which is described in
Section 14.4.1.

The following is a list of the dispatchers defined in VTK-m. The dispatcher classes correspond to the list of
worklet types specified in Section 14.1. Many examples of using these dispatchers are provided in Section 14.3.

vtkm::worklet::DispatcherMapField The dispatcher used in conjunction with a worklet that subclasses
vtkm::worklet::WorkletMapField. The dispatcher class has two template arguments: the worklet type
and the device adapter (optional).

vtkm::worklet::DispatcherMapTopology The dispatcher used in conjunction with a worklet that subclasses
vtkm::worklet::WorkletMapTopology or one of its sibling classes (such as vtkm::worklet::WorkletMap-
PointToCell). The dispatcher class has two template arguments: the worklet type and the device adapter
(optional).

14.3 Provided Worklets

[Write this once some worklets are provided.]

14.4 Creating Worklets

A worklet is created by implementing a class or struct with the following features.

1. The class must contain a ControlSignature typedef, which specifies what arguments are expected when
invoking the class with a dispatcher in the control environment.

2. The class must contain an ExecutionSignature typedef, which specifies how the data gets passed from
the arguments in the control environment to the worklet running in the execution environment.

3. The class must contain an InputDomain typedef, which identifies which input parameter defines the input
domain of the data.

4. The class may define a scatter operation to override a 1:1 mapping from input to output.

110 Chapter 14. Worklets

DRAFT

14.4. Creating Worklets

5. The class must contain an overload of the parenthesis operator, which is the method that is executed in
the execution environment.

6. The class must publicly inherit from a base worklet class that specifies the type of operation being per-
formed.

Figure 14.1 demonstrates all of the required components of a worklet.

De�nes dispatching method

De�nes how input arrays and structures are interpreted

De�nes how data are
assigned to threads

Speci�es domain argument (optional)

De�nes mapping from
input domain to output
domain (optional)

Algorithms are just functions that
run on a single instance of the input

Figure 14.1: Annotated example of a worklet declaration.

14.4.1 Control Signature

The control signature of a worklet is the typedef of a function prototype named ControlSignature. The
function prototype matches the calling specification used with the dispatcher Invoke function.

Example 14.1: A ControlSignature.
1 typedef void ControlSignature (FieldIn <VecAll > inputVectors ,
2 FieldOut <Scalar > outputMagnitudes);

The return type of the function prototype is always void because the dispatcher Invoke functions do not return
values. The parameters of the function prototype are tags that identify the type of data that is expected to be
passed to invoke. ControlSignature tags are defined by the worklet type and the various tags are documented
more fully in Section 14.5.

By convention, ControlSignature tag names start with the base concept (e.g. Field or Topology) followed by
the domain (e.g. Point or Cell) followed by In or Out. For example, FieldPointIn would specify values for a

Chapter 14. Worklets 111

DRAFT

14.4. Creating Worklets

field on the points of a mesh that are used as input (read only). Although they should be there in most cases,
some tag names might leave out the domain or in/out parts if they are obvious or ambiguous.

Type List Tags

Some tags are templated to have modifiers. For example, Field tags have a template argument that is set to a
type list tag defining what types of field data are supported. (See Section 5.7.2 for a description of type lists.)
In fact, this type list modifier is so common that the following convenience subtags used with Field tags are
defined for all worklet types.

Did you know?
Any type list will work as modifiers for ControlSignature tags. However, these common type lists are
provided for convenience and to make the ControlSignature shorter and more readable.

AllTypes All possible types.

CommonTypes The most used types in visualization. This includes signed integers and floats that are 32 or 64
bit. It also includes 3 dimensional vectors of floats. The same as vtkm::TypeListTagCommon.

IdType Contains the single item vtkm::Id. The same as vtkm::TypeListTagId.

Id2Type Contains the single item vtkm::Id2. The same as vtkm::TypeListTagId2.

Id3Type Contains the single item vtkm::Id3. The same as vtkm::TypeListTagId3.

Index All types used to index arrays. Contains vtkm::Id, vtkm::Id2, and vtkm::Id3. The same as vtkm::-
TypeListTagIndex.

FieldCommon A list containing all the types generally used for fields. It is the combination of Scalar, Vec2,
Vec3, and Vec4. The same as vtkm::TypeListTagField.

Scalar Types used for scalar fields. Specifically, it contains floating point numbers of different widths (i.e.
vtkm::Float32 and vtkm::Float64). The same as vtkm::TypeListTagFieldScalar.

ScalarAll All scalar types. It contains signed and unsigned integers of widths from 8 to 64 bits. It also contains
floats of 32 and 64 bit widths. The same as vtkm::TypeListTagScalarAll.

Vec2 Types for values of fields with 2 dimensional vectors. All these vectors use floating point numbers. The
same as vtkm::TypeListTagFieldVec2.

Vec3 Types for values of fields with 3 dimensional vectors. All these vectors use floating point numbers. The
same as vtkm::TypeListTagFieldVec3.

Vec4 Types for values of fields with 4 dimensional vectors. All these vectors use floating point numbers. The
same as vtkm::TypeListTagFieldVec4.

VecAll All vtkm::Vec classes with standard integers or floating points as components and lengths between 2
and 4. The same as vtkm::TypeListTagVecAll.

VecCommon The most common vector types. It contains all vtkm::Vec class of size 2 through 4 containing
components of unsigned bytes, signed 32-bit integers, signed 64-bit integers, 32-bit floats, or 64-bit floats.
The same as vtkm::TypeListTagVecCommon.

112 Chapter 14. Worklets

DRAFT

14.4. Creating Worklets

14.4.2 Execution Signature

Like the control signature, the execution signature of a worklet is the typedef of a function prototype named
ExecutionSignature. The function prototype must match the parenthesis operator (described in Section 14.4.4)
in terms of arity and argument semantics.

Example 14.2: An ExecutionSignature.
1 typedef _2 ExecutionSignature (_1);

The arguments of the ExecutionSignature’s function prototype are tags that define where the data come from.
The most common tags are an underscore followed by a number, such as 1, 2, etc. These numbers refer back
to the corresponding argument in the ControlSignature. For example, 1 means data from the first control
signature argument, 2 means data from the second control signature argument, etc.

Unlike the control signature, the execution signature optionally can declare a return type if the parenthesis
operator returns a value. If this is the case, the return value should be one of the numeric tags (i.e. 1, 2,
etc.) to refer to one of the data structures of the control signature. If the parenthesis operator does not return
a value, then ExecutionSignature should declare the return type as void.

In addition to the numeric tags, there are other execution signature tags to represent other types of data. For
example, the WorkIndex tag identifies the instance of the worklet invocation. Each call to the worklet function
will have a unique WorkIndex. Other such tags exist and are described in the following section on worklet types
where appropriate.

14.4.3 Input Domain

All worklets represent data parallel operations that are executed over independent elements in some domain.
The type of domain is inherent from the worklet type, but the size of the domain is dependent on the data being
operated on. One of the arguments given to the dispatcher’s Invoke in the control environment must specify
the domain.

A worklet identifies the argument specifying the domain with a typedef named InputDomain. The InputDomain
must be typedefed to one of the execution signature numeric tags (i.e. 1, 2, etc.). By default, the InputDomain
points to the first argument, but a worklet can override that to point to any argument.

Example 14.3: An InputDomain declaration.
1 typedef _1 InputDomain ;

Different types of worklets can have different types of domain. For example a simple field map worklet has a
FieldIn argument as its input domain, and the size of the input domain is taken from the size of the associated
field array. Likewise, a worklet that maps topology has a CellSetIn argument as its input domain, and the size
of the input domain is taken from the cell set.

Specifying the InputDomain is optional. If it is not specified, the first argument is assumed to be the input
domain.

14.4.4 Worklet Operator

A worklet is fundamentally a functor that operates on an element of data. Thus, the algorithm that the worklet
represents is contained in or called from the parenthesis operator method.

Example 14.4: An overloaded parenthesis operator of a worklet.
1 template < typename T, vtkm :: IdComponent Size >

Chapter 14. Worklets 113

DRAFT

14.5. Worklet Type Reference

2 VTKM_EXEC_EXPORT
3 T operator ()(const vtkm ::Vec <T,Size > & inVector) const
4 {

There are some constraints on the parenthesis operator. First, it must have the same arity as the Execu-
tionSignature, and the types of the parameters and return must be compatible. Second, because it runs in
the execution environment, it must be declared with the VTKM EXEC EXPORT (or VTKM EXEC CONT EXPORT)
modifier. Third, the method must be declared const to help preserve thread safety.

14.5 Worklet Type Reference

There are multiple worklet types provided by VTK-m, each designed to support a particular type of operation.
Section 14.1 gave a brief overview of each type of worklet. This section gives a much more detailed reference
for each of the worklet types including identifying the generic superclass that a worklet instance should derive,
listing the signature tags and their meanings, and giving an example of the worklet in use.

14.5.1 Field Map

A worklet deriving vtkm::worklet::WorkletMapField performs a basic mapping operation that applies a func-
tion (the operator in the worklet) on all the field values at a single point or cell and creates a new field value at
that same location. Although the intention is to operate on some variable over the mesh, a WorkletMapField
can actually be applied to any array.

A WorkletMapField subclass is invoked with a vtkm::worklet::DispatcherMapField. This dispatcher has two
template arguments. The first argument is the type of the worklet subclass. The second argument, which is
optional, is a device adapter tag.

A field map worklet supports the following tags in the parameters of its ControlSignature.

FieldIn This tag represents an input field. A FieldIn argument expects an ArrayHandle or a DynamicAr-
rayHandle in the associated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a
single value out of this array.
FieldIn has a single template parameter that specifies what data types are acceptable for the array. The
type tags are described in Section 14.4.1 starting on page 112.
The worklet’s InputDomain can be set to a FieldIn argument. In this case, the input domain will be the
size of the array.

FieldOut This tag represents an output field. A FieldOut argument expects an ArrayHandle or a DynamicAr-
rayHandle in the associated parameter of the dispatcher’s Invoke. The array is resized before scheduling
begins, and each invocation of the worklet sets a single value in the array.
FieldOut has a single template parameter that specifies what data types are acceptable for the array. The
type tags are described in Section 14.4.1 starting on page 112.

FieldInOut This tag represents field that is both an input and an output. A FieldInOut argument expects
an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke. Each
invocation of the worklet gets a single value out of this array, which is replaced by the resulting value after
the worklet completes.
FieldInOut has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

114 Chapter 14. Worklets

DRAFT

14.5. Worklet Type Reference

The worklet’s InputDomain can be set to a FieldInOut argument. In this case, the input domain will be
the size of the array.

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 14.6 starting on page 126.
WholeArrayIn has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 14.6 starting on page 126.
WholeArrayOut has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 14.6 starting on page 126.
WholeArrayInOut has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 112.

ExecObject This tag represents an execution object that is passed directly from the control environment to
the worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase, and this
same object is given to the worklet. Execution objects are discussed in detail in Section 14.7 starting on
page 129.

A field map worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 14.8).

Field maps most commonly perform basic calculator arithmetic, as demonstrated in the following example.

Example 14.5: Implementation and use of a field map worklet.
1 # include <vtkm/ worklet / DispatcherMapField .h>
2 # include <vtkm/ worklet / WorkletMapField .h>
3
4 # include <vtkm/cont/ ArrayHandle .h>
5 # include <vtkm/cont/ DynamicArrayHandle .h>
6
7 # include <vtkm/ VectorAnalysis .h>
8
9

10 class Magnitude : public vtkm :: worklet :: WorkletMapField

Chapter 14. Worklets 115

DRAFT

14.5. Worklet Type Reference

11 {
12 public :
13 typedef void ControlSignature (FieldIn <VecAll > inputVectors ,
14 FieldOut <Scalar > outputMagnitudes);
15 typedef _2 ExecutionSignature (_1);
16
17 typedef _1 InputDomain ;
18
19 template < typename T, vtkm :: IdComponent Size >
20 VTKM_EXEC_EXPORT
21 T operator ()(const vtkm ::Vec <T,Size > & inVector) const
22 {
23 return vtkm :: Magnitude (inVector);
24 }
25 };
26
27 VTKM_CONT_EXPORT
28 vtkm :: cont :: DynamicArrayHandle
29 InvokeMagnitude (vtkm :: cont :: DynamicArrayHandle input)
30 {
31 vtkm :: cont :: ArrayHandle <vtkm :: Float64 > output ;
32
33 vtkm :: worklet :: DispatcherMapField <Magnitude > dispatcher ;
34 dispatcher . Invoke (input , output);
35
36 return vtkm :: cont :: DynamicArrayHandle (output);
37 }

Although simple, the WorkletMapField worklet type can be used (and abused) as a general parallel-
for/scheduling mechanism. In particular, the WorkIndex execution signature tag can be used to get a unique
index, the WholeArray* tags can be used to get random access to arrays, and the ExecObject control signature
tag can be used to pass execution objects directly to the worklet. Whole arrays and execution objects are talked
about in more detail in Sections 14.6 and 14.7, respectively, in more detail, but here is a simple example that
uses the random access of WholeArrayOut to make a worklet that copies an array in reverse order.

Example 14.6: Leveraging field maps and field maps for general processing.
1 struct ReverseArrayCopy : vtkm :: worklet :: WorkletMapField
2 {
3 typedef void ControlSignature (FieldIn <> inputArray ,
4 WholeArrayOut <> outputArray);
5 typedef void ExecutionSignature (_1 , _2 , WorkIndex);
6 typedef _1 InputDomain ;
7
8 template < typename InputType , typename OutputArrayPortalType >
9 VTKM_EXEC_EXPORT

10 void operator ()(const InputType & inputValue ,
11 const OutputArrayPortalType & outputArrayPortal ,
12 vtkm :: Id workIndex) const
13 {
14 vtkm :: Id outIndex = outputArrayPortal . GetNumberOfValues () - workIndex - 1;
15 if (outIndex >= 0)
16 {
17 outputArrayPortal .Set(outIndex , inputValue);
18 }
19 else
20 {
21 this -> RaiseError (" Output array not sized correctly .");
22 }
23 }
24 };
25
26 template < typename T, typename Storage >

116 Chapter 14. Worklets

DRAFT

14.5. Worklet Type Reference

27 VTKM_CONT_EXPORT
28 vtkm :: cont :: ArrayHandle <T>
29 InvokeReverseArrayCopy (const vtkm :: cont :: ArrayHandle <T,Storage > & inArray)
30 {
31 vtkm :: cont :: ArrayHandle <T> outArray ;
32 outArray . Allocate (inArray . GetNumberOfValues ());
33
34 vtkm :: worklet :: DispatcherMapField < ReverseArrayCopy > dispatcher ;
35 dispatcher . Invoke (inArray , outArray);
36
37 return outArray ;
38 }

14.5.2 Topology Map

A topology map performs a mapping that it applies a function (the operator in the worklet) on all the elements
of a DataSet of a particular type (i.e. point, edge, face, or cell). While operating on the element, the worklet
has access to data from all incident elements of another type.

There are several versions of topology maps that differ in what type of element being mapped from and what
type of element being mapped to. The subsequent sections describe these different variations of the topology
maps. Regardless of their names, they are all defined in vtkm/worklet/WorkletMapTopology.h and are all invoked
with vtkm::worklet::DispatcherMapTopology.

Point to Cell Map

A worklet deriving vtkm::worklet::WorkletMapPointToCell performs a mapping operation that applies a
function (the operator in the worklet) on all the cells of a DataSet. While operating on the cell, the worklet
has access to fields associated both with the cell and with all incident points. Additionally, the worklet can get
information about the structure of the cell and can perform operations like interpolation on it.

A WorkletMapPointToCell subclass is invoked with a vtkm::worklet::DispatcherMapTopology. This dis-
patcher has two template arguments. The first argument is the type of the worklet subclass. The second
argument, which is optional, is a device adapter tag.

A point to cell map worklet supports the following tags in the parameters of its ControlSignature.

CellSetIn This tag represents the cell set that defines the collection of cells the map will operate on. A
CellSetIn argument expects a CellSet subclass or a DynamicCellSet in the associated parameter of the
dispatcher’s Invoke. Each invocation of the worklet gets a cell shape tag. (Cell shapes and the operations
you can do with cells are discussed in Section ??.)
There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldInPoint This tag represents an input field that is associated with the points. A FieldInPoint argument
expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of points.
Each invocation of the worklet gets a Vec-like object containing the field values for all the points incident
with the cell being visited. The order of the entries is consistent with the defined order of the vertices for
the visited cell’s shape. If the field is a vector field, then the provided object is a Vec of Vecs.
FieldInPoint has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

Chapter 14. Worklets 117

DRAFT

14.5. Worklet Type Reference

FieldInCell This tag represents an input field that is associated with the cells. A FieldInCell argument
expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of cells. Each invocation of the worklet gets a single
value out of this array.
FieldInCell has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

FieldOutCell This tag represents an output field, which is necessarily associated with cells. A FieldOut-
Cell argument expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the
dispatcher’s Invoke. The array is resized before scheduling begins, and each invocation of the worklet sets
a single value in the array.
FieldOutCell has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.
FieldOut is an alias for FieldOutCell (since output arrays can only be defined on cells).

FieldInOutCell This tag represents field that is both an input and an output, which is necessarily associated
with cells. A FieldInOutCell argument expects an ArrayHandle or a DynamicArrayHandle in the asso-
ciated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a single value out of this
array, which is replaced by the resulting value after the worklet completes.
FieldInOutCell has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 112.
FieldInOut is an alias for FieldInOutCell (since output arrays can only be defined on cells).

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 14.6 starting on page 126.
WholeArrayIn has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 14.6 starting on page 126.
WholeArrayOut has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 14.6 starting on page 126.
WholeArrayInOut has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 112.

ExecObject This tag represents an execution object that is passed directly from the control environment to
the worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase, and this
same object is given to the worklet. Execution objects are discussed in detail in Section 14.7 starting on
page 129.

118 Chapter 14. Worklets

DRAFT

14.5. Worklet Type Reference

A field map worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

CellShape This tag produces a shape tag corresponding to the shape of the visited cell. (Cell shapes and the
operations you can do with cells are discussed in Section ??.) This is the same value that gets provided if
you reference the CellSetIn parameter.

PointCount This tag produces a vtkm::IdComponent equal to the number of points incident on the cell being
visited. The Vecs provided from a FieldInPoint parameter will be the same size as PointCount.

PointIndices This tag produces a Vec-like object of vtkm::Ids giving the indices for all incident points. Like
values from a FieldInPoint parameter, the order of the entries is consistent with the defined order of the
vertices for the visited cell’s shape.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 14.8).

Point to cell field maps are a powerful construct that allow you to interpolate point fields throughout the space
of the data set. The following example provides a simple demonstration that finds the geometric center of each
cell by interpolating the point coordinates to the cell centers.

