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CHAPTER
ONE

INTRODUCTION

High-performance computing relies on ever finer threading. Advances in processor technology include ever greater
numbers of cores, hyperthreading, accelerators with integrated blocks of cores, and special vectorized instructions,
all of which require more software parallelism to achieve peak performance. Traditional visualization solutions
cannot support this extreme level of concurrency. Extreme scale systems require a new programming model and
a fundamental change in how we design algorithms. To address these issues we created VI K-m: the visualization
toolkit for multi-/many-core architectures.

VTK-m supports a number of algorithms and the ability to design further algorithms through a top-down design
with an emphasis on extreme parallelism. VTK-m also provides support for finding and building links across
topologies, making it possible to perform operations that determine manifold surfaces, interpolate generated
values, and find adjacencies. Although VTK-m provides a simplified high-level interface for programming, its
template-based code removes the overhead of abstraction.

VTK-m simplifies the development of parallel scientific visualization algorithms by providing a framework of
supporting functionality that allows developers to focus on visualization operations. Consider the listings in
Figure 1.1 that compares the size of the implementation for the Marching Cubes algorithm in VTK-m with
the equivalent reference implementation in the CUDA software development kit. Because VTK-m internally
manages the parallel distribution of work and data, the VT K-m implementation is shorter and easier to maintain.
Additionally, VTK-m provides data abstractions not provided by other libraries that make code written in VTK-
m more versatile.

VTK-m is written in C++ and makes extensive use of templates. The toolkit is implemented as a header
library, meaning that all the code is implemented in header files (with extension .h) and completely included
in any code that uses it. This allows the compiler to inline and specialize code for better performance.

1.1 How to Use This Guide

This user’s guide is organized into three parts to help guide novice to advanced users and to provide a convenient
reference. Part I, Getting Started, provides everything needed to get up and running with VITK-m. In this part
we learn the basics of reading and writing data files, using filters to process data, and perform basic rendering
to view the results.

Part II, Using VTK-m, dives deeper into the VT K-m library and provides all the information needed to customize
VTK-m’s data structures and support multiple devices.



1.2. Conventions Used in This Guide

CUDA SDK VTK-m
431 LOC 265 LOC

Figure 1.1: Comparison of the Marching Cubes algorithm in VTK-m and the reference implementation in the
CUDA SDK. Implementations in VTK-m are simpler, shorter, more general, and easier to maintain. (Lines of
code (LOC) measurements come from cloc.)

Part III, Developing with VTK-m, documents how to use VITK-m’s framework to develop new or custom visual-
ization algorithms. This part describes how worklets are used to implement and execute algorithms and how to
use worklets to implement new filters. Part III also describes the facilities available in the execution environment
that help write visualization algorithms.

Part IV, Advanced Development, exposes the inner workings of VTK-m and allows you to design new algorithmic
structures not already available. [THIS MIGHT BE REMOVED IN THE FIRST VERSION OF THE BOOK.]

1.2 Conventions Used in This Guide

When documenting the VTK-m API, the following conventions are used.

e Filenames are printed in a sans serif font.

e C++ code is printed in a monospace font.
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e Macros and namespaces from VTK-m are printed in red.
e Identifiers from VTK-m are printed in blue.

e Signatures, described in Chapter 14, and the tags used in them are printed in green.

This guide provides actual code samples throughout its discussions to demonstrate their use. These examples
are all valid code that can be compiled and used although it is often the case that code snippets are provided.
In such cases, the code must be placed in a larger context.

In this guide we periodically use these Did you know? bozes to provide additional information related to
the topic at hand.

¢

§ Common Errors blocks are used to highlight some of the common problems or complications you might
encounter when dealing with the topic of discussion.

Chapter 1. Introduction 5






CHAPTER
TWO

BUILD AND INSTALL VTK-M

Before we begin describing how to develop with VITK-m, we have a brief overview of how to build VTK-m,
optionally install it on your system, and start your own programs that use VTK-m.

2.1 Getting VTK-m

VTK-m is an open source software product where the code is made freely available. To get the latest released
version of VTK-m, go to the VTK-m releases page:

http://m.vtk.org/index.php/VTK-m_Releases

For access to the most recent work, the VI'K-m development team provides public anonymous read access to
their main source code repository. The main VTK-m repository on a gitlab instance hosted at Kitware, Inc. The
repository can be browsed from its project web page:

https://gitlab.kitware.com/vtk/vtk-m

The source code in the VI'K-m repository is access through the git version control tool. If you have not used
git before, there are several resources available to help you get familiar with it. Github has a nice setup guide
(https://help.github.com/articles/set-up-git) to help you get up and running quickly. For more complete
documentation, we recommend the Pro Git book (https://git-scm.com/book).