Example 14.7: Implementation and use of a map point to cell worklet.
1 # include <vtkm/ worklet / DispatcherMapTopology .h>
2 # include <vtkm/ worklet / WorkletMapTopology .h>
3
4 # include <vtkm/cont/ DataSet .h>
5 # include <vtkm/cont/ DataSetFieldAdd .h>
6
7 # include <vtkm/exec/ CellInterpolate .h>
8 # include <vtkm/exec/ ParametricCoordinates .h>
9

10
11 class CellCenter : public vtkm :: worklet :: WorkletMapPointToCell
12 {
13 public :
14 typedef void ControlSignature (CellSetIn cellSet ,
15 FieldInPoint <> inputPointField ,
16 FieldOut <> outputCellField);
17 typedef _3 ExecutionSignature (_1 , PointCount , _2);
18
19 typedef _1 InputDomain ;
20
21 template < typename CellShape ,
22 typename InputPointFieldType >
23 VTKM_EXEC_EXPORT
24 typename InputPointFieldType :: ComponentType
25 operator ()(CellShape shape ,
26 vtkm :: IdComponent numPoints ,
27 const InputPointFieldType & inputPointField) const
28 {
29 vtkm ::Vec <vtkm :: FloatDefault ,3> parametricCenter =
30 vtkm :: exec :: ParametricCoordinatesCenter (numPoints , shape , *this);
31 return vtkm :: exec :: CellInterpolate (inputPointField ,
32 parametricCenter ,
33 shape ,

Chapter 14. Worklets 119

DRAFT

14.5. Worklet Type Reference

34 *this);
35 }
36 };
37
38 VTKM_CONT_EXPORT
39 void FindCellCenters (vtkm :: cont :: DataSet & dataSet)
40 {
41 vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault ,3> > cellCentersArray ;
42
43 vtkm :: worklet :: DispatcherMapTopology < CellCenter > dispatcher ;
44 dispatcher . Invoke (dataSet . GetCellSet (),
45 dataSet . GetCoordinateSystem (). GetData (),
46 cellCentersArray);
47
48 vtkm :: cont :: DataSetFieldAdd dataSetFieldAdd ;
49 dataSetFieldAdd . AddCellField (dataSet , " cell_center ", cellCentersArray);
50 }

Cell To Point Map

A worklet deriving vtkm::worklet::WorkletMapCellToPoint performs a mapping operation that applies a
function (the operator in the worklet) on all the points of a DataSet. While operating on the point, the worklet
has access to fields associated both with the point and with all incident cells.

A WorkletMapCellToPoint subclass is invoked with a vtkm::worklet::DispatcherMapTopology. This dis-
patcher has two template arguments. The first argument is the type of the worklet subclass. The second
argument, which is optional, is a device adapter tag.

A cell to point map worklet supports the following tags in the parameters of its ControlSignature.

CellSetIn This tag represents the cell set that defines the collection of points the map will operate on. A
CellSetIn argument expects a CellSet subclass or a DynamicCellSet in the associated parameter of the
dispatcher’s Invoke.
There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldInCell This tag represents an input field that is associated with the cells. A FieldInCell argument
expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of cells.
Each invocation of the worklet gets a Vec-like object containing the field values for all the cells incident
with the point being visited. The order of the entries is arbitrary but will be consistent with the values of
all other FieldInCell arguments for the same worklet invocation. If the field is a vector field, then the
provided object is a Vec of Vecs.
FieldInCell has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

FieldInPoint This tag represents an input field that is associated with the points. A FieldInPoint argument
expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of points. Each invocation of the worklet gets a single
value out of this array.
FieldInPoint has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

120 Chapter 14. Worklets

DRAFT

14.5. Worklet Type Reference

FieldOutPoint This tag represents an output field, which is necessarily associated with points. A FieldOut-
Point argument expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the
dispatcher’s Invoke. The array is resized before scheduling begins, and each invocation of the worklet sets
a single value in the array.
FieldOutPoint has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.
FieldOut is an alias for FieldOutPoint (since output arrays can only be defined on points).

FieldInOutPoint This tag represents field that is both an input and an output, which is necessarily associated
with points. A FieldInOutPoint argument expects an ArrayHandle or a DynamicArrayHandle in the
associated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a single value out of
this array, which is replaced by the resulting value after the worklet completes.
FieldInOutPoint has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 112.
FieldInOut is an alias for FieldInOutPoint (since output arrays can only be defined on points).

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 14.6 starting on page 126.
WholeArrayIn has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 14.6 starting on page 126.
WholeArrayOut has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 14.6 starting on page 126.
WholeArrayInOut has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 112.

ExecObject This tag represents an execution object that is passed directly from the control environment to
the worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase, and this
same object is given to the worklet. Execution objects are discussed in detail in Section 14.7 starting on
page 129.

A field map worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

CellCount This tag produces a vtkm::IdComponent equal to the number of cells incident on the point being
visited. The Vecs provided from a FieldInCell parameter will be the same size as CellCount.

Chapter 14. Worklets 121

DRAFT

14.5. Worklet Type Reference

CellIndices This tag produces a Vec-like object of vtkm::Ids giving the indices for all incident cells. The
order of the entries is arbitrary but will be consistent with the values of all other FieldInCell arguments
for the same worklet invocation.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 14.8).

Cell to point field maps are typically used for converting fields associated with cells to points so that they can be
interpolated. The following example does a simple averaging, but you can also implement other strategies such
as a volume weighted average.

Example 14.8: Implementation and use of a map cell to point worklet.
1 # include <vtkm/ worklet / DispatcherMapTopology .h>
2 # include <vtkm/ worklet / WorkletMapTopology .h>
3
4 # include <vtkm/cont/ DataSet .h>
5 # include <vtkm/cont/ DataSetFieldAdd .h>
6 # include <vtkm/cont/ DynamicArrayHandle .h>
7 # include <vtkm/cont/ DynamicCellSet .h>
8 # include <vtkm/cont/ Field .h>
9

10
11 class AverageCellField : public vtkm :: worklet :: WorkletMapCellToPoint
12 {
13 public :
14 typedef void ControlSignature (CellSetIn cellSet ,
15 FieldInCell <> inputCellField ,
16 FieldOut <> outputPointField);
17 typedef void ExecutionSignature (CellCount , _2 , _3);
18
19 typedef _1 InputDomain ;
20
21 template < typename InputCellFieldType , typename OutputFieldType >
22 VTKM_EXEC_EXPORT
23 void
24 operator ()(vtkm :: IdComponent numCells ,
25 const InputCellFieldType & inputCellField ,
26 OutputFieldType & fieldAverage) const
27 {
28 // TODO: This trickery with calling DoAverage with an extra fabricated type
29 // is to handle when the dynamic type resolution provides combinations that
30 // are incompatible . On the todo list for VTK -m is to allow you to express
31 // types that are the same for different parameters of the control
32 // signature . When that happens , we can get rid of this hack.
33 typedef typename InputCellFieldType :: ComponentType InputComponentType ;
34 this -> DoAverage (numCells ,
35 inputCellField ,
36 fieldAverage ,
37 vtkm :: ListTagBase < InputComponentType , OutputFieldType >());
38 }
39
40 private :
41 template < typename InputCellFieldType , typename OutputFieldType >
42 VTKM_EXEC_EXPORT
43 void DoAverage (vtkm :: IdComponent numCells ,
44 const InputCellFieldType & inputCellField ,
45 OutputFieldType & fieldAverage ,
46 vtkm :: ListTagBase < OutputFieldType , OutputFieldType >) const

122 Chapter 14. Worklets

DRAFT

14.5. Worklet Type Reference

47 {
48 fieldAverage = OutputFieldType (0);
49
50 for (vtkm :: IdComponent cellIndex = 0; cellIndex < numCells ; cellIndex ++)
51 {
52 fieldAverage = fieldAverage + inputCellField [cellIndex];
53 }
54
55 fieldAverage = fieldAverage / OutputFieldType (numCells);
56 }
57
58 template < typename T1 , typename T2 , typename T3 >
59 VTKM_EXEC_EXPORT
60 void DoAverage (vtkm :: IdComponent , T1 , T2 , T3) const
61 {
62 this -> RaiseError (" Incompatible types for input and output .");
63 }
64 };
65
66 VTKM_CONT_EXPORT
67 vtkm :: cont :: DataSet
68 ConvertCellFieldsToPointFields (const vtkm :: cont :: DataSet & inData)
69 {
70 vtkm :: cont :: DataSet outData ;
71
72 // Copy parts of structure that should be passed through .
73 for (vtkm :: Id cellSetIndex = 0;
74 cellSetIndex < inData . GetNumberOfCellSets ();
75 cellSetIndex ++)
76 {
77 outData . AddCellSet (inData . GetCellSet (cellSetIndex));
78 }
79 for (vtkm :: Id coordSysIndex = 0;
80 coordSysIndex < inData . GetNumberOfCoordinateSystems ();
81 coordSysIndex ++)
82 {
83 outData . AddCoordinateSystem (inData . GetCoordinateSystem (coordSysIndex));
84 }
85
86 // Copy all fields , converting cell fields to point fields .
87 for (vtkm :: Id fieldIndex = 0;
88 fieldIndex < inData . GetNumberOfFields ();
89 fieldIndex ++)
90 {
91 vtkm :: cont :: Field inField = inData . GetField (fieldIndex);
92 if (inField . GetAssociation () == vtkm :: cont :: Field :: ASSOC_CELL_SET)
93 {
94 vtkm :: cont :: DynamicArrayHandle inFieldData = inField . GetData ();
95 vtkm :: cont :: DynamicCellSet inCellSet =
96 inData . GetCellSet (inField . GetAssocCellSet ());
97
98 vtkm :: cont :: DynamicArrayHandle outFieldData = inFieldData . NewInstance ();
99 vtkm :: worklet :: DispatcherMapTopology < AverageCellField > dispatcher ;

100 dispatcher . Invoke (inCellSet , inFieldData , outFieldData);
101
102 vtkm :: cont :: DataSetFieldAdd :: AddCellField (outData ,
103 inField . GetName (),
104 outFieldData ,
105 inField . GetAssocCellSet ());
106 }
107 else
108 {
109 outData . AddField (inField);
110 }

Chapter 14. Worklets 123

DRAFT

14.5. Worklet Type Reference

111 }
112
113 return outData ;
114 }

General Topology Maps

A worklet deriving vtkm::worklet::WorkletMapTopology performs a mapping operation that applies a function
(the operator in the worklet) on all the elements of a specified type from a DataSet. While operating on each
element, the worklet has access to fields associated both with that element and with all incident elements of a
different specified type.

The WorkletMapTopology class is a template with two template parameters. The first template parameter
specifies the “from” topology element, and the second template parameter specifies the “to” topology element.
The worklet is scheduled such that each instance is associated with a particular “to” topology element and has
access to incident “from” topology elements.

These from and to topology elements are specified with topology element tags, which are defined in the vtkm/-
TopologyElementTag.h header file. The available topology element tags are vtkm::TopologyElementTagCell,
vtkm::TopologyElementTagPoint, vtkm::TopologyElementTagEdge, and vtkm::TopologyElementTagFace,
which represent the cell, point, edge, and face elements, respectively.

WorkletMapTopology is a generic form of a topology map, and it can perform identically to the aforementioned
forms of topology map with the correct template parameters. For example,

vtkm::worklet::WorkletMapTopology<vtkm::TopologyElementTagPoint, vtkm::TopologyEle-
mentTagCell>

is equivalent to the vtkm::worklet::WorkletMapPointToCell class except the signature tags have different
names. The names used in the specific topology map superclasses (such as WorkletMapPointToCell) tend to
be easier to read and are thus preferable. However, the generic WorkletMapTopology is available for topology
combinations without a specific superclass or to support more general mappings in a worklet.

The general topology map worklet supports the following tags in the parameters of its ControlSignature, which
are equivalent to tags in the other topology maps but with different (more general) names.

CellSetIn This tag represents the cell set that defines the collection of elements the map will operate on. A
CellSetIn argument expects a CellSet subclass or a DynamicCellSet in the associated parameter of the
dispatcher’s Invoke. Each invocation of the worklet gets a cell shape tag. (Cell shapes and the operations
you can do with cells are discussed in Section ??.)
There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldInFrom This tag represents an input field that is associated with the “from” elements. A FieldInFrom ar-
gument expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s
Invoke. The size of the array must be exactly the number of “from” elements.
Each invocation of the worklet gets a Vec-like object containing the field values for all the “from” elements
incident with the “to” element being visited. If the field is a vector field, then the provided object is a Vec
of Vecs.
FieldInFrom has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

124 Chapter 14. Worklets

DRAFT

14.5. Worklet Type Reference

FieldInTo This tag represents an input field that is associated with the “to” element. A FieldInTo argument
expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of cells. Each invocation of the worklet gets a single
value out of this array.
FieldInTo has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

FieldOut This tag represents an output field, which is necessarily associated with “to” elements. A FieldOut ar-
gument expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s
Invoke. The array is resized before scheduling begins, and each invocation of the worklet sets a single
value in the array.
FieldOut has a single template parameter that specifies what data types are acceptable for the array. The
type tags are described in Section 14.4.1 starting on page 112.

FieldInOut This tag represents field that is both an input and an output, which is necessarily associated
with “to” elements. A FieldInOut argument expects an ArrayHandle or a DynamicArrayHandle in the
associated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a single value out of
this array, which is replaced by the resulting value after the worklet completes.
FieldInOut has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 14.6 starting on page 126.
WholeArrayIn has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 14.6 starting on page 126.
WholeArrayOut has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 112.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 14.6 starting on page 126.
WholeArrayInOut has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 112.

ExecObject This tag represents an execution object that is passed directly from the control environment to
the worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase, and this
same object is given to the worklet. Execution objects are discussed in detail in Section 14.7 starting on
page 129.

A general topology map worklet supports the following tags in the parameters of its ExecutionSignature.

Chapter 14. Worklets 125

DRAFT

14.6. Whole Arrays

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

CellShape This tag produces a shape tag corresponding to the shape of the visited “to” element. (Cell shapes
and the operations you can do with cells are discussed in Section ??.) This is the same value that gets
provided if you reference the CellSetIn parameter.
If the “to” element is cells, the CellShape clearly will match the shape of each cell. Other elements will
have shapes to match their structures. Points have vertex shapes, edges have line shapes, and faces have
some type of polygonal shape.

FromCount This tag produces a vtkm::IdComponent equal to the number of “from” elements incident on the
“to” element being visited. The Vecs provided from a FieldInFrom parameter will be the same size as
FromCount.

FromIndices This tag produces a Vec-like object of vtkm::Ids giving the indices for all incident “from” elements.
The order of the entries is consistent with the values of all other FieldInFrom arguments for the same
worklet invocation.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 14.8).

14.6 Whole Arrays

As documented in Section 14.5, each worklet type has a set of parameter types that can be used to pass data to
and from the worklet invocation. But what happens if you want to pass data that cannot be expressed in these
predefined mechanisms. Chapter 18 describes how to create completely new worklet types and parameter tags.
However, designing such a system for a one-time use is overkill.

Instead, all VTK-m worklets provide a couple of mechanisms that allow you to pass arbitrary data to a worklet.
In this section, we will explore a whole array argument that provides random access to an entire array. In the
following section we describe an even more general mechanism to describe any execution object.

We have already seen a demonstration of using a whole array in Example 14.6 to perform a simple array copy.
Here we will construct a more thorough example of building functionality that requires random array access.

Let’s say we want to measure the quality of triangles in a mesh. A common method for doing this is using the
equation

q = 4a
√

3
h2

1 +h2
2 +h2

3

where a is the area of the triangle and h1, h2, and h3 are the lengths of the sides. We can easily compute this
in a cell to point map, but what if we want to speed up the computations by reducing precision? After all, we
probably only care if the triangle is good, reasonable, or bad. So instead, let’s build a lookup table and then
retrieve the triangle quality from that lookup table based on its sides.

The following example demonstrates creating such a table lookup in an array and using a worklet argument
tagged with WholeArrayIn to make it accessible.

Example 14.9: Using WholeArrayIn to access a lookup table in a worklet.
1 # include <vtkm/cont/ ArrayHandle .h>
2 # include <vtkm/cont/ DataSet .h>

126 Chapter 14. Worklets

DRAFT

14.6. Whole Arrays

3
4 # include <vtkm/ worklet / DispatcherMapTopology .h>
5 # include <vtkm/ worklet / WorkletMapTopology .h>
6
7 # include <vtkm/ CellShape .h>
8 # include <vtkm/Math.h>
9 # include <vtkm/ VectorAnalysis .h>

10
11 static const vtkm :: Id TRIANGLE_QUALITY_TABLE_DIMENSION = 8;
12 static const vtkm :: Id TRIANGLE_QUALITY_TABLE_SIZE =
13 TRIANGLE_QUALITY_TABLE_DIMENSION * TRIANGLE_QUALITY_TABLE_DIMENSION ;
14
15 VTKM_CONT_EXPORT
16 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > GetTriangleQualityTable ()
17 {
18 // Use these precomputed values for the array . A real application would
19 // probably use a larger array , but we are keeping it small for demonstration
20 // purposes .
21 static vtkm :: Float32 triangleQualityBuffer [TRIANGLE_QUALITY_TABLE_SIZE] = {
22 0, 0, 0, 0, 0, 0, 0, 0,
23 0, 0, 0, 0, 0, 0, 0, 0.244311 ,
24 0, 0, 0, 0, 0, 0, 0.432985 , 0.470588 ,
25 0, 0, 0, 0, 0, 0.542168 , 0.659231 , 0.664078 ,
26 0, 0, 0, 0, 0.579721 , 0.754247 , 0.821543 , 0.815365 ,
27 0, 0, 0, 0.542168 , 0.754247 , 0.874598 , 0.925667 , 0.920712 ,
28 0, 0, 0.432985 , 0.659231 , 0.821543 , 0.925667 , 0.976641 , 0.980996 ,
29 0, 0.244311 , 0.470588 , 0.664078 , 0.815365 , 0.920712 , 0.980996 , 1
30 };
31
32 return vtkm :: cont :: make_ArrayHandle (triangleQualityBuffer ,
33 TRIANGLE_QUALITY_TABLE_SIZE);
34 }
35
36 template < typename T>
37 VTKM_EXEC_CONT_EXPORT
38 vtkm ::Vec <T,3> TriangleEdgeLengths (const vtkm ::Vec <T,3> &point1 ,
39 const vtkm ::Vec <T,3> &point2 ,
40 const vtkm ::Vec <T,3> & point3)
41 {
42 return vtkm :: make_Vec (vtkm :: Magnitude (point1 - point2),
43 vtkm :: Magnitude (point2 - point3),
44 vtkm :: Magnitude (point3 - point1));
45 }
46
47 VTKM_SUPPRESS_EXEC_WARNINGS
48 template < typename PortalType , typename T>
49 VTKM_EXEC_CONT_EXPORT
50 vtkm :: Float32 LookupTriangleQuality (const PortalType & triangleQualityPortal ,
51 const vtkm ::Vec <T,3> &point1 ,
52 const vtkm ::Vec <T,3> &point2 ,
53 const vtkm ::Vec <T,3> & point3)
54 {
55 vtkm ::Vec <T,3> edgeLengths = TriangleEdgeLengths (point1 , point2 , point3);
56
57 // To reduce the size of the table , we just store the quality of triangles
58 // with the longest edge of size 1. The table is 2D indexed by the length
59 // of the other two edges . Thus , to use the table we have to identify the
60 // longest edge and scale appropriately .
61 T smallEdge1 = vtkm :: Min(edgeLengths [0] , edgeLengths [1]);
62 T tmpEdge = vtkm :: Max(edgeLengths [0] , edgeLengths [1]);
63 T smallEdge2 = vtkm :: Min(edgeLengths [2] , tmpEdge);
64 T largeEdge = vtkm :: Max(edgeLengths [2] , tmpEdge);
65
66 smallEdge1 /= largeEdge ;

Chapter 14. Worklets 127

DRAFT

14.6. Whole Arrays

67 smallEdge2 /= largeEdge ;
68
69 // Find index into array .
70 vtkm :: Id index1 = static_cast <vtkm ::Id >(
71 vtkm :: Floor (smallEdge1 *(TRIANGLE_QUALITY_TABLE_DIMENSION -1)+0.5));
72 vtkm :: Id index2 = static_cast <vtkm ::Id >(
73 vtkm :: Floor (smallEdge2 *(TRIANGLE_QUALITY_TABLE_DIMENSION -1)+0.5));
74 vtkm :: Id totalIndex = index1 + index2 * TRIANGLE_QUALITY_TABLE_DIMENSION ;
75
76 return triangleQualityPortal .Get(totalIndex);
77 }
78
79 struct TriangleQualityWorklet : vtkm :: worklet :: WorkletMapPointToCell
80 {
81 typedef void ControlSignature (CellSetIn cells ,
82 FieldInPoint <Vec3 > pointCoordinates ,
83 WholeArrayIn <Scalar > triangleQualityTable ,
84 FieldOutCell <Scalar > triangleQuality);
85 typedef _4 ExecutionSignature (CellShape , _2 , _3);
86 typedef _1 InputDomain ;
87
88 template < typename CellShape ,
89 typename PointCoordinatesType ,
90 typename TriangleQualityTablePortalType >
91 VTKM_EXEC_EXPORT
92 vtkm :: Float32 operator ()(
93 CellShape shape ,
94 const PointCoordinatesType & pointCoordinates ,
95 const TriangleQualityTablePortalType & triangleQualityTable) const
96 {
97 if (shape .Id != vtkm :: CELL_SHAPE_TRIANGLE)
98 {
99 this -> RaiseError (" Only triangles are supported for triangle quality .");

100 return vtkm :: Nan32 ();
101 }
102
103 return LookupTriangleQuality (triangleQualityTable ,
104 pointCoordinates [0] ,
105 pointCoordinates [1] ,
106 pointCoordinates [2]);
107 }
108 };
109
110 // Normally we would encapsulate this call in a filter , but for demonstrative
111 // purposes we are just calling the worklet directly .
112 template < typename DeviceAdapterTag >
113 VTKM_CONT_EXPORT
114 vtkm :: cont :: ArrayHandle <vtkm :: Float32 >
115 RunTriangleQuality (vtkm :: cont :: DataSet dataSet ,
116 DeviceAdapterTag)
117 {
118 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > triangleQualityTable =
119 GetTriangleQualityTable ();
120
121 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > triangleQualities ;
122
123 vtkm :: worklet :: DispatcherMapTopology < TriangleQualityWorklet , DeviceAdapterTag >
124 dispatcher ;
125 dispatcher . Invoke (dataSet . GetCellSet (),
126 dataSet . GetCoordinateSystem (). GetData (),
127 triangleQualityTable ,
128 triangleQualities);
129
130 return triangleQualities ;

128 Chapter 14. Worklets

DRAFT

14.7. Execution Objects

131 }

14.7 Execution Objects

Although passing whole arrays into a worklet is a convenient way to provide data to a worklet that is not divided
by the input or output domain, it is sometimes not the best structure to represent data. Thus, all worklets
support a second type of argument called an execution object, or exec object for short, that passes the given
object directly to each invocation of the worklet. This is defined by an ExecObject tag in the ControlSignature.

The execution object must be a subclass of vtkm::exec::ExecutionObjectBase. Also, it must be possible
to copy the object from the control environment to the execution environment and be usable in the execution
environment, and any method of the execution object used within the worklet must be declared with VTKM -
EXEC EXPORT or VTKM EXEC CONT EXPORT.

An execution object can refer to an array, but the array reference must be through an array portal for the
execution environment. This can be retrieved from the PrepareForInput method in vtkm::cont::ArrayHandle
as described in Section ??. Other VTK-m data objects, such as the subclasses of vtkm::cont::CellSet, have
similar methods.

Returning to the example we have in Section 14.6, we are computing triangle quality quickly by looking up the
value in a table. In Example 14.9 the table is passed directly to the worklet as a whole array. However, there is
some additional code involved to get the appropriate index into the table for a given triangle. Let us say that
we want to have the ability to compute triangle quality in many different worklets. Rather than pass in a raw
array, it would be better to encapsulate the functionality in an object.

We can do that by creating an execution object that has the table stored inside and methods to compute the
triangle quality. The following example uses the table built in Example 14.9 to create such an object.

Example 14.10: Using ExecObject to access a lookup table in a worklet.
1 template < typename DeviceAdapterTag >
2 class TriangleQualityTable : public vtkm :: exec :: ExecutionObjectBase
3 {
4 public :
5 VTKM_CONT_EXPORT
6 TriangleQualityTable ()
7 {
8 this -> TablePortal =
9 GetTriangleQualityTable (). PrepareForInput (DeviceAdapterTag ());

10 }
11
12 template < typename T>
13 VTKM_EXEC_EXPORT
14 vtkm :: Float32 GetQuality (const vtkm ::Vec <T,3> &point1 ,
15 const vtkm ::Vec <T,3> &point2 ,
16 const vtkm ::Vec <T,3> & point3) const
17 {
18 return LookupTriangleQuality (this -> TablePortal , point1 , point2 , point3);
19 }
20
21 private :
22 typedef vtkm :: cont :: ArrayHandle <vtkm :: Float32 > TableArrayType ;
23 typedef typename TableArrayType :: ExecutionTypes < DeviceAdapterTag >:: PortalConst
24 TableArrayPortalType ;
25 TableArrayPortalType TablePortal ;
26 };
27
28 struct TriangleQualityWorklet2 : vtkm :: worklet :: WorkletMapPointToCell

Chapter 14. Worklets 129

DRAFT

14.8. Scatter

29 {
30 typedef void ControlSignature (CellSetIn cells ,
31 FieldInPoint <Vec3 > pointCoordinates ,
32 ExecObject triangleQualityTable ,
33 FieldOutCell <Scalar > triangleQuality);
34 typedef _4 ExecutionSignature (CellShape , _2 , _3);
35 typedef _1 InputDomain ;
36
37 template < typename CellShape ,
38 typename PointCoordinatesType ,
39 typename TriangleQualityTableType >
40 VTKM_EXEC_EXPORT
41 vtkm :: Float32 operator ()(
42 CellShape shape ,
43 const PointCoordinatesType & pointCoordinates ,
44 const TriangleQualityTableType & triangleQualityTable) const
45 {
46 if (shape .Id != vtkm :: CELL_SHAPE_TRIANGLE)
47 {
48 this -> RaiseError (" Only triangles are supported for triangle quality .");
49 return vtkm :: Nan32 ();
50 }
51
52 return triangleQualityTable . GetQuality (pointCoordinates [0] ,
53 pointCoordinates [1] ,
54 pointCoordinates [2]);
55 }
56 };
57
58 // Normally we would encapsulate this call in a filter , but for demonstrative
59 // purposes we are just calling the worklet directly .
60 template < typename DeviceAdapterTag >
61 VTKM_CONT_EXPORT
62 vtkm :: cont :: ArrayHandle <vtkm :: Float32 >
63 RunTriangleQuality2 (vtkm :: cont :: DataSet dataSet ,
64 DeviceAdapterTag)
65 {
66 TriangleQualityTable < DeviceAdapterTag > triangleQualityTable ;
67
68 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > triangleQualities ;
69
70 vtkm :: worklet :: DispatcherMapTopology < TriangleQualityWorklet2 , DeviceAdapterTag >
71 dispatcher ;
72 dispatcher . Invoke (dataSet . GetCellSet (),
73 dataSet . GetCoordinateSystem (). GetData (),
74 triangleQualityTable ,
75 triangleQualities);
76
77 return triangleQualities ;
78 }

14.8 Scatter

The default scheduling of a worklet provides a 1 to 1 mapping from the input domain to the output domain.
For example, a vtkm::worklet::WorkletMapField gets run once for every item of the input array and produces
one item for the output array. Likewise, vtkm::worklet::WorkletMapPointToCell gets run once for every cell
in the input topology and produces one associated item for the output field.

However, there are many operations that do not fall well into this 1 to 1 mapping procedure. The operation
might need to pass over elements that produce no value or the operation might need to produce multiple values

130 Chapter 14. Worklets

DRAFT

14.8. Scatter

for a single input element.

Such non 1 to 1 mappings can be achieved by defining a scatter for a worklet. The following types of scatter are
provided by VTK-m.

vtkm::worklet::ScatterIdentity Provides a basic 1 to 1 mapping from input to output. This is the default
scatter used if none is specified.

vtkm::worklet::ScatterUniform Provides a 1 to many mapping from input to output with the same number
of outputs for each input. The worklet provides a number at runtime that defines the number of output
values to produce per input.

vtkm::worklet::ScatterCounting Provides a 1 to any mapping from input to output with different numbers of
outputs for each input. The worklet provides an ArrayHandle that is the same size as the input containing
the count of output values to produce for each input. Values can be zero, in which case that input will be
skipped.

To define a scatter procedure, the worklet must provide two items. The first item is a typedef named Scatter-
Type. The ScatterType must be typedefed to one of the aforementioned Scatter* classes. The second item is
a const method named GetScatter that returns an object of type ScatterType.

Example 14.11: Declaration of a scatter type in a worklet.
1 typedef vtkm :: worklet :: ScatterCounting ScatterType ;
2
3 VTKM_CONT_EXPORT
4 ScatterType GetScatter () const { return this -> Scatter ; }

When using a scatter that produces multiple outputs for a single input, the worklet is invoked multiple times
with the same input values. In such an event the worklet operator needs to distinguish these calls to produce the
correct associated output. This is done by declaring one of the ExecutionSignature arguments as VisitIndex.
This tag will pass a vtkm::IdComponent to the worklet that identifies which invocation is being called.

To demonstrate using scatters with worklets, we provide some contrived but illustrative examples. The first
example is a worklet that takes a pair of input arrays and interleaves them so that the first, third, fifth, and so
on entries come from the first array and the second, fourth, sixth, and so on entries come from the second array.
We achieve this by using a vtkm::cont::ScatterUniform of size 2 and using the VisitIndex to determine from
which array to pull a value.

Example 14.12: Using ScatterUniform.
1 struct InterleaveArrays : vtkm :: worklet :: WorkletMapField
2 {
3 typedef void ControlSignature (FieldIn <>, FieldIn <>, FieldOut < >);
4 typedef void ExecutionSignature (_1 , _2 , _3 , VisitIndex);
5 typedef _1 InputDomain ;
6
7 typedef vtkm :: worklet :: ScatterUniform ScatterType ;
8
9 VTKM_CONT_EXPORT

10 ScatterType GetScatter () const { return vtkm :: worklet :: ScatterUniform (2); }
11
12 template < typename T>
13 VTKM_EXEC_EXPORT
14 void operator ()(const T &input0 ,
15 const T &input1 ,
16 T &output ,
17 vtkm :: IdComponent visitIndex) const
18 {

Chapter 14. Worklets 131

DRAFT

14.8. Scatter

19 if (visitIndex == 0)
20 {
21 output = input0 ;
22 }
23 else // visitIndex == 1
24 {
25 output = input1 ;
26 }
27 }
28 };

The second example takes a collection of point coordinates and clips them by an axis-aligned bounding box. It
does this using a vtkm::cont::ScatterCounting with an array containing 0 for all points outside the bounds
and 1 for all points inside the bounds. As is typical with this type of operation, we use another worklet with a
default identity scatter to build the count array.

Example 14.13: Using ScatterCounting.
1 class ClipPointsCount : public vtkm :: worklet :: WorkletMapField
2 {
3 public :
4 typedef void ControlSignature (FieldIn <Vec3 > points ,
5 FieldOut < IdComponentType > count);
6 typedef _2 ExecutionSignature (_1);
7 typedef _1 InputDomain ;
8
9 template < typename T>

10 VTKM_CONT_EXPORT
11 ClipPointsCount (const vtkm ::Vec <T,3> &boundsMin ,
12 const vtkm ::Vec <T,3> & boundsMax)
13 : BoundsMin (boundsMin [0] , boundsMin [1] , boundsMin [2]) ,
14 BoundsMax (boundsMax [0] , boundsMax [1] , boundsMax [2])
15 { }
16
17 template < typename T>
18 VTKM_EXEC_EXPORT
19 vtkm :: IdComponent operator ()(const vtkm ::Vec <T,3> & point) const
20 {
21 return static_cast <vtkm :: IdComponent >((this -> BoundsMin [0] < point [0]) &&
22 (this -> BoundsMin [1] < point [1]) &&
23 (this -> BoundsMin [2] < point [2]) &&
24 (this -> BoundsMax [0] > point [0]) &&
25 (this -> BoundsMax [1] > point [1]) &&
26 (this -> BoundsMax [2] > point [2]));
27 }
28
29 private :
30 vtkm ::Vec <vtkm :: FloatDefault ,3> BoundsMin ;
31 vtkm ::Vec <vtkm :: FloatDefault ,3> BoundsMax ;
32 };
33
34 class ClipPointsGenerate : public vtkm :: worklet :: WorkletMapField
35 {
36 public :
37 typedef void ControlSignature (FieldIn <Vec3 > inPoints ,
38 FieldOut <Vec3 > outPoints);
39 typedef void ExecutionSignature (_1 , _2);
40 typedef _1 InputDomain ;
41
42 typedef vtkm :: worklet :: ScatterCounting ScatterType ;
43
44 VTKM_CONT_EXPORT
45 ScatterType GetScatter () const { return this -> Scatter ; }
46

132 Chapter 14. Worklets

DRAFT

14.9. Error Handling

47 template < typename CountArrayType , typename DeviceAdapterTag >
48 VTKM_CONT_EXPORT
49 ClipPointsGenerate (const CountArrayType & countArray , DeviceAdapterTag)
50 : Scatter (countArray , DeviceAdapterTag ())
51 {
52 VTKM_IS_ARRAY_HANDLE (CountArrayType);
53 }
54
55 template < typename InType , typename OutType >
56 VTKM_EXEC_EXPORT
57 void operator ()(const vtkm ::Vec <InType ,3> &inPoint ,
58 vtkm ::Vec <OutType ,3> & outPoint) const
59 {
60 // The scatter ensures that this method is only called for input points
61 // that are passed to the output (where the count was 1). Thus , in this
62 // case we know that we just need to copy the input to the output .
63 outPoint = vtkm ::Vec <OutType ,3 >(inPoint [0] , inPoint [1] , inPoint [2]);
64 }
65
66 private :
67 ScatterType Scatter ;
68 };
69
70 // Normally we would encapsulate these calls in a filter , but for demonstrative
71 // purposes we are just calling the worklet directly .
72 template < typename T, typename Storage , typename DeviceAdapterTag >
73 VTKM_CONT_EXPORT
74 vtkm :: cont :: ArrayHandle <vtkm ::Vec <T,3> >
75 RunClipPoints (const vtkm :: cont :: ArrayHandle <vtkm ::Vec <T,3>, Storage > & pointArray ,
76 vtkm ::Vec <T,3> boundsMin ,
77 vtkm ::Vec <T,3> boundsMax ,
78 DeviceAdapterTag)
79 {
80 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > countArray ;
81
82 ClipPointsCount workletCount (boundsMin , boundsMax);
83 vtkm :: worklet :: DispatcherMapField < ClipPointsCount , DeviceAdapterTag >
84 dispatcherCount (workletCount);
85 dispatcherCount . Invoke (pointArray , countArray);
86
87 vtkm :: cont :: ArrayHandle <vtkm ::Vec <T,3> > clippedPointsArray ;
88
89 ClipPointsGenerate workletGenerate (countArray , DeviceAdapterTag ());
90 vtkm :: worklet :: DispatcherMapField < ClipPointsGenerate , DeviceAdapterTag >
91 dispatcherGenerate (workletGenerate);
92 dispatcherGenerate . Invoke (pointArray , clippedPointsArray);
93
94 return clippedPointsArray ;
95 }

14.9 Error Handling

It is sometimes the case during the execution of an algorithm that an error condition can occur that causes
the computation to become invalid. At such a time, it is important to raise an error to alert the calling code
of the problem. Since VTK-m uses an exception mechanism to raise errors, we want an error in the execution
environment to throw an exception.

However, throwing exceptions in a parallel algorithm is problematic. Some accelerator architectures, like CUDA,
do not even support throwing exceptions. Even on architectures that do support exceptions, throwing them in
a thread block can cause problems. An exception raised in one thread may or may not be thrown in another,

Chapter 14. Worklets 133

DRAFT

14.9. Error Handling

which increases the potential for deadlocks, and it is unclear how uncaught exceptions progress through thread
blocks.

VTK-m handles this problem by using a flag and check mechanism. When a worklet (or other subclass of vtkm::-
exec::FunctorBase) encounters an error, it can call its RaiseError method to flag the problem and record a
message for the error. Once all the threads terminate, the scheduler checks for the error, and if one exists it
throws a vtkm::cont::ErrorExecution exception in the control environment. Thus, calling RaiseError looks
like an exception was thrown from the perspective of the control environment code that invoked it.

Example 14.14: Raising an error in the execution environment.
1 struct SquareRoot : vtkm :: worklet :: WorkletMapField
2 {
3 public :
4 typedef void ControlSignature (FieldIn <Scalar >, FieldOut <Scalar >);
5 typedef _2 ExecutionSignature (_1);
6
7 template < typename T>
8 VTKM_EXEC_EXPORT
9 T operator ()(T x) const

10 {
11 if (x < 0)
12 {
13 this -> RaiseError (" Cannot take the square root of a negative number .");
14 }
15 return vtkm :: Sqrt(x);
16 }
17 };

It is also worth noting that the VTKM ASSERT macro described in Section 5.4 also works within worklets and
other code running in the execution environment. Of course, a failed assert will terminate execution rather than
just raise an error so is best for checking invalid conditions for debugging purposes.

134 Chapter 14. Worklets

DRAFT
CHAPTER

FIFTEEN

CREATING FILTERS

DRAFT

DRAFT
CHAPTER

SIXTEEN

MATH

VTK-m comes with several math functions that tend to be useful for visualization algorithms. The implementa-
tion of basic math operations can vary subtly on different accelerators, and these functions provide cross platform
support.

All math functions are located in the vtkm package. The functions are most useful in the execution environment,
but they can also be used in the control environment when needed.

16.1 Basic Math

The vtkm/Math.h header file contains several math functions that replicate the behavior of the basic POSIX
math functions as well as related functionality.

Did you know?
When writing worklets, you should favor using these math functions provided by VTK-m over the standard
math functions in math.h. VTK-m’s implementation manages several compiling and efficiency issues when
porting.

vtkm::Abs Returns the absolute value of the single argument. If given a vector, performs a component-wise
operation.

vtkm::ACos Returns the arccosine of a ratio in radians. If given a vector, performs a component-wise operation.

vtkm::ACosH Returns the hyperbolic arccossine. If given a vector, performs a component-wise operation.

vtkm::ASin Returns the arcsine of a ratio in radians. If given a vector, performs a component-wise operation.

vtkm::ASinH Returns the hyperbolic arcsine. If given a vector, performs a component-wise operation.

vtkm::ATan Returns the arctangent of a ratio in radians. If given a vector, performs a component-wise operation.

vtkm::ATan2 Computes the arctangent of y/x where y is the first argument and x is the second argument. ATan2
uses the signs of both arguments to determine the quadrant of the return value. ATan2 is only defined for
floating point types (no vectors).

vtkm::ATanH Returns the hyperbolic arctangent. If given a vector, performs a component-wise operation.