To get a copy of the VITK-m repository, issue a git clone command.

Example 2.1: Cloning the main VIK-m git repository.
1 ‘ git clone https://gitlab.kitware.com/vtk/vtk-m.git

The git clone command will create a copy of all the source code to your local machine. As time passes and you
want to get an update of changes in the repository, you can do that with the git pull command.

Example 2.2: Updating a git repository with the pull command.
1 ‘git pull


http://m.vtk.org/index.php/VTK-m_Releases
https://gitlab.kitware.com/vtk/vtk-m
https://help.github.com/articles/set-up-git
https://git-scm.com/book

2.2. Configure VTK-m

The proceeding examples for using git are based on the git command line tool, which is particularly prevalent
on Uniz-based and Mac systems. There also exist several GUI tools for accessing git repositories. These
tools each have their own interface and they can be quite different. However, they all should have roughly
equivalent commands named “clone” to download a repository given a url and “pull” to update an existing
repository.

2.2 Configure VTK-m

VTK-m uses a cross-platform configuration tool named CMake to simplify the configuration and building across
many supported platforms. CMake is available from many package distribution systems and can also be down-
loaded for many platforms from http://cmake.org.

Most distributions of CMake come with a convenient GUI application (cmake-gui) that allows you to browse
all of the available configuration variables and run the configuration. Many distributions also come with an
alternative terminal-based version (ccmake), which is helpful when accessing remote systems where creating GUI
windows is difficult.

One helpful feature of CMake is that it allows you to establish a build directory separate from the source directory,
and the VTK-m project requires that separation. Thus, when you run CMake for the first time, you want to set
the build directory to a new empty directory and the source to the downloaded or cloned files. The following
example shows the steps for the case where the VIK-m source is cloned from the git repository. (If you extracted
files from an archive downloaded from the VTK-m web page, the instructions are the same from the second line
down.)

Example 2.3: Running CMake on a cloned VTK-m repository.
git clone https://gitlab.kitware.com/vtk/vtk-m.git
mkdir vtkm-build
cd vtkm-build
cmake-gui ../vtk-m

W N

The first time the CMake GUI runs, it initially comes up blank as shown at left in Figure 2.1. Verify that the
source and build directories are correct (located at the top of the GUI) and then click the “Configure” button
near the bottom. The first time you run configure, CMake brings up a dialog box asking what generator you
want for the project. This allows you to select what build system or IDE to use (e.g. make, ninja, Visual Studio).
Once you click “Finish,” CMake will perform its first configuration. Don’t worry if CMake gives an error about
an error in this first configuration process.

¢

Most options in CMake can be reconfigured at any time, but not the compiler and build system used. These
must be set the first time configure is run and cannot be subsequently changed. If you want to change the
compiler or the project file types, you will need to delete everything in the build directory and start over.

After the first configuration, the CMake GUI will provide several configuration options as shown in Figure 2.1
on the right. You now have a chance to modify the configuration of VT K-m, which allows you to modify both
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http://cmake.org

2.2. Configure VTK-m

CMake 3.6.2 - C:/Users/kmorel/sre/builds/vtk-m

CMake 3.6.2

File Tools Options Help File Tools Options Help

Where is the source code:  [Cif vl | [Browse source...| | | Whereis the source code:  [ciA chvticm | [Browse saurce....

Where to buid the binaries: | C:/Users/kmore!orc/buidsfvticm | | BrowseBuid... | | | Where to buid the binries: [ C:/Users/kmorelfsrc/buids/vtkm | | Browseguid... |

Search: | Olerouped [ advanced |dh AddEnry | | 0 Remove Eniry Search: | Oerouped [ advanced |dh AddEnry | | 0 Remove Eniry

MName Value Mame Value

L]

[ ]

[

L]

L]

[ ]

Press Configure to update and display new values in red, then press Generate to generate selected build files. Press Configure to update and display new values in red, then press Generate to generate selected build files.
e Curent Generatr i