DRAFT

16.1. Basic Math

vtkm::Cbrt Takes one argument and returns the cube root of that argument. If called with a vector type,
returns a component-wise cube root.

vtkm::Ceil Rounds and returns the smallest integer not less than the single argument. If given a vector,
performs a component-wise operation.

vtkm::CopySign Copies the sign of the second argument onto the first argument and returns that. If the second
argument is positive, returns the absolute value of the first argument. If the second argument is negative,
returns the negative absolute value of the first argument.

vtkm::Cos Returns the cosine of an angle given in radians. If given a vector, performs a component-wise
operation.

vtkm::CosH Returns the hyperbolic cosine. If given a vector, performs a component-wise operation.

vtkm::Epsilon Returns the difference between 1 and the least value greater than 1 that is representable by
a floating point number. Epsilon is useful for specifying the tolerance one should have when considering
numerical error. The Epsilon method is templated to specify either a 32 or 64 bit floating point number.
The convenience methods Epsilon32 and Epsilon64 are non-templated versions that return the precision
for a particular precision.

vtkm::Exp Computes ex where x is the argument to the function and e is Euler’s number (approximately
2.71828). If called with a vector type, returns a component-wise exponent.

vtkm::Exp10 Computes 10x where x is the argument. If called with a vector type, returns a component-wise
exponent.

vtkm::Exp2 Computes 2x where x is the argument. If called with a vector type, returns a component-wise
exponent.

vtkm::ExpM1 Computes ex−1 where x is the argument to the function and e is Euler’s number (approximately
2.71828). The accuracy of this function is good even for very small values of x. If called with a vector
type, returns a component-wise exponent.

vtkm::Floor Rounds and returns the largest integer not greater than the single argument. If given a vector,
performs a component-wise operation.

vtkm::FMod Computes the remainder on the division of 2 floating point numbers. The return value is
numerator−n · denominator, where numerator is the first argument, denominator is the second argu-
ment, and n is the quotient of numerator divided by denominator rounded towards zero to an integer. For
example, FMod(6.5,2.3) returns 1.9, which is 6.5−2 ·4.6. If given vectors, FMod performs a component-
wise operation. FMod is similar to Remainder except that the quotient is rounded toward 0 instead of the
nearest integer.

vtkm::Infinity Returns the representation for infinity. The result is greater than any other number except
another infinity or NaN. When comparing two infinities or infinity to NaN, neither is greater than, less
than, nor equal to the other. The Infinity method is templated to specify either a 32 or 64 bit floating
point number. The convenience methods Infinity32 and Infinity64 are non-templated versions that
return the precision for a particular precision.

vtkm::IsFinite Returns true if the argument is a normal number (neither a NaN nor an infinite).

vtkm::IsInf Returns true if the argument is either positive infinity or negative infinity.

vtkm::IsNan Returns true if the argument is not a number (NaN).

vtkm::IsNegative Returns true if the single argument is less than zero, false otherwise.

138 Chapter 16. Math

DRAFT

16.1. Basic Math

vtkm::Log Computes the natural logarithm (i.e. logarithm to the base e) of the single argument. If called with
a vector type, returns a component-wise logarithm.

vtkm::Log10 Computes the logarithm to the base 10 of the single argument. If called with a vector type, returns
a component-wise logarithm.

vtkm::Log1P Computes ln(1+x) where x is the single argument and ln is the natural logarithm (i.e. logarithm
to the base e). The accuracy of this function is good for very small values. If called with a vector type,
returns a component-wise logarithm.

vtkm::Log2 Computes the logarithm to the base 2 of the single argument. If called with a vector type, returns
a component-wise logarithm.

vtkm::Max Takes two arguments and returns the argument that is greater. If called with a vector type, returns
a component-wise maximum.

vtkm::Min Takes two arguments and returns the argument that is lesser. If called with a vector type, returns a
component-wise minimum.

vtkm::ModF Returns the integral and fractional parts of the first argument. The second argument is a reference
in which the integral part is stored. The return value is the fractional part. If given vectors, ModF performs
a component-wise operation.

vtkm::Nan Returns the representation for not-a-number (NaN). A NaN represents an invalid value or the result
of an invalid operation such as 0/0. A NaN is neither greater than nor less than nor equal to any other
number including other NaNs. The NaN method is templated to specify either a 32 or 64 bit floating point
number. The convenience methods Nan32 and NaN64 are non-templated versions that return the precision
for a particular precision.

vtkm::NegativeInfinity Returns the representation for negative infinity. The result is less than any other
number except another negative infinity or NaN. When comparing two negative infinities or negative in-
finity to NaN, neither is greater than, less than, nor equal to the other. The NegativeInfinity method is
templated to specify either a 32 or 64 bit floating point number. The convenience methods NagativeIn-
finity32 and NegativeInfinity64 are non-templated versions that return the precision for a particular
precision.

vtkm::Pi Returns the constant π (about 3.14159).

vtkm::Pi 2 Returns the constant π/2 (about 1.570796).

vtkm::Pi 3 Returns the constant π/3 (about 1.047197).

vtkm::Pi 4 Returns the constant π/4 (about 0.785398).

vtkm::Pow Takes two arguments and returns the first argument raised to the power of the second argument.
This function is only defined for vtkm::Float32 and vtkm::Float64.

vtkm::RCbrt Takes one argument and returns the cube root of that argument. The result of this function is
equivalent to 1/Cbrt(x). However, on some devices it is faster to compute the reciprocal cube root than
the regular cube root. Thus, you should use this function whenever dividing by the cube root.

vtkm::Remainder Computes the remainder on the division of 2 floating point numbers. The return value is
numerator−n ·denominator, where numerator is the first argument, denominator is the second argument,
and n is the quotient of numerator divided by denominator rounded towards the nearest integer. For
example, FMod(6.5,2.3) returns −0.4, which is 6.5− 3 · 2.3. If given vectors, Remainder performs a
component-wise operation. Remainder is similar to FMod except that the quotient is rounded toward the
nearest integer instead of toward 0.

Chapter 16. Math 139

DRAFT

16.2. Vector Analysis

vtkm::RemainderQuotient Performs an operation identical to Reminder. In addition, this function takes a
third argument that is a reference in which the quotient is given.

vtkm::Round Rounds and returns the integer nearest the single argument. If given a vector, performs a
component-wise operation.

vtkm::RSqrt Takes one argument and returns the square root of that argument. The result of this function is
equivalent to 1/Sqrt(x). However, on some devices it is faster to compute the reciprocal square root than
the regular square root. Thus, you should use this function whenever dividing by the square root.

vtkm::SignBit Returns a nonzero value if the single argument is negative.

vtkm::Sin Returns the sine of an angle given in radians. If given a vector, performs a component-wise operation.

vtkm::SinH Returns the hyperbolic sine. If given a vector, performs a component-wise operation.

vtkm::Sqrt Takes one argument and returns the square root of that argument. If called with a vector type,
returns a component-wise square root. On some hardware it is faster to find the reciprocal square root, so
RSqrt should be used if you actually plan to divide byt the square root.

vtkm::Tan Returns the tangent of an angle given in radians. If given a vector, performs a component-wise
operation.

vtkm::TanH Returns the hyperbolic tangent. If given a vector, performs a component-wise operation.

vtkm::TwoPi Returns the constant 2π (about 6.283185).

16.2 Vector Analysis

Visualization and computational geometry algorithms often perform vector analysis operations. The vtkm/-
VectorAnalysis.h header file provides functions that perform the basic common vector analysis operations.

vtkm::Cross Returns the cross product of two vtkm::Vec of size 3.

vtkm::Lerp Given two values x and y in the first two parameters and a weight w as the third parameter,
interpolates between x and y. Specifically, the linear interpolation is (y−x)w+x although Lerp might
compute the interpolation faster than using the independent arithmetic operations. The two values may
be scalars or equal sized vectors. If the two values are vectors and the weight is a scalar, all components
of the vector are interpolated with the same weight. If the weight is also a vector, then each component of
the value vectors are interpolated with the respective weight component.

vtkm::Magnitude Returns the magnitude of a vector. This function works on scalars as well as vectors, in which
case it just returns the scalar. It is usually much faster to compute MagnitudeSquared, so that should be
substituted when possible (unless you are just going to take the square root, which would be besides the
point). On some hardware it is also faster to find the reciprocal magnitude, so RMagnitude should be used
if you actually plan to divide by the magnitude.

vtkm::MagnitudeSquared Returns the square of the magnitude of a vector. It is usually much faster to compute
the square of the magnitude than the length, so you should use this function in place of Magnitude or
RMagnitude when needing the square of the magnitude or any monotonically increasing function of a
magnitude or distance. This function works on scalars as well as vectors, in which case it just returns the
square of the scalar.

140 Chapter 16. Math

DRAFT

16.3. Matrices

vtkm::Normal Returns a normalized version of the given vector. The resulting vector points in the same direction
as the argument but has unit length.

vtkm::Normalize Takes a reference to a vector and modifies it to be of unit length. Normalize(v) is functionally
equivalent to v *= RMagnitude(v).

vtkm::RMagnitude Returns the reciprocal magnitude of a vector. On some hardware RMagnitude is faster than
Magnitude, but neither is as fast as MagnitudeSquared. This function works on scalars as well as vectors,
in which case it just returns the reciprocal of the scalar.

vtkm::TriangleNormal Given three points in space (contained in vtkm::Vecs of size 3) that compose a triangle
return a vector that is perpendicular to the triangle. The magnitude of the result is equal to twice the
area of the triangle. The result points away from the “front” of the triangle as defined by the standard
counter-clockwise ordering of the points.

16.3 Matrices

Linear algebra operations on small matrices that are done on a single thread are located in vtkm/Matrix.h.

This header defines the vtkm::Matrix templated class. The template parameters are first the type of component,
then the number of rows, then the number of columns. The overloaded parentheses operator can be used to
retrieve values based on row and column indices. Likewise, the bracket operators can be used to reference the
Matrix as a 2D array (indexed by row first). The following example builds a Matrix that contains the values∣∣∣∣ 0 1 2

10 11 12

∣∣∣∣
Example 16.1: Creating a Matrix.

1 vtkm :: Matrix <vtkm :: Float32 , 2, 3> matrix ;
2
3 // Using parenthesis notation .
4 matrix (0 ,0) = 0.0f;
5 matrix (0 ,1) = 1.0f;
6 matrix (0 ,2) = 2.0f;
7
8 // Using bracket notation .
9 matrix [1][0] = 10.0f;

10 matrix [1][1] = 11.0f;
11 matrix [1][2] = 12.0f;

The vtkm/Matrix.h header also defines the following functions that operate on matrices.

vtkm::MatrixDeterminant Takes a square Matrix as its single argument and returns the determinant of that
matrix.

vtkm::MatrixGetColumn Given a Matrix and a column index, returns a vtkm::Vec of that column. This
function might not be as efficient as vtkm::MatrixRow. (It performs a copy of the column).

vtkm::MatrixGetRow Given a Matrix and a row index, returns a vtkm::Vec of that row.

vtkm::MatrixIdentity Returns the identity matrix. If given no arguments, it creates an identity matrix and
returns it. (In this form, the component type and size must be explicitly set.) If given a single square
matrix argument, fills that matrix with the identity.

Chapter 16. Math 141

DRAFT

16.4. Newton’s Method

vtkm::MatrixInverse Finds and returns the inverse of a given matrix. The function takes two arguments. The
first argument is the matrix to invert. The second argument is a reference to a Boolean that is set to true
if the inverse is found or false if the matrix is singular and the returned matrix is incorrect.

vtkm::MatrixMultiply Performs a matrix-multiply on its two arguments. Overloaded to work for matrix-
matrix, vector-matrix, or matrix-vector multiply.

vtkm::MatrixSetColumn Given a Matrix, a column index, and a vtkm::Vec, sets the column of that index to
the values of the Tuple.

vtkm::MatrixSetRow Given a Matrix, a row index, and a vtkm::Vec, sets the row of that index to the values
of the Tuple.

vtkm::MatrixTranspose Takes a Matrix and returns its transpose.

vtkm::SolveLinearSystem Solves the linear system Ax = b and returns x. The function takes three arguments.
The first two arguments are the matrix A and the vector b, respectively. The third argument is a reference
to a Boolean that is set to true if a single solution is found, false otherwise.

16.4 Newton’s Method

VTK-m’s matrix methods (documented in Section 16.3) provide a method to solve a small linear system of
equations. However, sometimes it is necessary to solve a small nonlinear system of equations. This can be done
with the vtkm::NewtonsMethod function defined in the vtkm/NewtonsMethod.h header.

The NewtonsMethod function assumes that the number of variables equals the number of equations. Newton’s
method operates on an iterative evaluate and search. Evaluations are performed using the functors passed into
the NewtonsMethod. The function takes the following 6 parameters (three of which are optional).

1. A functor whose operation takes a vtkm::Vec and returns a vtkm::Matrix containing the math function’s
Jacobian vector at that point.

2. A functor whose operation takes a vtkm::Vec and returns the evaluation of the math function at that
point as another vtkm::Vec.

3. The vtkm::Vec that represents the desired output of the function.

4. A vtkm::Vec to use as the initial guess. If not specified, the origin is used.

5. The convergence distance. If the iterative method changes all values less than this amount, then it considers
the solution found. If not specified, set to 10−3.

6. The maximum amount of iterations to run before giving up and returning the best solution. If not specified,
set to 10.

Example 16.2: Using NewtonsMethod to solve a small system of nonlinear equations.
1 // A functor for the mathematical function f(x) = [dot(x,x),x[0]*x[1]]
2 struct FunctionFunctor
3 {
4 template < typename T>
5 VTKM_EXEC_CONT_EXPORT
6 vtkm ::Vec <T,2> operator ()(const vtkm ::Vec <T,2> &x) const
7 {
8 return vtkm :: make_Vec (vtkm :: dot(x,x), x[0]*x [1]);

142 Chapter 16. Math

DRAFT

16.4. Newton’s Method

9 }
10 };
11
12 // A functor for the Jacobian of the mathematical function
13 // f(x) = [dot(x,x),x[0]*x[1]] , which is
14 // | 2*x[0] 2*x[1] |
15 // | x[1] x[0] |
16 struct JacobianFunctor
17 {
18 template < typename T>
19 VTKM_EXEC_CONT_EXPORT
20 vtkm :: Matrix <T,2,2> operator ()(const vtkm ::Vec <T,2> &x) const
21 {
22 vtkm :: Matrix <T,2,2> jacobian ;
23 jacobian (0 ,0) = 2*x[0];
24 jacobian (0 ,1) = 2*x[1];
25 jacobian (1 ,0) = x[1];
26 jacobian (1 ,1) = x[0];
27
28 return jacobian ;
29 }
30 };
31
32 VTKM_EXEC_EXPORT
33 void SolveNonlinear ()
34 {
35 // Use Newton ’s method to solve the nonlinear system of equations :
36 //
37 // xˆ2 + yˆ2 = 2
38 // x*y = 1
39 //
40 // There are two possible solutions , which are (x=1,y=1) and (x=-1,y= -1).
41 // The one found depends on the starting value .
42 vtkm ::Vec <vtkm :: Float32 ,2> answer1 =
43 vtkm :: NewtonsMethod (JacobianFunctor (),
44 FunctionFunctor (),
45 vtkm :: make_Vec (2.0f, 1.0f),
46 vtkm :: make_Vec (1.0f, 0.0f));
47 // answer1 is [1 ,1]
48
49 vtkm ::Vec <vtkm :: Float32 ,2> answer2 =
50 vtkm :: NewtonsMethod (JacobianFunctor (),
51 FunctionFunctor (),
52 vtkm :: make_Vec (2.0f, 1.0f),
53 vtkm :: make_Vec (0.0f, -2.0f));
54 // answer2 is [-1,-1]
55 }

Chapter 16. Math 143

DRAFT

DRAFT
CHAPTER

SEVENTEEN

WORKING WITH CELLS

In the control environment, data is defined in mesh structures that comprise a set of finite cells. (See Section 11.2
starting on page 96 for information on defining cell sets in the control environment.) When worklets that operate
on cells are scheduled, these grid structures are broken into their independent cells, and that data is handed to
the worklet. Thus, cell-based operations in the execution environment exclusively operate on independent cells.

Unlike some other libraries such as VTK, VTK-m does not have a cell class that holds all the information
pertaining to a cell of a particular type. Instead, VTK-m provides tags or identifiers defining the cell shape,
and companion data like coordinate and field information are held in separate structures. This organization is
designed so a worklet may specify exactly what information it needs, and only that information will be loaded.

17.1 Cell Shape Tags and Ids

Cell shapes can be specified with either a tag (defined with a struct with a name like CellShapeTag*) or an
enumerated identifier (defined with a constant number with a name like CELL SHAPE *). These shape tags and
identifiers are defined in vtkm/CellShape.h and declared in the vtkm namespace (because they can be used in
either the control or the execution environment). Figure 17.1 gives both the identifier and the tag names.

In addition to the basic cell shapes, there is a special “empty” cell with the identifier vtkm::CELL SHAPE EMPTY
and tag vtkm::CellShapeTagEmpty. This type of cell has no points, edges, or faces and can be thought of as a
placeholder for a null or void cell.

There is also a special cell shape “tag” named vtkm::CellShapeTagGeneric that is used when the actual cell
shape is not known at compile time. CellShapeTagGeneric actually has a member variable named Id that
stores the identifier for the cell shape. There is no equivalent identifier for a generic cell; cell shape identifiers
can be placed in a vtkm::IdComponent at runtime.

When using cell shapes in templated classes and functions, you can use the VTKM IS CELL SHAPE TAG to ensure
a type is a valid cell shape tag. This macro takes one argument and will produce a compile error if the argument
is not a cell shape tag type.

17.1.1 Converting Between Tags and Identifiers

Every cell shape tag has a member variable named Id that contains the identifier for the cell shape. This
provides a convenient mechanism for converting a cell shape tag to an identifier. Most cell shape tags have their
Id member as a compile-time constant, but CellShapeTagGeneric is set at run time.

vtkm/CellShape.h also declares a templated class named vtkm::CellShapeIdToTag that converts a cell shape

DRAFT

17.1. Cell Shape Tags and Ids

0

2

1

vtkm::CELL SHAPE VERTEX vtkm::CELL SHAPE LINE vtkm::CELL SHAPE TRIANGLE
vtkm::CellShapeTagVertex vtkm::CellShapeTagLine vtkm::CellShapeTagTriangle

0 1

n-2

n-1
2

3
1

0

3

0
1

2

vtkm::CELL SHAPE POLYGON vtkm::CELL SHAPE QUAD vtkm::CELL SHAPE TETRA
vtkm::CellShapeTagPolygon vtkm::CellShapeTagQuad vtkm::CellShapeTagTetra

0 1

23
4

5
7 6

2

0
1

5

3
4 3

0 1

2

4

vtkm::CELL SHAPE HEXAHEDRON vtkm::CELL SHAPE WEDGE vtkm::CELL SHAPE PYRAMID
vtkm::CellShapeTagHexahedron vtkm::CellShapeTagWedge vtkm::CellShapeTagPyramid

Figure 17.1: Basic Cell Shapes

identifier to a cell shape tag. CellShapeIdToTag has a single template argument that is the identifier. Inside
the class is a type named Tag that is the type of the correct tag.

Example 17.1: Using CellShapeIdToTag.
1 void CellFunction (vtkm :: CellShapeTagTriangle)
2 {
3 std :: cout << "In CellFunction for triangles ." << std :: endl;
4 }
5
6 void DoSomethingWithACell ()
7 {
8 // Calls CellFunction overloaded with a vtkm :: CellShapeTagTriangle .
9 CellFunction (vtkm :: CellShapeIdToTag <vtkm :: CELL_SHAPE_TRIANGLE >:: Tag ());

10 }

However, CellShapeIdToTag is only viable if the identifier can be resolved at compile time. In the case where
a cell identifier is stored in a variable or an array or the code is using a CellShapeTagGeneric, the correct cell
shape is not known at run time. In this case, vtkmGenericCellShapeMacro can be used to check all possible
conditions. This macro is embedded in a switch statement where the condition is the cell shape identifier.
vtkmGenericCellShapeMacro has a single argument, which is an expression to be executed. Before the expression
is executed, a type named CellShapeTag is defined as the type of the appropriate cell shape tag. Often this
method is used to implement the condition for a CellShapeTagGeneric in a function overloaded for cell types.
A demonstration of vtkmGenericCellShapeMacro is given in Example 17.2.

146 Chapter 17. Working with Cells

DRAFT

17.1. Cell Shape Tags and Ids

17.1.2 Cell Traits

The vtkm/CellTraits.h header file contains a traits class named vtkm::CellTraits that provides information
about a cell. Each specialization of CellTraits contains the following members.

TOPOLOGICAL DIMENSIONS Defines the topological dimensions of the cell type. This is 3 for polyhedra, 2 for
polygons, 1 for lines, and 0 for points.

TopologicalDimensionsTag A type set to either vtkm::CellTopologicalDimensionsTag<3>, CellTopolog-
icalDimensionsTag<2>, CellTopologicalDimensionsTag<1>, or CellTopologicalDimensionsTag<0>.
The number is consistent with TOPOLOGICAL DIMENSIONS. This tag is provided for convenience when spe-
cializing functions.

IsSizeFixed Set to either vtkm::CellTraitsTagSizeFixed for cell types with a fixed number of points (for
example, triangle) or vtkm::CellTraitsTagSizeVariable for cell types with a variable number of points
(for example, polygon).

NUM POINTS A vtkm::IdComponent set to the number of points in the cell. This member is only defined when
there is a constant number of points (i.e. IsSizeFixed is set to vtkm::CellTraitsTagSizeFixed).

Example 17.2: Using CellTraits to implement a polygon normal estimator.
1 namespace detail {
2
3 VTKM_SUPPRESS_EXEC_WARNINGS
4 template < typename PointCoordinatesVector , typename WorkletType >
5 VTKM_EXEC_CONT_EXPORT
6 typename PointCoordinatesVector :: ComponentType
7 CellNormalImpl (const PointCoordinatesVector & pointCoordinates ,
8 vtkm :: CellTopologicalDimensionsTag <2>,
9 const WorkletType & worklet)

10 {
11 if (pointCoordinates . GetNumberOfComponents () >= 3)
12 {
13 return vtkm :: TriangleNormal (pointCoordinates [0] ,
14 pointCoordinates [1] ,
15 pointCoordinates [2]);
16 }
17 else
18 {
19 worklet . RaiseError (" Degenerate polygon .");
20 return typename PointCoordinatesVector :: ComponentType ();
21 }
22 }
23
24 VTKM_SUPPRESS_EXEC_WARNINGS
25 template < typename PointCoordinatesVector ,
26 vtkm :: IdComponent Dimensions ,
27 typename WorkletType >
28 VTKM_EXEC_CONT_EXPORT
29 typename PointCoordinatesVector :: ComponentType
30 CellNormalImpl (const PointCoordinatesVector &,
31 vtkm :: CellTopologicalDimensionsTag < Dimensions >,
32 const WorkletType & worklet)
33 {
34 worklet . RaiseError (" Only polygons supported for cell normals .");
35 return typename PointCoordinatesVector :: ComponentType ();
36 }
37
38 } // namespace detail

Chapter 17. Working with Cells 147

DRAFT

17.2. Parametric and World Coordinates

39
40 VTKM_SUPPRESS_EXEC_WARNINGS
41 template < typename CellShape ,
42 typename PointCoordinatesVector ,
43 typename WorkletType >
44 VTKM_EXEC_CONT_EXPORT
45 typename PointCoordinatesVector :: ComponentType
46 CellNormal (CellShape ,
47 const PointCoordinatesVector & pointCoordinates ,
48 const WorkletType & worklet)
49 {
50 return detail :: CellNormalImpl (
51 pointCoordinates ,
52 typename vtkm :: CellTraits <CellShape >:: TopologicalDimensionsTag (),
53 worklet);
54 }
55
56 VTKM_SUPPRESS_EXEC_WARNINGS
57 template < typename PointCoordinatesVector ,
58 typename WorkletType >
59 VTKM_EXEC_CONT_EXPORT
60 typename PointCoordinatesVector :: ComponentType
61 CellNormal (vtkm :: CellShapeTagGeneric shape ,
62 const PointCoordinatesVector & pointCoordinates ,
63 const WorkletType & worklet)
64 {
65 switch (shape .Id)
66 {
67 vtkmGenericCellShapeMacro (
68 return CellNormal (CellShapeTag (), pointCoordinates , worklet));
69 default :
70 worklet . RaiseError (" Unknown cell type .");
71 return typename PointCoordinatesVector :: ComponentType ();
72 }
73 }

17.2 Parametric and World Coordinates

Each cell type supports a one-to-one mapping between a set of parametric coordinates in the unit cube (or some
subset of it) and the points in 3D space that are the locus contained in the cell. Parametric coordinates are useful
because certain features of the cell, such as vertex location and center, are at a consistent location in parametric
space irrespective of the location and distortion of the cell in world space. Also, many field operations are much
easier with parametric coordinates.

The vtkm/exec/ParametricCoordinates.h header file contains the following functions for working with parametric
coordinates.

vtkm::exec::ParametricCoordinatesCenter Returns the parametric coordinates for the center of a given
shape. It takes 4 arguments: the number of points in the cell, a vtkm::Vec of size 3 to store the results, a
shape tag, and a worklet object (for raising errors). A second form of this method takes 3 arguments and
returns the result as a vtkm::Vec<vtkm::FloatDefault,3> instead of passing it as a parameter.

vtkm::exec::ParametricCoordinatesPoint Returns the parametric coordinates for a given point of a given
shape. It takes 5 arguments: the number of points in the cell, the index of the point to query, a vtkm::Vec
of size 3 to store the results, a shape tag, and a worklet object (for raising errors). A second form of
this method takes 3 arguments and returns the result as a vtkm::Vec<vtkm::FloatDefault,3> instead of
passing it as a parameter.

148 Chapter 17. Working with Cells

DRAFT

17.3. Interpolation

vtkm::exec::ParametricCoordinatesToWorldCoordinates Given a vector of point coordinates (usually given
by a FieldPointIn worklet argument), a vtkm::Vec of size 3 containing parametric coordinates, a shape
tag, and a worklet object (for raising errors), returns the world coordinates.

vtkm::exec::WorldCoordinatesToParametricCoordinates Given a vector of point coordinates (usually given
by a FieldPointIn worklet argument), a vtkm::Vec of size 3 containing world coordinates, a shape tag,
and a worklet object (for raising errors), returns the parametric coordinates. This function can be slow for
cell types with nonlinear interpolation (which is anything that is not a simplex).

17.3 Interpolation

The shape of every cell is defined by the connections of some finite set of points. Field values defined on those
points can be interpolated to any point within the cell to estimate a continuous field.

The vtkm/exec/CellInterpolate.h header contains the function vtkm::exec::CellInterpolate that takes a vector
of point field values (usually given by a FieldPointIn worklet argument), a vtkm::Vec of size 3 containing
parametric coordinates, a shape tag, and a worklet object (for raising errors). It returns the field interpolated
to the location represented by the given parametric coordinates.

Example 17.3: Interpolating field values to a cell’s center.
1 struct CellCenters : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 typedef void ControlSignature (CellSetIn ,
4 FieldInPoint <> inputField ,
5 FieldOutCell <> outputField);
6 typedef void ExecutionSignature (CellShape , PointCount , _2 , _3);
7 typedef _1 InputDomain ;
8
9 template < typename CellShapeTag , typename FieldInVecType , typename FieldOutType >

10 VTKM_EXEC_EXPORT
11 void operator ()(CellShapeTag shape ,
12 vtkm :: IdComponent pointCount ,
13 const FieldInVecType & inputField ,
14 FieldOutType & outputField) const
15 {
16 vtkm ::Vec <vtkm :: FloatDefault ,3> center =
17 vtkm :: exec :: ParametricCoordinatesCenter (pointCount , shape , *this);
18 outputField = vtkm :: exec :: CellInterpolate (inputField , center , shape , *this);
19 }
20 };

17.4 Derivatives

Since interpolations provide a continuous field function over a cell, it is reasonable to consider the derivative of
this function. The vtkm/exec/CellDerivative.h header contains the function vtkm::exec::CellDerivative that
takes a vector of scalar point field values (usually given by a FieldPointIn worklet argument), a vtkm::Vec
of size 3 containing parametric coordinates, a shape tag, and a worklet object (for raising errors). It returns
the field derivative at the location represented by the given parametric coordinates. The derivative is return in
a vtkm::Vec of size 3 corresponding to the partial derivatives in the x, y, and z directions. This derivative is
equivalent to the gradient of the field.

Example 17.4: Computing the derivative of the field at cell centers.

Chapter 17. Working with Cells 149

DRAFT

17.4. Derivatives

1 struct CellDerivatives : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 typedef void ControlSignature (CellSetIn ,
4 FieldInPoint <> inputField ,
5 FieldInPoint <Vec3 > pointCoordinates ,
6 FieldOutCell <> outputField);
7 typedef void ExecutionSignature (CellShape , PointCount , _2 , _3 , _4);
8 typedef _1 InputDomain ;
9

10 template < typename CellShapeTag ,
11 typename FieldInVecType ,
12 typename PointCoordVecType ,
13 typename FieldOutType >
14 VTKM_EXEC_EXPORT
15 void operator ()(CellShapeTag shape ,
16 vtkm :: IdComponent pointCount ,
17 const FieldInVecType & inputField ,
18 const PointCoordVecType & pointCoordinates ,
19 FieldOutType & outputField) const
20 {
21 vtkm ::Vec <vtkm :: FloatDefault ,3> center =
22 vtkm :: exec :: ParametricCoordinatesCenter (pointCount , shape , *this);
23 outputField = vtkm :: exec :: CellDerivative (inputField ,
24 pointCoordinates ,
25 center ,
26 shape ,
27 *this);
28 }
29 };

150 Chapter 17. Working with Cells

DRAFTPart IV

Advanced Development

DRAFT

DRAFT
CHAPTER

EIGHTEEN

ADVANCED WORKLET CUSTOMIZATION

Chapter 14 describes the basics of creating and using worklets. Many visualization algorithms can be implemented
using VTK-m’s existing worklet types and features. However, new algorithms and designs may require features
not provided by VTK-m’s current worklet set. In such cases it is possible to directly design filters using the
lower level device adapter operations [as described in section bla]. But by adding features to the worklet
mechanisms, new designs can be integrated better with the other VTK-m features and can be repurposed in
interesting ways for other algorithms.

This chapter provides the information necessary to create new mechanisms for worklets. It first describes the
interface for getting data from the control environment objects to the data passed to a worklet invocation and
back. It then describes how to modify these mechanisms to create new data movement structures and new
worklet types.

18.1 Transferring Arguments from Control to Execution

From the ControlSignature and ExecutionSignature defined in worklets, VTK-m uses template meta-
programming to build the code required to manage data from control to execution environment. This man-
agement is handled by three classes that provide type checking, transportation, and fetching.

[I’ve been thinking that one more feature that these classes should provide is the ability to
return the size of the domain. That would make things simpler and safer for getting the
input domain size and checking the remaining domain sizes.]

18.1.1 Type Checks

Before attempting to move data from the control to the execution environment, the VTK-m dispatchers check
the input types to ensure that they are compatible with the associated ControlSignature concept. This is done
with the vtkm::cont::arg::TypeCheck struct.

The TypeCheck struct is templated with two parameters. The first parameter is a tag that identifies which
check to perform. The second parameter is the type of the control argument (after any dynamic casts). The
TypeCheck class contains a static constant Boolean named value that is true if the type in the second parameter
is compatible with the tag in the first or false otherwise.

Type checks are implemented with a defined type check tag (which, by convention, is defined in the vtkm::-
cont::arg namespace and starts with TypeCheckTag) and a partial specialization of the vtkm::cont::arg::-
TypeCheck structure. The following type checks (identified by their tags) are provided in VTK-m.

DRAFT

18.1. Transferring Arguments from Control to Execution

vtkm::cont::arg::TypeCheckTagArray True if the type is a vtkm::cont::ArrayHandle. TypeCheckTagArray
also has a template parameter that is a type list. The ArrayHandle must also have a value type contained
in this type list.

vtkm::cont::arg::TypeCheckTagExecObject True if the type is an execution object. All execution objects
must derive from vtkm::exec::ExecutionObjectBase and must be copyable through memcpy or similar
mechanism.

Here are some trivial examples of using TypeCheck. Typically these checks are done internally in the base
VTK-m dispatcher code, so these examples are for demonstration only.

Example 18.1: Behavior of vtkm::cont::arg::TypeCheck.
1 struct MyExecObject : vtkm :: exec :: ExecutionObjectBase { vtkm :: Id Value ; };
2
3 void DoTypeChecks ()
4 {
5 using vtkm :: cont :: arg :: TypeCheck ;
6 using vtkm :: cont :: arg :: TypeCheckTagArray ;
7 using vtkm :: cont :: arg :: TypeCheckTagExecObject ;
8
9 bool check1 = TypeCheck < TypeCheckTagExecObject , MyExecObject >:: value ; // true

10 bool check2 = TypeCheck < TypeCheckTagExecObject , vtkm ::Id >:: value ; // false
11
12 typedef vtkm :: cont :: ArrayHandle <vtkm :: Float32 > ArrayType ;
13
14 bool check3 = // true
15 TypeCheck < TypeCheckTagArray <vtkm :: TypeListTagField >, ArrayType >:: value ;
16 bool check4 = // false
17 TypeCheck < TypeCheckTagArray <vtkm :: TypeListTagIndex >, ArrayType >:: value ;
18 bool check5 = TypeCheck < TypeCheckTagExecObject , ArrayType >:: value ; // false
19 }

18.1.2 Transport

After all the argument types are checked, the base dispatcher must load the data into the execution environment
before scheduling a job to run there. This is done with the vtkm::cont::arg::Transport struct.

The Transport struct is templated with three parameters. The first parameter is a tag that identifies which
transport to perform. The second parameter is the type of the control parameter (after any dynamic casts). The
third parameter is a device adapter tag for the device on which the data will be loaded.

A Transport contains a typedef named ExecObjectType that is the type used after data is moved to the
execution environment. A Transport also has a const parenthesis operator that takes the control-side object and
the size of the domain and returns an execution-side object. This operator is called in the control environment,
and the returned object must be ready to be passed to the execution environment.

Transports are implemented with a defined transport tag (which, by convention, is defined in the vtkm::cont::-
arg namespace and starts with TransportTag) and a partial specialization of the vtkm::cont::arg::Transport
structure. The following transports (identified by their tags) are provided in VTK-m.

vtkm::cont::arg::TransportTagArrayIn Loads data from a vtkm::cont::ArrayHandle onto the specified
device using the array handle’s PrepareForInput method. The returned execution object is an array
portal.

vtkm::cont::arg::TransportTagArrayOut Allocates data onto the specified device for a vtkm::cont::Array-
Handle using the array handle’s PrepareForOutput method. The returned execution object is an array
portal.

154 Chapter 18. Advanced Worklet Customization

DRAFT

18.1. Transferring Arguments from Control to Execution

vtkm::cont::arg::TransportTagExecObject Simply returns the given execution object, which should be ready
to load onto the device.

Here are some trivial examples of using Transport. Typically this movement is done internally in the base
VTK-m dispatcher code, so these examples are for demonstration only.

Example 18.2: Behavior of vtkm::cont::arg::Transport.
1 struct MyExecObject : vtkm :: exec :: ExecutionObjectBase { vtkm :: Id Value ; };
2
3 typedef vtkm :: cont :: ArrayHandle <vtkm ::Id > ArrayType ;
4
5 void DoTransport (const MyExecObject & inExecObject ,
6 const ArrayType &inArray ,
7 const ArrayType & outArray)
8 {
9 typedef VTKM_DEFAULT_DEVICE_ADAPTER_TAG Device ;

10
11 using vtkm :: cont :: arg :: Transport ;
12 using vtkm :: cont :: arg :: TransportTagArrayIn ;
13 using vtkm :: cont :: arg :: TransportTagArrayOut ;
14 using vtkm :: cont :: arg :: TransportTagExecObject ;
15
16 // The executive object transport just passes the object through .
17 typedef Transport < TransportTagExecObject , MyExecObject ,Device >
18 ExecObjectTransport ;
19 MyExecObject passedExecObject = ExecObjectTransport ()(inExecObject , 10);
20
21 // The array in transport returns a read -only array portal .
22 typedef Transport < TransportTagArrayIn ,ArrayType ,Device > ArrayInTransport ;
23 ArrayInTransport :: ExecObjectType inPortal = ArrayInTransport ()(inArray , 10);
24
25 // The array out transport returns an allocated array portal .
26 typedef Transport < TransportTagArrayOut ,ArrayType ,Device > ArrayOutTransport ;
27 ArrayOutTransport :: ExecObjectType outPortal = ArrayOutTransport ()(outArray ,10);
28 }

18.1.3 Fetch

Before the function of a worklet is invoked, the VTK-m internals pull the appropriate data out of the execution
object and pass it to the worklet function. A class named vtkm::exec::arg::Fetch is responsible for pulling
this data out and putting computed data in to the execution objects.

The Fetch struct is templated with four parameters. The first parameter is a tag that identifies which type
of fetch to perform. The second parameter is a different tag that identifies the aspect of the data to fetch. The
third parameter is an Invocation type that provides details about how the worklet is being dispatched including
a list of execution object parameters passed to the invocation. The fourth parameter is a vtkm::IdComponent
that points to the invocation parameter that the data should be fetched from.

A Fetch contains a typedef named ValueType that is the type of data that is passed to and from the worklet
function. A Fetch also has a pair of methods named Load and Store that get data from and add data to the
execution object at a given domain or thread index.

Fetches are specified with a pair of fetch and aspect tags. Fetch tags are by convention defined in the vtkm::-
exec::arg namespace and start with FetchTag. Likewise, aspect tags are also defined in the vtkm::exec::arg
namespace and start with AspectTag. The Fetch typedef is partially specialized on these two tags.

The most common aspect tag is vtkm::exec::arg::AspectTagDefault, and all fetch tags should have a spe-
cialization of vtkm::exec::arg::Fetch with this tag. The following list of fetch tags describes the execution

Chapter 18. Advanced Worklet Customization 155

DRAFT

18.2. Function Interface Objects

objects they work with and the data they pull for each aspect tag they support.

[Don’t forget to add index entries for both fetch and aspect where appropriate.]

vtkm::exec::arg::FetchTagArrayDirectIn Loads data from an array portal. This fetch only supports the
AspectTagDefault aspect. The Load gets data directly from the domain (thread) index. The Store does
nothing.

vtkm::exec::arg::FetchTagArrayDirectOut Stores data to an array portal. This fetch only supports the
AspectTagDefault aspect. The Store sets data directly to the domain (thread) index. The Load does
nothing.

vtkm::exec::arg::FetchTagExecObject Simply returns an execution object. This fetch only supports the
AspectTagDefault aspect. The Load returns the executive object in the associated parameter. The Store
does nothing.

In addition to the aforementioned aspect tags that are explicitly paired with fetch tags, VTK-m also provides
some aspect tags that either modify the behavior of a general fetch or simply ignore the type of fetch.

vtkm::exec::arg::AspectTagWorkIndex Simply returns the domain (or thread) index ignoring any associated
data. This aspect is used to implement the WorkIndex execution signature tag.

18.2 Function Interface Objects

For flexibility’s sake a worklet is free to declare a ControlSignature with whatever number of arguments are
sensible for its operation. The Invoke method of the dispatcher is expected to support arguments that match
these arguments, and part of the dispatching operation may require these arguments to be augmented before
the worklet is scheduled. This leaves dispatchers with the tricky task of managing some collection of arguments
of unknown size and unknown types.

[FunctionInterface is in the vtkm::internal interface. I still can’t decide if it should be moved
to the vtkm interface.]

To simplify this management, VTK-m has the vtkm::internal::FunctionInterface class. FunctionInter-
face is a templated class that manages a generic set of arguments and return value from a function. An instance
of FunctionInterface holds an instance of each argument. You can apply the arguments in a FunctionInter-
face object to a functor of a compatible prototype, and the resulting value of the function call is saved in the
FunctionInterface.

18.2.1 Declaring and Creating

vtkm::internal::FunctionInterface is a templated class with a single parameter. The parameter is the
signature of the function. A signature is a function type. The syntax in C++ is the return type followed by the
argument types encased in parentheses.