The C compiler identification is MSUC 18.0.40623.0 ~
Check for working € compiler: C:/Program Files (x26)/Microsoft Visual Studio 12.0/VC/bin/amdé4/cl.exe
Detecting C compiler ABI info - dome
e I A R 4 S Ty
Detecting CXX compiler ABI info
. 5

Figure 2.1: The CMake GUI configuring the VTK-m project. At left is the initial blank configuration. At right
is the state after a configure pass.

the behavior of the compiled VTK-m code as well as find components on your system. Using the CMake GUI is
usually an iterative process where you set configuration options and re-run “Configure.” Each time you configure,
CMake might find new options, which are shown in red in the GUL

It is often the case during this iterative configuration process that configuration errors occur. This can occur
after a new option is enabled but CMake does not automatically find the necessary libraries to make that feature
possible. For example, to enable TBB support, you may have to first enable building TBB, configure for TBB
support, and then tell CMake where the TBB include directories and libraries are.

Once you have set all desired configuration variables and resolved any CMake errors, click the “Generate”
button. This will create the build files (such as makefiles or project files depending on the generator chosen at
the beginning). You can then close the CMake GUI.

There are a great number of configuration parameters available when running CMake on VTK-m. The following
list contains the most common configuration parameters.

BUILD_SHARED_LIBS Determines whether static or shared libraries are built.

CMAKE_BUILD_TYPE Selects groups of compiler options from categories like Debug and Release. Debug
builds are, obviously, easier to debug, but they run much slower than Release builds. Use Release builds
whenever releasing production software or doing performance tests.

CMAKE_INSTALL_PREFIX The root directory to place files when building the install target.

VTKm_BUILD_EXAMPLES The VTK-m repository comes with an examples directory. This macro determines
whether they are built.

VTKm_ENABLE_BENCHMARKS If on, the VTK-m build includes several benchmark programs. The bench-
marks are regression tests for performance.

Chapter 2. Build and Install VTK-m 9
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VTKm_ENABLE_CUDA Determines whether VTK-m is built to run on CUDA GPU devices.
VTKm_ENABLE_RENDERING Determines whether to build the rendering library.

VTKm_ENABLE_TBB Determines whether VI'K-m is built to run on multi-core x86 devices using the Intel
Threading Building Blocks library.

VTKm_ENABLE_TESTING If on, the VITK-m build includes building many test programs. The VTK-m
source includes hundreds of regression tests to ensure quality during development.

VTKm_USE_64BIT_IDS If on, then VTK-m will be compiled to use 64-bit integers to index arrays and other
lists. If off, then VTK-m will use 32-bit integers. 32-bit integers take less memory but could cause failures
on larger data.

VTKm_USE_DOUBLE_PRECISION If on, then VTK-m will use double precision (64-bit) floating point num-
bers for calculations where the precision type is not otherwise specified. If off, then single precision (32-bit)
floating point numbers are used. Regardless of this setting, VTK-m’s templates will accept either type.

2.3 Building VTK-m

Once CMake successfully configures VI K-m and generates the files for the build system, you are ready to build
VTK-m. As stated earlier, CMake supports generating configuration files for several different types of build tools.
Make and ninja are common build tools, but CMake also supports building project files for several different types
of integrated development environments such as Microsoft Visual Studio and Apple XCode.

The VTK-m libraries and test files are compiled when the default build is invoked. For example, if Makefiles
were generated, the build is invoked by calling make in the build directory. Expanding on Example 2.3

Example 2.4: Using make to build VTK-m.
git clone https://gitlab.kitware.com/vtk/vtk-m.git
mkdir vtkm-build
cd vtkm-build
cmake-gui ../vtk-m
make -j
make test
make install

O Ut W

The Makefiles and other project files generated by CMake support parallel builds, which run multiple com-
pile steps simultaneously. On computers that have multiple processing cores (as do almost all modern
computers), this can significantly speed up the overall compile. Some build systems require a special flag to
engage parallel compiles. For example, make requires the -j flag to start parallel builds as demonstrated in
Ezxample 2.4.

-’V\NVVVVV@
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2.4. Linking to VTK-m

CMake allows you to switch between several types of builds including default, Debug, and Release. Programs
and libraries compiled as release builds can run much faster than those from other types of builds. Thus,
it is important to perform Release builds of all software released for production or where runtime is a
concern. Some integrated development environments such as Microsoft Visual Studio allow you to specify
the different build types within the build system. But for other build programs, like make, you have to
specify the build type in the CMAKE_BUILD_TYPE CMake configuration variable, which is described in
Section 2.2.