Example 18.3: Declaring vtkm::internal::FunctionInterface.
1 // FunctionInterfaces matching some common POSIX functions .
2 vtkm :: internal :: FunctionInterface < size_t (const char *)>
3 strlenInterface ;
4
5 vtkm :: internal :: FunctionInterface <char *(char *, const char *s2 , size_t)>
6 strncpyInterface ;

156 Chapter 18. Advanced Worklet Customization

DRAFT

18.2. Function Interface Objects

The vtkm::internal::make FunctionInterface function provies an easy way to create a FunctionInterface
and initialize the state of all the parameters. make FunctionInterface takes a variable number of arguments,
one for each parameter. Since the return type is not specified as an argument, you must always specify it as a
template parameter.

Example 18.4: Using vtkm::internal::make FunctionInterface.
1 const char *s = " Hello World ";
2 static const size_t BUFFER_SIZE = 100;
3 char * buffer = (char *) malloc (BUFFER_SIZE);
4
5 strlenInterface =
6 vtkm :: internal :: make_FunctionInterface <size_t >(s);
7
8 strncpyInterface =
9 vtkm :: internal :: make_FunctionInterface <char *>(buffer , s, BUFFER_SIZE);

18.2.2 Parameters

One created, FunctionInterface contains methods to query and manage the parameters and objects associated
with them. The number of parameters can be retrieved either with the constant field ARITY or with the GetArity
method.

Example 18.5: Getting the arity of a FunctionInterface.
1 BOOST_STATIC_ASSERT (
2 vtkm :: internal :: FunctionInterface < size_t (const char *) >:: ARITY == 1);
3
4 vtkm :: IdComponent arity = strncpyInterface . GetArity (); // arity = 3

To get a particular parameter, FunctionInterface has the templated method GetParameter. The template
parameter is the index of the parameter. Note that the parameters in FunctionInterface start at index 1.
Although this is uncommon in C++, it is customary to number function arguments starting at 1.

There are two ways to specify the index for GetParameter. The first is to directly specify the template parameter
(e.g. GetParameter<1>()). However, note that in a templated function or method where the type is not fully
resolved the compiler will not register GetParameter as a templated method and will fail to parse the template
argument without a template keyword. The second way to specify the index is to provide a vtkm::internal::-
IndexTag object as an argument to GetParameter. Although this syntax is more verbose, it works the same
whether the FunctionInterface is fully resolved or not. The following example shows both methods in action.

Example 18.6: Using FunctionInterface::GetParameter().
1 void GetFirstParameterResolved (
2 const vtkm :: internal :: FunctionInterface < void (std :: string)> & interface)
3 {
4 // The following two uses of GetParameter are equivalent
5 std :: cout << interface . GetParameter <1 >() << std :: endl;
6 std :: cout << interface . GetParameter (vtkm :: internal :: IndexTag <1 >())
7 << std :: endl;
8 }
9

10 template < typename FunctionSignature >
11 void GetFirstParameterTemplated (
12 const vtkm :: internal :: FunctionInterface < FunctionSignature > & interface)
13 {
14 // The following two uses of GetParameter are equivalent
15 std :: cout << interface . template GetParameter <1 >() << std :: endl;
16 std :: cout << interface . GetParameter (vtkm :: internal :: IndexTag <1 >())
17 << std :: endl;
18 }

Chapter 18. Advanced Worklet Customization 157

DRAFT

18.2. Function Interface Objects

Likewise, there is a SetParmeter method for changing parameters. The same rules for indexing and template
specification apply.

Example 18.7: Using FunctionInterface::SetParameter().
1 void SetFirstParameterResolved (
2 vtkm :: internal :: FunctionInterface < void (std :: string)> &interface ,
3 const std :: string & newFirstParameter)
4 {
5 // The following two uses of SetParameter are equivalent
6 interface . SetParameter <1 >(newFirstParameter);
7 interface . SetParameter (newFirstParameter , vtkm :: internal :: IndexTag <1 >());
8 }
9

10 template < typename FunctionSignature , typename T>
11 void SetFirstParameterTemplated (
12 vtkm :: internal :: FunctionInterface < FunctionSignature > &interface ,
13 T newFirstParameter)
14 {
15 // The following two uses of SetParameter are equivalent
16 interface . template SetParameter <1 >(newFirstParameter);
17 interface . SetParameter (newFirstParameter , vtkm :: internal :: IndexTag <1 >());
18 }

18.2.3 Invoking

FunctionInterface can invoke a functor of a matching signature using the parameters stored within. If the
functor returns a value, that return value will be stored in the FunctionInterface object for later retrieval.
There are several versions of the invoke method. There are always seperate versions of invoke methods for the
control and execution environments so that functors for either environment can be executed. The basic version
of invoke passes the parameters directly to the function and directly stores the result.

Example 18.8: Invoking a FunctionInterface.
1 vtkm :: internal :: FunctionInterface < size_t (const char *)> strlenInterface ;
2 strlenInterface . SetParameter <1 >(" Hello world ");
3
4 strlenInterface . InvokeCont (strlen);
5
6 size_t length = strlenInterface . GetReturnValue (); // length = 11

Another form of the invoke methods takes a second transform functor that is applied to each argument before
passed to the main function. If the main function returns a value, the transform is applied to that as well before
being stored back in the FunctionInterface.

Example 18.9: Invoking a FunctionInterface with a transform.
1 // Our transform converts C strings to integers , leaves everything else alone .
2 struct TransformFunctor
3 {
4 template < typename T>
5 VTKM_CONT_EXPORT
6 const T & operator ()(const T &x) const
7 {
8 return x;
9 }

10
11 VTKM_CONT_EXPORT
12 const vtkm :: Int32 operator ()(const char *x) const
13 {
14 return atoi(x);

158 Chapter 18. Advanced Worklet Customization

DRAFT

18.2. Function Interface Objects

15 }
16 };
17
18 // The function we are invoking simply compares two numbers .
19 struct IsSameFunctor
20 {
21 template < typename T1 , typename T2 >
22 VTKM_CONT_EXPORT
23 bool operator ()(const T1 &x, const T2 &y) const
24 {
25 return x == y;
26 }
27 };
28
29 void TryTransformedInvoke ()
30 {
31 vtkm :: internal :: FunctionInterface <bool(const char *, vtkm :: Int32)>
32 functionInterface =
33 vtkm :: internal :: make_FunctionInterface <bool >((const char *)"42" ,
34 (vtkm :: Int32)42);
35
36 functionInterface . InvokeCont (IsSameFunctor (), TransformFunctor ());
37
38 bool isSame = functionInterface . GetReturnValue (); // isSame = true
39 }

As demonstrated in the previous examples, FunctionInterface has a method named GetReturnValue that
returns the value from the last invoke. Care should be taken to only use GetReturnValue when the function
specification has a return value. If the function signature has a void return type, using GetReturnValue will
cause a compile error.

FunctionInterface has an alternate method named GetReturnValueSafe that returns the value wrapped in
a templated structure named vtkm::internal::FunctionInterfaceReturnContainer. This structure always
has a static constant Boolean named VALID that is false if there is no return type and true otherwise. If the
container is valid, it also has an entry named Value containing the result.

Example 18.10: Getting return value from FunctionInterface safely.
1 template < typename ResultType , bool Valid > struct PrintReturnFunctor ;
2
3 template < typename ResultType >
4 struct PrintReturnFunctor < ResultType , true >
5 {
6 VTKM_CONT_EXPORT
7 void operator ()(
8 const vtkm :: internal :: FunctionInterfaceReturnContainer < ResultType > &x)
9 const

10 {
11 std :: cout << x. Value << std :: endl;
12 }
13 };
14
15 template < typename ResultType >
16 struct PrintReturnFunctor < ResultType , false >
17 {
18 VTKM_CONT_EXPORT
19 void operator ()(
20 const vtkm :: internal :: FunctionInterfaceReturnContainer < ResultType > &)
21 const
22 {
23 std :: cout << "No return type ." << std :: endl;
24 }
25 };

Chapter 18. Advanced Worklet Customization 159

DRAFT

18.2. Function Interface Objects

26
27 template < typename FunctionInterfaceType >
28 void PrintReturn (const FunctionInterfaceType & functionInterface)
29 {
30 typedef typename FunctionInterfaceType :: ResultType ResultType ;
31 typedef vtkm :: internal :: FunctionInterfaceReturnContainer < ResultType >
32 ReturnContainerType ;
33
34 PrintReturnFunctor < ResultType , ReturnContainerType :: VALID > printReturn ;
35 printReturn (functionInterface . GetReturnValueSafe ());
36 }

18.2.4 Modifying Parameters

In addition to storing and querying parameters and invoking functions, FunctionInterface also contains mul-
tiple ways to modify the parameters to augment the function calls. This can be used in the same use case as a
chain of function calls that generally pass their parameters but also augment the data along the way.

The Append method returns a new FunctionInterface object with the same parameters plus a new parameter
(the argument to Append) to the end of the parameters. There is also a matching AppendType templated structure
that can return the type of an augmented FunctionInterface with a new type appended.

Example 18.11: Appending parameters to a FunctionInterface.
1 using vtkm :: internal :: FunctionInterface ;
2 using vtkm :: internal :: make_FunctionInterface ;
3
4 typedef FunctionInterface < void (std :: string , vtkm :: Id)>
5 InitialFunctionInterfaceType ;
6 InitialFunctionInterfaceType initialFunctionInterface =
7 make_FunctionInterface <void >(std :: string (" Hello World "), vtkm :: Id (42));
8
9 typedef FunctionInterface < void (std :: string , vtkm ::Id , std :: string)>

10 AppendedFunctionInterfaceType1 ;
11 AppendedFunctionInterfaceType1 appendedFunctionInterface1 =
12 initialFunctionInterface . Append (std :: string (" foobar "));
13 // appendedFunctionInterface1 has parameters (" Hello World ", 42, " foobar ")
14
15 typedef InitialFunctionInterfaceType :: AppendType <vtkm :: Float32 >:: type
16 AppendedFunctionInterfaceType2 ;
17 AppendedFunctionInterfaceType2 appendedFunctionInterface2 =
18 initialFunctionInterface . Append (vtkm :: Float32 (3.141));
19 // appendedFunctionInterface2 has parameters (" Hello World ", 42, 3.141)

Replace is a similar method that returns a new FunctionInterface object with the same paraemters except
with a specified parameter replaced with a new parameter (the argument to Replace). There is also a matching
ReplaceType templated structure that can return the type of an augmented FunctionInterface with one of
the parameters replaced.

Example 18.12: Replacing parameters in a FunctionInterface.
1 using vtkm :: internal :: FunctionInterface ;
2 using vtkm :: internal :: make_FunctionInterface ;
3
4 typedef FunctionInterface < void (std :: string , vtkm :: Id)>
5 InitialFunctionInterfaceType ;
6 InitialFunctionInterfaceType initialFunctionInterface =
7 make_FunctionInterface <void >(std :: string (" Hello World "), vtkm :: Id (42));
8
9 typedef FunctionInterface < void (vtkm :: Float32 , vtkm :: Id)>

10 ReplacedFunctionInterfaceType1 ;

160 Chapter 18. Advanced Worklet Customization

DRAFT

18.2. Function Interface Objects

11 ReplacedFunctionInterfaceType1 replacedFunctionInterface1 =
12 initialFunctionInterface .Replace <1 >(vtkm :: Float32 (3.141));
13 // replacedFunctionInterface1 has parameters (3.141 , 42)
14
15 typedef InitialFunctionInterfaceType :: ReplaceType <2, std :: string >:: type
16 ReplacedFunctionInterfaceType2 ;
17 ReplacedFunctionInterfaceType2 replacedFunctionInterface2 =
18 initialFunctionInterface .Replace <2 >(std :: string (" foobar "));
19 // replacedFunctionInterface2 has parameters (" Hello World ", " foobar ")

It is sometimes desirable to make multiple modifications at a time. This can be achieved by chaining modifications
by calling Append or Replace on the result of a previous call.

Example 18.13: Chaining Replace and Append with a FunctionInterface.
1 template < typename FunctionInterfaceType >
2 void FunctionCallChain (const FunctionInterfaceType & parameters ,
3 vtkm :: Id arraySize)
4 {
5 // In this hypothetical function call chain , this function replaces the
6 // first parameter with an array of that type and appends the array size
7 // to the end of the parameters .
8
9 typedef typename FunctionInterfaceType :: template ParameterType <1 >:: type

10 ArrayValueType ;
11
12 // Allocate and initialize array .
13 ArrayValueType value = parameters . template GetParameter <1 >();
14 ArrayValueType * array = new ArrayValueType [arraySize];
15 for (vtkm :: Id index = 0; index < arraySize ; index ++)
16 {
17 array [index] = value ;
18 }
19
20 // Call next function with modified parameters .
21 NextFunctionChainCall (
22 parameters . template Replace <1 >(array). Append (arraySize));
23
24 // Clean up.
25 delete [] array ;
26 }

18.2.5 Transformations

Rather than replace a single item in a FunctionInterface, it is sometimes desirable to change them all in a
similar way. FunctionInterface supports two basic transform operations on its parameters: a static transform
and a dynamic transform. The static transform determines its types at compile-time whereas the dynamic
transform happens at run-time.

The static transform methods (named StaticTransformCont and StaticTransformExec) operate by accepting
a functor that defines a function with two arguments. The first argument is the FunctionInterface parameter
to transform. The second argument is an instance of the vtkm::internal::IndexTag templated class that
statically identifies the parameter index being transformed. An IndexTag object has no state, but the class
contains a static integer named INDEX. The function returns the transformed argument.

The functor must also contain a templated class named ReturnType with an internal type named type that
defines the return type of the transform for a given parameter type. ReturnType must have two template
parameters. The first template parameter is the type of the FunctionInterface parameter to transform. It is
the same type as passed to the operator. The second template parameter is a vtkm::IdComponent specifying

Chapter 18. Advanced Worklet Customization 161

DRAFT

18.2. Function Interface Objects

the index.

The transformation is only applied to the parameters of the function. The return argument is unaffected.

The return type can be determined with the StaticTransformType template in the FunctionInterface class.
StaticTransformType has a single parameter that is the transform functor and contains a type named type
that is the transformed FunctionInterface.

In the following example, a static transform is used to convert a FunctionInterface to a new object that has
the pointers to the parameters rather than the values themselves. The parameter index is always ignored as all
parameters are uniformly transformed.

Example 18.14: Using a static transform of function interface class.
1 struct ParametersToPointersFunctor {
2 template < typename T, vtkm :: IdComponent Index >
3 struct ReturnType {
4 typedef const T *type;
5 };
6
7 template < typename T, vtkm :: IdComponent Index >
8 VTKM_CONT_EXPORT
9 const T * operator ()(const T &x, vtkm :: internal :: IndexTag <Index >) const {

10 return &x;
11 }
12 };
13
14 template < typename FunctionInterfaceType >
15 VTKM_CONT_EXPORT
16 typename FunctionInterfaceType ::
17 template StaticTransformType < ParametersToPointersFunctor >:: type
18 ParametersToPointers (const FunctionInterfaceType & functionInterface)
19 {
20 return functionInterface . StaticTransformCont (ParametersToPointersFunctor ());
21 }

There are cases where one set of parameters must be transformed to another set, but the types of the new
set are not known until run-time. That is, the transformed type depends on the contents of the data. The
DynamicTransformCont method achieves this using a templated callback that gets called with the correct type
at run-time.

The dynamic transform works with two functors provided by the user code (as opposed to the one functor in
static transform). These functors are called the transform functor and the finish functor. The transform functor
accepts three arguments. The first argument is a parameter to transform. The second argument is a continue
function. Rather than return the transformed value, the transform functor calls the continue function, passing
the transformed value as an argument. The third argument is a vtkm::internal::IndexTag for the index of
the argument being transformed.

Unlike its static counterpart, the dynamic transform method does not return the transformed FunctionInter-
face. Instead, it passes the transformed FunctionInterface to the finish functor passed into DynamicTrans-
formCont.

In the following contrived but illustrative example, a dynamic transform is used to convert strings containing
numbers into number arguments. Strings that do not have numbers and all other arguments are passed through.
Note that because the types for strings are not determined till run-time, this transform cannot be determined
at compile time with meta-template programming. The index argument is ignored because all arguments are
transformed the same way.

Example 18.15: Using a dynamic transform of a function interface.
1 struct UnpackNumbersTransformFunctor {

162 Chapter 18. Advanced Worklet Customization

DRAFT

18.2. Function Interface Objects

2 template < typename InputType ,
3 typename ContinueFunctor ,
4 vtkm :: IdComponent Index >
5 VTKM_CONT_EXPORT
6 void operator ()(const InputType &input ,
7 const ContinueFunctor & continueFunction ,
8 vtkm :: internal :: IndexTag <Index >) const
9 {

10 continueFunction (input);
11 }
12
13 template < typename ContinueFunctor , vtkm :: IdComponent Index >
14 VTKM_CONT_EXPORT
15 void operator ()(const std :: string &input ,
16 const ContinueFunctor & continueFunction ,
17 vtkm :: internal :: IndexTag <Index >) const
18 {
19 if ((input [0] >= ’0’) && (input [0] <= ’9’))
20 {
21 std :: stringstream stream (input);
22 vtkm :: FloatDefault value ;
23 stream >> value ;
24 continueFunction (value);
25 }
26 else
27 {
28 continueFunction (input);
29 }
30 }
31 };
32
33 struct UnpackNumbersFinishFunctor {
34 template < typename FunctionInterfaceType >
35 VTKM_CONT_EXPORT
36 void operator ()(FunctionInterfaceType & functionInterface) const
37 {
38 // Do something
39 }
40 };
41
42 template < typename FunctionInterfaceType >
43 void DoUnpackNumbers (const FunctionInterfaceType & functionInterface)
44 {
45 functionInterface . DynamicTransformCont (UnpackNumbersTransformFunctor (),
46 UnpackNumbersFinishFunctor ());
47 }

One common use for the FunctionInterface dynamic transform is to convert parameters of virtual polymor-
phic type like vtkm::cont::DynamicArrayHandle and vtkm::cont::DynamicPointCoordinates. This use case
is handled with a functor named vtkm::cont::internal::DynamicTransform. When used as the dynamic
transform functor, it will convert all of these dynamic types to their static counterparts.

Example 18.16: Using DynamicTransform to cast dynamic arrays in a function interface.
1 template < typename Device >
2 struct ArrayCopyFunctor {
3 template < typename Signature >
4 VTKM_CONT_EXPORT
5 void operator ()(
6 vtkm :: internal :: FunctionInterface <Signature > functionInterface) const
7 {
8 functionInterface . InvokeCont (* this);
9 }

10

Chapter 18. Advanced Worklet Customization 163

DRAFT

18.2. Function Interface Objects

11 template < typename T, class CIn , class COut >
12 VTKM_CONT_EXPORT
13 void operator ()(const vtkm :: cont :: ArrayHandle <T, CIn > &input ,
14 vtkm :: cont :: ArrayHandle <T, COut > & output) const
15 {
16 vtkm :: cont :: DeviceAdapterAlgorithm <Device >:: Copy(input , output);
17 }
18
19 template < typename TIn , typename TOut , class CIn , class COut >
20 VTKM_CONT_EXPORT
21 void operator ()(const vtkm :: cont :: ArrayHandle <TIn , CIn > &,
22 vtkm :: cont :: ArrayHandle <TOut , COut > &) const
23 {
24 throw vtkm :: cont :: ErrorControlBadType (
25 " Arrays to copy must be the same type .");
26 }
27 };
28
29 template < typename Device >
30 void CopyDynamicArrays (vtkm :: cont :: DynamicArrayHandle input ,
31 vtkm :: cont :: DynamicArrayHandle output ,
32 Device)
33 {
34 vtkm :: internal :: FunctionInterface < void (vtkm :: cont :: DynamicArrayHandle ,
35 vtkm :: cont :: DynamicArrayHandle)>
36 functionInterface =
37 vtkm :: internal :: make_FunctionInterface <void >(input , output);
38
39 functionInterface . DynamicTransformCont (
40 vtkm :: cont :: internal :: DynamicTransform (), ArrayCopyFunctor <Device >());
41 }

18.2.6 For Each

The invoke methods (principally) make a single function call passing all of the parameters to this function. The
transform methods call a function on each parameter to convert it to some other data type. It is also sometimes
helpful to be able to call a unary function on each parameter that is not expected to return a value. Typically
the use case is for the function to have some sort of side effect. For example, the function might print out some
value (such as in the following example) or perform some check on the data and throw an exception on failure.

This feature is implemented in the for each methods of FunctionInterface. As with all the FunctionInterface
methods that take functors, there are separate implementations for the control environment and the execution
environment. There are also separate implementations taking const and non-const references to functors to
simplify making functors with side effects.

Example 18.17: Using the ForEach feature of FunctionInterface.
1 struct PrintArgumentFunctor {
2 template < typename T, vtkm :: IdComponent Index >
3 VTKM_CONT_EXPORT
4 void operator ()(const T &argument , vtkm :: internal :: IndexTag <Index >) const
5 {
6 std :: cout << Index << ":" << argument << " ";
7 }
8 };
9

10 template < typename FunctionInterfaceType >
11 VTKM_CONT_EXPORT
12 void PrintArguments (const FunctionInterfaceType & functionInterface)
13 {
14 std :: cout << "(";

164 Chapter 18. Advanced Worklet Customization

DRAFT

18.3. Invocation Objects

15 functionInterface . ForEachCont (PrintArgumentFunctor ());
16 std :: cout << ")" << std :: endl;
17 }

18.3 Invocation Objects

18.4 Creating New ControlSignature Tags

18.5 Creating New ExecutionSignature Tags

18.6 Creating New Worklet Types

18.6.1 New Worklet Superclasses

18.6.2 Dispatch Workflow

18.6.3 New Dispatch Classes

Chapter 18. Advanced Worklet Customization 165

DRAFT

DRAFTPart V

Appendix

DRAFT

DRAFT
APPENDIX

A

CODING CONVENTIONS

Several developers contribute to VTK-m and we welcome others who are interested to also contribute to the
project. To ensure readability and consistency in the code, we have adopted the following coding conventions.
Many of these conventions are adapted from the coding conventions of the VTK project. This is because many
of the developers are familiar with VTK coding and because we expect VTK-m to have continual interaction
with VTK.

• All code contributed to VTK-m must be compatible with VTK-m’s BSD license.

• Copyright notices should appear at the top of all source, configuration, and text files. The statement should
have the following form (with the year replaced with the year the file was created):

//==
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 Sandia Corporation.
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014. Los Alamos National Security
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//==

The CopyrightStatement test checks all files for a similar statement. The test will print out a suggested text
that can be copied and pasted to any file that has a missing copyright statement (with appropriate replacement of
comment prefix). Exceptions to this copyright statement (for example, third-party files with different but compatible
statements) can be added to LICENSE.txt.

• All include files should use include guards. starting right after the copyright statement. The naming convention
of the include guard macro is that it should start with vtk m be followed with the path name, starting from the
top-level source code directory under vtkm, with non alphanumeric characters, such as / and . replaced with
underscores. The #endif part of the guard at the bottom of the file should include the guard name in a comment.
For example, the vtkm/cont/ArrayHandle.h header contains the guard

DRAFT
#ifndef vtk_m_cont_ArrayHandle_h
#define vtk_m_cont_ArrayHandle_h

at the top and

#endif //vtk_m_cont_ArrayHandle_h

• VTK-m has several nested namespaces. The declaration of each namespace should be on its own line, and the code
inside the namespace bracket should not be indented. The closing brace at the bottom of the namespace should be
documented with a comment identifying the namespace. Namespaces can be grouped as desired. The following is
a valid use of namespaces.

namespace vtkm {
namespace cont {

namespace detail {

class InternalClass;

} // namespace detail

class ExposedClass;

}
} // namespace vtkm::cont

• Multiple inheritance is not allowed in VTK-m classes.

• Any functional public class should be in its own header file with the same name as the class. The file should be in
a directory that corresponds to the namespace the class is in. There are several exceptions to this rule.

– Templated classes and template specialization often require the implementation of the class to be broken into
pieces. Sometimes a specialization is placed in a header with a different name.

– Many VTK-m toolkit features are not encapsulated in classes. Functions may be collected by purpose or
co-located with associated class.

– Although tags are technically classes, they behave as an enumeration for the compiler. Multiple tags that
make up this enumeration are collected together.

– Some classes, such as vtkm::Vec are meant to behave as basic types. These are sometimes collected together
as if they were related typedefs. The vtkm/Types.h header is a good example of this.

• The indentation follows the Allman style. The curly brace (scope delimiter) for a block is placed on the line following
the prototype or control statement and is indented with the outer scope (i.e. the curly brace does not line up with
the code in the block). This differs from VTK style, but was agreed on by the developers as the more common
style. Indentations are two spaces.

• Conditional clauses (including loop conditionals such as for and while) must be in braces below the conditional.
That is, instead of

if (test) { clause; }

use

if (test)
{

clause;
}

170 Appendix A. Coding Conventions

DRAFT
The rational for this requirement is to make it obvious whether the clause is executed when stepping through the
code with the debugger. The one exception to this rule is when the clause contains a control-flow statement with
obvious side effects such as return or break. However, even if the clause contains a single statement and is on the
same line, the clause should be surrounded by braces.

• Use two space indentation.

• Tabs are not allowed. Only use spaces for indentation. No one can agree on what the size of a tab stop is, so it is
better to not use them at all.

• There should be no trailing whitespace in any line.

• Use only alphanumeric characters in names. Use capitalization to demarcate words within a name (camel case).
The exception is preprocessor macros and constant numbers that are, by convention, represented in all caps and a
single underscore to demarcate words.

• Namespace names are in all lowercase. They should be a single word that designates its meaning.

• All class, method, member variable, and functions should start with a capital letter. Local variables should start
in lower case and then use camel case. Exceptions can be made when such naming would conflict with previously
established conventions in other library. (For example, make ArrayHandle corresponds to make pair in the standard
template library.)

• All class, function, and member names that have multiple words in their descriptions should be listed from general
to specific. For example, if a class is a k-d tree that is used to locate points, the preferred name would be
LocatorPointKDTree. This naming convention makes it easier to find both known and unknown classes in alphabetic
lists.

• Always spell out words in names; do not use abbreviations except in cases where the shortened form is widely
understood and a name in its own right (e.g. OpenMP).

• Always use descriptive names in all identifiers, including local variable names. Particularly avoid meaningless names
of a few characters (e.g. x, foo, or tmp) or numbered names with no meaning to the number or order (e.g. value1,
value2,. . .). Also avoid the meaningless for loop variable names i, j, k, etc. Instead, use a name that identifies
what type of index is being referenced such as pointIndex, vertexIndex, componentIndex, etc.

• Classes are documented with Doxygen-style comments before classes, methods, and functions.

• Exposed classes should not have public instance variables outside of exceptional situations. Access is given by
convention through methods with names starting with Set and Get or through overloaded operators.

• References to classes and functions should be fully qualified with the namespace. This makes it easier to establish
classes and functions from different packages and to find source and documentation for the referenced class. As an
exception, if one class references an internal or detail class clearly associated with it, the reference can be shortened
to internal:: or detail::.

• use this-> inside of methods when accessing class methods and instance variables to distinguish between local
variables and instance variables.

• Include statements should generally be in alphabetical order. They can be grouped by package and type.

• Namespaces should not be brought into global scope or the scope of any VTK-m package namespace with the “using”
keyword. It should also be avoided in class, method, and function scopes (fully qualified namespace references are
preferred).

• All code must be valid by the C++03 and C++11 specifications. It must also compile on older compilers that
support C++98. Code that uses language features not available in C++98 must have a second implementation
that works around the limitations of C++98. The VTKM FORCE ANSI turns on a compiler check for ANSI
compatibility in gcc and clang compilers.

• Limit all lines to 80 characters whenever possible.

Appendix A. Coding Conventions 171

DRAFT
• New code must include regression tests that will run on the dashboards. Generally a new class will have an

associated “UnitTest” that will test the operation of the test directly. There may be other tests necessary that
exercise the operation with different components or on different architectures.

• All code must compile and run without error or warning messages on the nightly dashboards, which should include
Windows, Mac, and Linux.

• Use vtkm::Id in lieu of int or long for data structure indices and vtkm::IdComponent for component indices of
vtkm::Vec and related classes (like vtkm::VecVariable and vtkm::Matrix).

• Whenever possible, use templates to resolve data types like float, double, or vectors to make code as flexible as
possible. If a specific data type is required, prefer the VTK-m–provided types like vtkm::Float32 and vtkm::-
Float64 over the standard C types like float or double. vtkm::FloatDefault can be used in cases where there
is no reasonable way to specify data precision (for example, when generating coordinates for uniform grids), but
should be use sparingly.

• All functions and methods defined within the Dax toolkit should be declared with VTKM CONT EXPORT, VTKM -
EXEC EXPORT, or VTKM EXEC CONT EXPORT.

We should note that although these conventions impose a strict statute on VTK-m coding, these rules (other
than those involving licensing and copyright) are not meant to be dogmatic. Examples can be found in the
existing code that break these conventions, particularly when the conventions stand in the way of readability
(which is the point in having them in the first place). For example, it is often the case that it is more readable
for a complicated typedef to stretch a few characters past 80 even if it pushes past the end of a display.

172 Appendix A. Coding Conventions

DRAFT
INDEX

π, 139, 140
1, 113, 115, 119, 121, 126
2, 113, 115, 119, 121, 126

device , 24
host , 24

Abs, 137
absolute value, 137
ACos, 137
ACosH, 137
algorithm, 46–48, 51–55
Allocate, 39, 46
AllTypes, 112
arccosine, 137
arcsine, 137
arctangent, 137
arg namespace, 153–155
arity, 157
ArrayHandle, xiii, xiv, 10, 23, 35, 36, 39, 45, 59, 60, 78, 79,

82, 129, 154
ArrayHandle.h, 23, 169
ArrayHandleCartesianProduct, 65
ArrayHandleCast, 62
ArrayHandleCast.h, 62
ArrayHandleCompositeVector, 66, 79
ArrayHandleCompositeVector.h, 67
ArrayHandleCompositeVectorType, 66
ArrayHandleConstant, 61
ArrayHandleConstant.h, 61
ArrayHandleCounting, 61, 69
ArrayHandleCounting.h, 62
ArrayHandleGroupVec, 68
ArrayHandleGroupVec.h, 68
ArrayHandleImplicit, 69
ArrayHandleImplicit.h, 69
ArrayHandleIndex, 61
ArrayHandlePermutation, 63
ArrayHandlePermutation.h, 63
ArrayHandleTransform, 70, 71
ArrayHandleUniformPointCoordinates, 65
ArrayHandleZip, 64
ArrayHandleZip.h, 64

ArrayManagerExecution, xiv, 49
ArrayManagerExecutionShareWithControl, 50
ArrayPortalFromIterators, 37
ArrayPortalToIteratorBegin, 38
ArrayPortalToIteratorEnd, 38
ArrayPortalToIterators, 38
ArrayPortalToIterators.h, 38
ArrayTransfer, xv, 75, 76
array handle, 35–42, 59–84

adapting, 79–84
allocate, 39
Cartesian product, 65–66
cast, 62–63
composite vector arrays, 66–68
constant, 61
counting, 61–62
derived, 72–79
dynamic, 85–90
execution environment, 40–42
fancy, 60–79
group vector, 68
implicit, 68–70
index, 61
permutation, 63–64
populate, 40
portal, 37–39
rectilinear point coordinates, 65–66
storage, 59–84

default, 60, 83
subclassing, 69, 78, 82
transform, 70–72
uniform point coordinates, 65
zip, 64–65

array manager execution, 49–51
array portal, 37–39
array transfer, 75–78
ASin, 137
ASinH, 137
aspect, 155–156

default, 155
work index, 156

AspectTagDefault, 155

DRAFT

Index

AspectTagWorkIndex, 156
assert, 25, 134
Assert.h, 25
ATan, 137
ATan2, 137
ATanH, 137
average, 10–11

Cartesian product array handle, 65–66
cast array handle, 62–63
Cbrt, 138
Ceil, 138
ceiling, 138
cell

derivative, 149–150
gradient, 149–150
interpolation, 149
parametric coordinates, 148–149
world coordinates, 148–149

CELL SHAPE EMPTY, 145
CELL SHAPE HEXAHEDRON, 146
CELL SHAPE LINE, 146
CELL SHAPE POLYGON, 146
CELL SHAPE PYRAMID, 146
CELL SHAPE QUAD, 146
CELL SHAPE TETRA, 146
CELL SHAPE TRIANGLE, 146
CELL SHAPE VERTEX, 146
CELL SHAPE WEDGE, 146
CellAverage, 10
CellCount, 121
CellDerivative, 149
CellDerivative.h, 149
CellIndices, 122
CellInterpolate, 149
CellInterpolate.h, 149
CellSet, 97, 99, 129
CellSetExplicit, 98
CellSetIn, 113, 117, 120, 124
CellSetListTag.h, 100
CellSetPermutation, 99
CellSetSingleType, 98
CellSetStructured, 97
CellShape, 119, 126
CellShape.h, 145
CellShapeIdToTag, 145
CellShapeTagEmpty, 145
CellShapeTagGeneric, 145
CellShapeTagHexahedron, 146
CellShapeTagLine, 146
CellShapeTagPolygon, 146
CellShapeTagPyramid, 146
CellShapeTagQuad, 146
CellShapeTagTetra, 146
CellShapeTagTriangle, 146
CellShapeTagVertex, 146

CellShapeTagWedge, 146
CellTopologicalDimensionsTag, 147
CellTraits, 147
CellTraits.h, 147
CellTraitsTagSizeFixed, 147
CellTraitsTagSizeVariable, 147
cell average, 10–11
cell set, 91, 96–100

dynamic, 99–100
explicit, 98–99
permutation, 99
shape, 97
single type, 98–99
structured, 97–98

cell shape, 97, 145–148
cell to point map worklet, 120–124
cell traits, 147–148
CMake configuration

VTKM FORCE ANSI, 171
VTKM USE 64BIT IDS, 26
VTKM USE DOUBLE PRECISION, 26

column, 141
CommonTypes, 112
ComponentType, 29
composite vector arrays array handle, 66–68
ConfigureFor32.h, 26
ConfigureFor64.h, 26
constant array handle, 61
constant export, 24
cont namespace, 22, 23
contour, 14–15
control signature, ix, xvi, 110–115, 117, 119–121, 124, 126,

129, 153, 156, 165
control environment, 22
control signature, 111–112

execution object, 129–130
type list tags, 112
whole array, 126–129

CoordinateSystem, 101
coordinate system, 91, 101
copy, 46
CopySign, 138
Cos, 138
CosH, 138
cosine, 138
counting array handle, 61–62
Cross, 140
cross product, 140
cube root, 138
CUDA, 24, 43, 45
cuda namespace, 23

DataSet, 7–9, 11, 13, 91, 92, 99, 100
DataSetBuilderExplicit, 93
DataSetBuilderExplicitIterative, 94
DataSetBuilderRectilinear, 92

174 Index

DRAFT

Index

DataSetBuilderUniform, 92
DataSetFieldAdd, 95
data set, 91–101

Building, 91–96
cell set, see cell set
coordinate system, see coordinate system
field, see field

data set filter, 11–13
data set with filter, 13–15
derivative, 149–150
derived storage, 72–79
detail namespace, 23
determinant, 141
DeviceAdapter.h, 43
DeviceAdapterAlgorithm, xiv, 41, 46, 51
DeviceAdapterAlgorithmGeneral, 51
DeviceAdapterCuda.h, 45
DeviceAdapterOpenMP.h, 45
DeviceAdapterSerial.h, 45
DeviceAdapterTag.h, 49
DeviceAdapterTagCuda, 45
DeviceAdapterTagOpenMP, 45
DeviceAdapterTagSerial, 45
DeviceAdapterTagTBB, 45
DeviceAdapterTBB.h, 45
DeviceAdapterTimerImplementation, 55
device adapter, 43–56

algorithm, 46–48, 51–55
array manager, 49–51
tag, 49
timer, 55–56

device adapter tag, 43–46
provided, 45

DimensionalityTag, 28
dispatcher, 110
DispatcherMapField, 110, 114
DispatcherMapTopology, 110, 117, 120
dot, 27
DynamicArrayHandle, 33, 85, 163
DynamicArrayHandleBase, 89
DynamicCellSet, 99, 100
DynamicPointCoordinates, 163
DynamicTransform, 163
dynamic array handle, 85–90

cast, 87–90
construct, 85
new instance, 86
query, 85, 86

dynamic cell set, 99–100

edge, 97
elevation, 11
environment, 21, 22

control, 22
execution, 21, 22

Epsilon, 138

Error, 24
ErrorControlBadAllocation, 25
ErrorControlBadType, 25
ErrorControlBadValue, 25, 76, 87
ErrorControlInternal, 25, 76
ErrorExecution, 25, 47, 51, 134
ErrorIO, 25
ErrorMessageBuffer, 51
errors, 24–25, 133–134

assert, 25, 134
control environment, 24–25
execution environment, 25, 47, 133–134
worklet, 133–134

exec namespace, 22, 23
ExecObject, xvi, 115, 116, 118, 121, 125, 129
execution

control, 22
execution signature, ix, xvi, 110, 113–115, 119, 121, 125,

131, 153, 165
ExecutionObjectBase, 115, 118, 121, 125, 129, 154
ExecutionTypes, 39
execution array manager, 49–51
execution environment, 21, 22
execution object, 129–130
execution signature, 113
Exp, 138
Exp10, 138
Exp2, 138
ExplicitCellSet, 98
explicit cell set, 98–99

single type, 98–99
explicit mesh, 93
ExpM1, 138
exponential, 138
export

constant, 24
control, 23, 24, 114, 129, 172
execution, 23, 24, 114, 129, 172

ExternalFaces, 12
external faces, 12–13

face, 97
external, 12–13

fancy array handle, 60–79
Fetch, 155
fetch, 155–156

aspect, see aspect
direct input array, 156
direct output array, 156
execution object, 156

FetchTagArrayDirectIn, 156
FetchTagArrayDirectOut, 156
FetchTagExecObject, 156
Field, 9, 10, 12–14, 100
field, 9, 91, 100
FieldCommon, 112

Index 175

DRAFT

Index

FieldIn, 113, 114
FieldInCell, 118, 120
FieldInFrom, 124
FieldInOut, 114, 115, 118, 121, 125
FieldInOutCell, 118
FieldInOutPoint, 121
FieldInPoint, 117, 120
FieldInTo, 125
FieldOut, 114, 118, 121, 125
FieldOutCell, 118
FieldOutPoint, 121
FieldPointIn, 111, 149
field filter, 9–11
field map worklet, 109, 114–117
file I/O, 7–8

read, 7–8
write, 8

filter, 9–15, 21
contour, 14–15
data set, 11–13
data set with field, 13–15
field, 9–11
isosurface, 14–15
Marching Cubes, 14–15
threshold, 15

filter namespace, 23
Float32, xiii, 26, 28, 32, 112, 139, 172
Float64, 26, 32, 112, 139, 172
FloatDefault, 26, 148, 172
Floor, 138
floor, 138
FMod, 138
FromCount, 126
FromIndices, 126
function export, 23, 24, 114, 129, 172
functional array, 68–70
FunctionInterface, xvi, 156
FunctionInterfaceReturnContainer, 159
function interface, 156–165

append parameter, 160
dynamic transform, 162–164
for each, 164–165
invoke, 158–159
replace parameter, 160–161
static transform, 161–162

function signature, 156
functor, 21, 69
FunctorBase, 47, 134

GetComponent, 29
GetPortalConstControl, 39
GetPortalControl, 39, 40
gradient, 149–150
group vector array handle, 68

h, 66

HasMultipleComponents, 29
hexahedron, 146
hyperbolic arccossine, 137
hyperbolic arcsine, 137
hyperbolic cosine, 138
hyperbolic sine, 140
hyperbolic tangent, 137, 140