CMake creates several build “targets” that specify the group of things to build. The default target builds all
of VI'K-m’s libraries as well as tests, examples, and benchmarks if enabled. The test target executes each of
the VTK-m regression tests and verifies they complete successfully on the system. The install target copies the
subset of files required to use VIK-m to a common installation directory. The install target may need to be run
as an administrator user if the installation directory is a system directory.

A good portion of VTK-m is a header-only library, which does not need to be built in a traditional sense.
However, VTK-m contains a significant amount of tests to ensure that the header code does compile and
run correctly on a given system. If you are not concerned with testing a build on a given system, you can
turn off building the testing, benchmarks, and examples using the CMake configuration variables described
in Section 2.2. This can shorten the VT K-m compile time.

2.4 Linking to VTK-m

Ultimately, the value of VT K-m is the ability to link it into external projects that you write. The header files and
libraries installed with VTK-m are typical, and thus you can link VTK-m into a software project using any type
of build system. However, VTK-m comes with several CMake configuration files that simplify linking VTK-m
into another project that is also managed by CMake. Thus, the documentation in this section is specifically for
finding and configuring VI'K-m for CMake projects.

VTK-m can be configured from an external project using the find_package CMake function. The behavior and
use of this function is well described in the CMake documentation. The first argument to find_package is the
name of the package, which in this case is VTKm. CMake configures this package by looking for a file named
VTKmConfig.cmake, which will be located in the lib directory of the install or build of VITK-m. The configurable
CMake variable VTKm_DIR can be set to the directory that contains this file.

a minimum or exact version of VTK-m and turning off some of the status messages. See the CMake

% The CMake £ind_package function also supports several features not discussed here including specifying
documentation for more details.
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The CMake package for VT K-m is broken down into components that let you load particular features of VTK-
m. Package components can be specified with the COMPONENTS and OPTIONAL_COMPONENTS arguments to the
find_package function. The following example demonstrates using find_package to find the VI'K-m package
that requires the Serial backend as well as the Rendering and OpenGL features as well as optionally using the
TBB and CUDA backends.

Example 2.5: Loading VTK-m configuration from an external CMake project.

1 | find_package (VTKm REQUIRED

2 COMPONENTS Serial OpenGL Rendering
3 OPTIONAL_COMPONENTS TBB CUDA

4 )

The following components are available. Many of the features for these components are described elsewhere
within this book.

Base The “base” configuration required for using any part of VI'K-m. This component is loaded automatically
even if no components are specified in find_package.

Serial The serial backend for VTK-m, which is useful for debugging and when no other backend is available.
OpenGL Support for the integration of OpenGL features with VTK-m.

OSMesa Support for creating off screen canvases using the OSMesa library.

EGL Support for creating off screen canvases using the EGL library.

GLFW A convenience component that loads the necessary configuration to use the GLFW library, which provides
a cross-platform interface for creating OpenGL windows.

GLUT A convenience component that loads the necessary configuration to use the GLUT library, which provides
a cross-platform interface for creating OpenGL windows.

Interop Support for transferring VI'K-m array data directly to OpenGL objects.

Rendering Use of the lightweight VIK-m rendering library, which provides basic rendering of VI'K-m data
objects.

TBB The Intel Threading Building Blocks (TBB) backend for VTK-m, which uses multiple cores and threads
for parallel processing.

CUDA The CUDA backend for VTK-m, which uses GPU processors for parallel processing.

After the find_package function completes, C++ libraries and executables can be creating using the configu-
ration variables defined. The following is a simple example of creating an executable.

Example 2.6: Loading VTK-m configuration from an external CMake project.
find_package (VTKm REQUIRED
COMPONENTS Serial OpenGL Rendering
OPTIONAL_COMPONENTS TBB CUDA
)

add_executable (myprog myprog.cxx)
target_include_directories (myprog PRIVATE ${VTKm_INCLUDE_DIRS})
target_link_libraries (myprog ${VTKm_LIBRARIES})
target_compile_options (myprog PRIVATE ${VTKm_COMPILE_OPTIONS})

© 00O U W
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It is not sufficient to just call £ind_package to compile code using VITK-m. You must also use the VTKm_-
INCLUDE_DIRS and VTKm_LIBRARIES CMake variables to configure the compiler to load VTK-m’s compo-
nents. (Although technically not required, it is highly advisable to also use the VTKm_COMPILE_OPTIONS

variable as well.)