I/O, 7–8
Id, 26, 29, 32, 47, 48, 61, 69, 76, 112, 115, 119, 122, 126,

172
Id2, 26, 32, 112
Id2Type, 112
Id3, xiii, 13, 26, 29, 32, 47, 65, 112
Id3Type, 112
IdComponent, 26, 115, 119, 121, 122, 126, 131, 145, 147,

155, 161, 172
identity matrix, 141
IdType, 112
image, 91
implicit array handle, 68–70
implicit storage, 68–70
Index, 112
IndexTag, 157, 161, 162
index array handle, 61
Infinity, 138
input domain, 113
input domain, xvi, 110, 113–115, 117, 120, 124
Int16, 26
Int32, 26
Int64, 26
Int8, 26
Intel Threading Building Blocks, 44, 45
internal namespace, 23, 156
interoperability, 23
interpolation, 149
inverse cosine, 137
inverse hyperbolic cosine, 137
inverse hyperbolic sine, 137
inverse hyperbolic tangent, 137
inverse matrix, 142
inverse sine, 137
inverse tangent, 137
invoke, 110
io namespace, 7, 23, 91
IsFinite, 138
IsInf, 138
IsNan, 138
IsNegative, 138
isosurface, 14–15

kernel, 21

Lerp, 140
less, 30
level of detail, 13

176 Index

DRAFT

Index

line, 146
linear interpolation, 140
linear system, 142
ListForEach, 33
lists, 31–34

storage, 88
types, 32–33

ListTag.h, 31, 33
ListTagBase, 31
ListTagEmpty, 31
ListTagJoin, 31
LOD, 13
Log, 139
Log10, 139
Log1P, 139
Log2, 139
logarithm, 139
lower bounds, 46

Magnitude, 140
MagnitudeSquared, 140
make ArrayHandle, 36
make ArrayHandleCartesianProduct, 66
make ArrayHandleCast, 62
make ArrayHandleCompositeVector, 67
make ArrayHandleConstant, 61
make ArrayHandleCounting, 62
make ArrayHandleGroupVec, 68
make ArrayHandleImplicit, 69
make ArrayHandlePermutation, 63
make ArrayHandleTransform, 71
make ArrayHandleZip, 64
make FunctionInterface, xvi, 157
make Pair, 27
make Vec, 26
map, 109
map cell to point, 120–124
map field, 114–117
map point to cell, 117–120
map topology, 124–126
MarchingCubes, 14
Marching Cubes, 14–15
math, 137–143
Math.h, 137
Matrix, 141, 142, 172
matrix, 141–142
Matrix.h, 141
MatrixDeterminant, 141
MatrixGetColumn, 141
MatrixGetRow, 141
MatrixIdentity, 141
MatrixInverse, 142
MatrixMultiply, 142
MatrixRow, 141
MatrixSetColumn, 142
MatrixSetRow, 142

MatrixTranspose, 142
Max, 139
maximum, 139
metaprogramming, 31
method export, 23, 24, 114, 129, 172
Min, 139
minimum, 139
ModF, 139

namespace, 22
detail, 23
internal, 23
vtkm, 22, 23, 137, 145, 156
vtkm::cont, 22, 23
vtkm::cont::arg, 153, 154
vtkm::cont::cuda, 23
vtkm::cont::tbb, 23
vtkm::exec, 22, 23
vtkm::exec::arg, 155
vtkm::filter, 23
vtkm::internal, 156
vtkm::io, 7, 23, 91
vtkm::io::reader, 7
vtkm::io::writer, 8
vtkm::opengl, 23
vtkm::rendering, 23
vtkm::worklet, 23

Nan, 139
natural logarithm, 139
NDEBUG, 25
negative, 138
NegativeInfinity, 139
Newton’s method, 142–143
NewtonsMethod, 142
NewtonsMethod.h, 142
Normal, 141
Normalize, 141
not a number, 139
NUM COMPONENTS, 26, 29
NumericTag, 28

OpenGL, 23
opengl namespace, 23
OpenMP, 44, 45

packages,
See Also:
namespace22, 22–23
Pair, 27, 64, 66
ParametricCoordinates.h, 148
ParametricCoordinatesCenter, 148
ParametricCoordinatesPoint, 148
ParametricCoordinatesToWorldCoordinates, 149
parametric coordinates, 148–149
permutation cell set, 99
permuted array handle, 63–64

Index 177

DRAFT

Index

pervasive parallelism, 21
Pi, 139
Pi 2, 139
Pi 3, 139
Pi 4, 139
point, 97
PointCount, 119
PointElevation, 11
PointIndices, 119
point elevation, 11
point to cell map worklet, 117–120
point to cell worklet, 109
polygon, 146
PortalConstControl, 39
PortalControl, 39
Pow, 139
power, 139
PrepareForInPlace, 40
PrepareForInput, 40
PrepareForOutput, 40, 45
pyramid, 146

quadrilateral, 146

RaiseError, 47
RCbrt, 139
reader namespace, 7
read file, 7–8
reciprocal cube root, 139
reciprocal square root, 140
rectilinear grid, 92
rectilinear point coordinates array handle, 65–66
reduce, 47
reduce by key, 47
regular grid, 91
Remainder, 139
remainder, 138, 139
RemainderQuotient, 140
rendering namespace, 23
ResultDataSet, 11, 13
ResultField, 9
RMagnitude, 141
Round, 140
round down, see floor
round up, see ceiling
row, 141
RSqrt, 140

Scalar, 112
ScalarAll, 112
scan

exclusive, 47
inclusive, 47

scatter, 130–133
scatter type, 131
ScatterCounting, 131, 132

ScatterIdentity, 131
ScatterUniform, 131
schedule, 47
serial, 44, 45
SetComponent, 29
shape, 97, 145–148

edge, 97
face, 97
point, 97

signature, 156
control, ix, xvi, 110–115, 117, 119–121, 124, 126, 129,

153, 156, 165
execution, ix, xvi, 110, 113–115, 119, 121, 125, 131,

153, 165
signature tags, 111

1, 113, 115, 119, 121, 126
2, 113, 115, 119, 121, 126

AllTypes, 112
CellCount, 121
CellIndices, 122
CellSetIn, 113, 117, 120, 124
CellShape, 119, 126
CommonTypes, 112
ExecObject, xvi, 115, 116, 118, 121, 125, 129
FieldCommon, 112
FieldIn, 113, 114
FieldInCell, 118, 120
FieldInFrom, 124
FieldInOut, 114, 115, 118, 121, 125
FieldInOutCell, 118
FieldInOutPoint, 121
FieldInPoint, 117, 120
FieldInTo, 125
FieldOut, 114, 118, 121, 125
FieldOutCell, 118
FieldOutPoint, 121
FieldPointIn, 111, 149
FromCount, 126
FromIndices, 126
Id2Type, 112
Id3Type, 112
IdType, 112
Index, 112
PointCount, 119
PointIndices, 119
Scalar, 112
ScalarAll, 112
Vec2, 112
Vec3, 112
Vec4, 112
VecAll, 112
VecCommon, 112
VisitIndex, 115, 119, 122, 126, 131
WholeArrayIn, xvi, 115, 118, 121, 125, 126
WholeArrayInOut, 115, 118, 121, 125

178 Index

DRAFT

Index

WholeArrayOut, 115, 116, 118, 121, 125
WorkIndex, 113, 115, 116, 119, 122, 126, 156

SignBit, 140
Sin, 140
sine, 140
single type cell set, 98–99
SinH, 140
SolveLinearSystem, 142
sort, 47

by key, 47
Sqrt, 140
square root, 140
Storage, xv, 49, 73, 76, 81
storage, 59–84

adapting, 79–84
default, 60, 83
derived, 72–79
implicit, 68–70

storage lists, 88
StorageBasic.h, 60
StorageListTag.h, 88
StorageListTagBasic, 88
StorageTagBasic, 60
stream compact, 47
structured cell set, 97–98
surface simplification, 13
synchronize, 48

tag, 27
cell shape, 145–146
device adapter, 43–46

provided, 45
dimensionality, 28
lists, 31–34
multiple components, 29
numeric, 28
shape, 145–146
single component, 29
storage lists, 88
topology element, 124
type lists, 32–33
type traits, 28–29
vector traits, 29–30

Tan, 140
tangent, 140
TanH, 140
TBB, 44, 45
tbb namespace, 23
template metaprogramming, 31
tetrahedron, 146
Threshold, 15
threshold, 15
Timer, xiv, 55, 57
timer, 55–58
TopologyElementTag.h, 124
TopologyElementTagCell, 124

TopologyElementTagEdge, 124
TopologyElementTagFace, 124
TopologyElementTagPoint, 124
topology element tag, 124
topology map worklet, 109, 124–126
ToVec, 29
traits, 27–31
transformed array, 70–72
Transport, xvi, 154, 155
transport, 154–155

execution object, 155
input array, 154
output array, 154

TransportTagArrayIn, 154
TransportTagArrayOut, 154
TransportTagExecObject, 155
transpose matrix, 142
triangle, 146
TriangleNormal, 141
TwoPi, 140
type lists, 32–33
TypeCheck, xvi, 153, 154
TypeCheckTagArray, 154
TypeCheckTagExecObject, 154
TypeListTag.h, 32, 33, 88
TypeListTagAll, 33
TypeListTagCommon, 33, 112
TypeListTagField, 32, 112
TypeListTagFieldScalar, 32, 112
TypeListTagFieldVec2, 32, 112
TypeListTagFieldVec3, 32, 112
TypeListTagFieldVec4, 32, 112
TypeListTagId, 32, 112
TypeListTagId2, 32, 112
TypeListTagId3, 32, 112
TypeListTagIndex, 32, 112
TypeListTagScalarAll, 32, 112
TypeListTagVecAll, 33, 112
TypeListTagVecCommon, 32, 112
Types.h, 23, 25, 33, 170
TypeTraits, xiii, 28
TypeTraitsIntegerTag, 28
TypeTraitsRealTag, 28
TypeTraitsScalarTag, 28
TypeTraitsVectorTag, 28
type check, 153–154

array, 153
execution object, 154

type list tags, 112

UInt16, 26
UInt32, 26
UInt64, 26
UInt8, 26
uniform grid, 91
uniform point coordinates array handle, 65

Index 179

DRAFT

Index

unique, 48
unstructured grid, 93
upper bounds, 48

Vec, xiii, xiv, 26, 27, 29, 32, 33, 62, 66, 68, 85, 112, 140–142,
148, 149, 170, 172

Vec2, 112
Vec3, 112
Vec4, 112
VecAll, 112
VecCommon, 112
VectorAnalysis.h, 140
vector analysis, 140–141
VecTraits, xiii, 29
VecTraitsTagMultipleComponents, 29
VecTraitsTagSingleComponent, 29
VecVariable, 172
vertex, 146
VertexClustering, 13
vertex clustering, 13
VisitIndex, 115, 119, 122, 126, 131
visit index, 131
VTKDataSetReader, 7
VTKDataSetWriter, 8
vtkm namespace, 22, 23, 137, 145, 156
vtkm/cont/ArrayHandleCartesianProduct.h/h, 66
vtkm/cont/ArrayHandleCompositeVector.h/h, 66
vtkm/cont/cuda/DeviceAdapterCuda.h, 45
vtkm/cont/internal/DeviceAdapterTag.h, 49
vtkm/cont/tbb/DeviceAdapterTBB.h, 45
vtkm/cont/ArrayHandle.h, 23, 169
vtkm/cont/ArrayHandleCast.h, 62
vtkm/cont/ArrayHandleCompositeVector.h, 67
vtkm/cont/ArrayHandleConstant.h, 61
vtkm/cont/ArrayHandleCounting.h, 62
vtkm/cont/ArrayHandleGroupVec.h, 68
vtkm/cont/ArrayHandleImplicit.h, 69
vtkm/cont/ArrayHandlePermutation.h, 63
vtkm/cont/ArrayHandleZip.h, 64
vtkm/cont/ArrayPortalToIterators.h, 38
vtkm/cont/CellSetListTag.h, 100
vtkm/cont/DeviceAdapter.h, 43
vtkm/cont/DeviceAdapterSerial.h, 45
vtkm/cont/StorageBasic.h, 60
vtkm/cont/StorageListTag.h, 88
vtkm/exec/CellDerivative.h, 149
vtkm/exec/CellInterpolate.h, 149
vtkm/exec/ParametricCoordinates.h, 148
vtkm/internal/ConfigureFor32.h, 26
vtkm/internal/ConfigureFor64.h, 26
vtkm/openmp/cont/DeviceAdapterOpenMP.h, 45
vtkm/worklet/WorkletMapTopology.h, 117
vtkm::cont, 22, 23
vtkm::cont::arg, 153, 154
vtkm::cont::cuda, 23
vtkm::cont::tbb, 23

vtkm::exec, 22, 23
vtkm::exec::arg, 155
vtkm::filter, 23
vtkm::internal, 156
vtkm::io, 7, 23, 91
vtkm::io::reader, 7
vtkm::io::writer, 8
vtkm::opengl, 23
vtkm::rendering, 23
vtkm::worklet, 23
VTKM ARRAY HANDLE SUBCLASS, 70, 72, 79, 83
VTKM ARRAY HANDLE SUBCLASS NT, 70, 72, 79,

83
VTKM ASSERT, xiii, 25, 134
VTKM CONT EXPORT, 23, 24, 172
VTKM DEFAULT CELL SET LIST TAG, 100
VTKM DEFAULT DEVICE ADAPTER TAG, 45
VTKM DEFAULT STORAGE LIST TAG, 88
VTKM DEFAULT STORAGE TAG, 60, 84
VTKM DEFAULT TYPE LIST TAG, 33, 88
VTKM DEVICE ADAPTER, 44, 45
VTKM DEVICE ADAPTER CUDA, 44
VTKM DEVICE ADAPTER ERROR, 44, 45
VTKM DEVICE ADAPTER OPENMP, 44
VTKM DEVICE ADAPTER SERIAL, 44
VTKM DEVICE ADAPTER TBB, 44
VTKM EXEC CONSTANT EXPORT, 24
VTKM EXEC CONT EXPORT, 23, 24, 114, 129, 172
VTKM EXEC EXPORT, 23, 24, 114, 129, 172
VTKM FORCE ANSI, 171
VTKM IS CELL SHAPE TAG, 145
VTKM IS DEVICE ADAPTER TAG, 46
VTKM MAX BASE LIST, 31
VTKM NO 64BIT IDS, 26
VTKM NO DOUBLE PRECISION, 26
VTKM STORAGE, 60, 84
VTKM STORAGE BASIC, 60
VTKM STORAGE UNDEFINED, 84
VTKM SUPPRESS EXEC WARNINGS, 24
VTKM USE 64BIT IDS, 26
VTKM USE DOUBLE PRECISION, 26
VTKM VALID DEVICE ADAPTER, 49
vtkm/Assert.h, 25
vtkm/CellShape.h, 145
vtkm/CellTraits.h, 147
vtkm/ListTag.h, 31, 33
vtkm/Math.h, 137
vtkm/Matrix.h, 141
vtkm/NewtonsMethod.h, 142
vtkm/TopologyElementTag.h, 124
vtkm/TypeListTag.h, 32, 33, 88
vtkm/Types.h, 23, 25, 33, 170
vtkm/VectorAnalysis.h, 140
vtkmGenericCellShapeMacro, 146

wedge, 146

180 Index

DRAFT

Index

WholeArrayIn, xvi, 115, 118, 121, 125, 126
WholeArrayInOut, 115, 118, 121, 125
WholeArrayOut, 115, 116, 118, 121, 125
whole array, 126–129
WorkIndex, 113, 115, 116, 119, 122, 126, 156
worklet, 21, 109–134

control signature, 111–112
creating, 110–134
error handling, 133–134
execution object, 129–130
execution signature, 113
input domain, 113
scatter, 130–133
whole array, 126–129

worklet namespace, 23
WorkletMapCellToPoint, 120
WorkletMapField, 109, 110, 114, 130
WorkletMapPointToCell, 109, 110, 117, 124, 130
WorkletMapTopology, 109, 110, 124
WorkletMapTopology.h, 117
worklet types, 109, 114–126

cell to point map, 120–124
field map, 109, 114–117
point to cell, 109
point to cell map, 117–120
topology map, 109, 124–126

WorldCoordinatesToParametricCoordinates, 149
world coordinates, 148–149
writer namespace, 8
write file, 8

zipped array handles, 64–65

Index 181

	I Getting Started
	Introduction
	How to Use This Guide
	Conventions Used in This Guide

	File I/O
	Readers
	Legacy VTK File Reader

	Writers
	Legacy VTK File Writer

	Provided Filters
	Field Filters
	Cell Average
	Point Elevation

	Data Set Filters
	External Faces
	Vertex Clustering

	Data Set and Field Filters
	Marching Cubes
	Threshold

	Rendering

	II Using VTK-m
	Basic Provisions
	General Approach
	Package Structure
	Function and Method Exports
	Error Handling
	Core Data Types
	Single Number Types
	Vector Types
	Pair

	Traits
	Type Traits
	Vector Traits

	List Tags
	Building List Tags
	Type Lists
	Operating on Lists

	Array Handles
	Creating Array Handles
	Array Portals
	Allocating and Populating Array Handles
	Interface to Execution Environment

	Device Adapters
	Device Adapter Tag
	Default Device Adapter
	Specifying Device Adapter Tags

	Device Adapter Algorithms
	Implementing Device Adapters
	Tag
	Array Manager Execution
	Algorithms
	Timer Implementation

	Timers
	Fancy Array Storage
	Basic Storage
	Provided Fancy Arrays
	Constant Arrays
	Counting Arrays
	Cast Arrays
	Permuted Arrays
	Zipped Arrays
	Coordinate System Arrays
	Composite Vector Arrays
	Grouped Vector Arrays

	Implementing Fancy Arrays
	Implicit Array Handles
	Transformed Arrays
	Derived Storage

	Adapting Data Structures

	Dynamic Array Handles
	Querying and Casting
	Casting to Unknown Types
	Specifying Cast Lists

	Data Sets
	Building Data Sets
	Creating Uniform Grids
	Creating Rectilinear Grids
	Creating Explicit Meshes
	Add Fields

	Cell Sets
	Structured Cell Sets
	Explicit Cell Sets
	Cell Set Permutations
	Dynamic Cell Sets
	Blocks and Assemblies
	Zero Cell Sets

	Fields
	Coordinate Systems

	Filter Policies
	OpenGL Interoperability

	III Developing with VTK-m
	Worklets
	Worklet Types
	Dispatchers
	Provided Worklets
	Creating Worklets
	Control Signature
	Type List Tags

	Execution Signature
	Input Domain
	Worklet Operator

	Worklet Type Reference
	Field Map
	Topology Map
	Point to Cell Map
	Cell To Point Map
	General Topology Maps

	Whole Arrays
	Execution Objects
	Scatter
	Error Handling

	Creating Filters
	Math
	Basic Math
	Vector Analysis
	Matrices
	Newton's Method

	Working with Cells
	Cell Shape Tags and Ids
	Converting Between Tags and Identifiers
	Cell Traits

	Parametric and World Coordinates
	Interpolation
	Derivatives

	IV Advanced Development
	Advanced Worklet Customization
	Transferring Arguments from Control to Execution
	Type Checks
	Transport
	Fetch

	Function Interface Objects
	Declaring and Creating
	Parameters
	Invoking
	Modifying Parameters
	Transformations
	For Each

	Invocation Objects
	Creating New vtkmsignatureControlSignature Tags
	Creating New vtkmsignatureExecutionSignature Tags
	Creating New Worklet Types
	New Worklet Superclasses
	Dispatch Workflow
	New Dispatch Classes

	V Appendix
	Coding Conventions
	Index