The following is a list of all the CMake variables defined when the find_package function completes.

VTKm_FOUND Set to true if the VTK-m CMake package, all its dependent packages, and all the specified
components were successfully configured. If find_package was not called with the REQUIRED option, then
this variable should be checked before attempting to use VITK-m.

VTKm_< component_name>_FOUND For each component specified in the find_package call, one of these
variables will be defined as true or false depending on whether the component successfully loaded. For
components specified as an OPTIONAL_COMPONENTS argument, the VTKm_FOUND might still be true (be-
cause all required components succeeded) while the associated VTKm_< component_name>_FOUND could
be false if that specific component failed to load.

VTKm_INCLUDE_DIRS Contains a list of all directories that need to be specified to properly include VTK-m
header files. These also include the directories needed for header files that VTK-m depends on and specified
components. Targets should use the target_include_directories CMake function to add this list of
directories to the compile commands.

VTKm_LIBRARIES Contains a list of all requested VTK-m libraries and component libraries. Targets should
use the target_link libraries CMake function to add this list of libraries to the link commands.

VTKm_COMPILE_OPTIONS Contains a string of options that VTK-m suggests to add to the compiler.
Targets should use the target_compile_options CMake function to add this list of options to the compile
commands.
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CHAPTER
THREE

FILE 1/0

Before VI'K-m can be used to process data, data need to be loaded into the system. VITK-m comes with a basic
file I/O package to get started developing very quickly. All the file I/O classes are declared under the vtkm: :io
namespace.

Files are just one of many ways to get data in and out of VI'K-m. In Part II we explore efficient ways to
define VI'K-m data structures. In particular, Section 12.1 describes how to build VTK-m data set objects
and Section 10.4 documents how to adapt data structures defined in other libraries to be used directly in
VTK-m.

3.1 Readers

All reader classes provided by VTK-m are located in the vtkm: :io: :reader namespace. The general interface
for each reader class is to accept a filename in the constructor and to provide a ReadDataSet method to load
the data from disk.

The data in the file are returned in a vtkm::cont: :DataSet object. Chapter 12 provides much more details
about the contents of a data set object, but for now we treat DataSet as an opaque object that can be passed
around readers, writers, filters, and rendering units.

3.1.1 Legacy VTK File Reader

Legacy VTK files are a simple open format for storing visualization data. These files typically have a .vtk
extension. Legacy VTK files are popular because they are simple to create and read and are consequently
supported by a large number of tools. The format of legacy VTK files is well documented in The VTK User’s
Guide!. Legacy VTK files can also be read and written with tools like ParaView and Vislt.

Legacy VTK files can be read using the vtkm::io::reader::VTKDataSetReader class. The constructor for
this class takes a string containing the filename. The ReadDataSet method reads the data from the previously
indicated file and returns a vtkm: :cont: :DataSet object, which can be used with filters and rendering.

LA free excerpt describing the file format is available at http://www.vtk.org/Wiki/File:VTK-File-Formats.pdf.


http://www.vtk.org/Wiki/File:VTK-File-Formats.pdf

3.2. Writers

Example 3.1: Reading a legacy VTK file.
#include <vtkm/io/reader/VTKDataSetReader .h>

vtkm::cont::DataSet OpenDataFromVTKFile ()
{
vtkm::io::reader:: VTKDataSetReader reader ("data.vtk");

return reader.ReadDataSet ();

}

0O Utk WN

3.2  Writers

All writer classes provided by VTK-m are located in the vtkm: :io: :writer namespace. The general interface for
each writer class is to accept a filename in the constructor and to provide a WriteDataSet method to save data
to the disk. The WriteDataSet method takes a vtkm::cont::DataSet object as an argument, which contains
the data to write to the file.

3.2.1 Legacy VTK File Writer

Legacy VTK files can be written using the vtkm: :io: :writer::VTKDataSetWriter class. The constructor for
this class takes a string containing the filename. The WriteDataSet method takes a vtkm::cont::DataSet
object and writes its data to the previously indicated file.

Example 3.2: Writing a legacy VTK file.
#include <vtkm/io/writer/VTKDataSetWriter.h>

void SaveDataAsVTKFile(vtkm::cont::DataSet data)
{
vtkm::io::writer::VTKDataSetWriter writer ("data.vtk");

writer.WriteDataSet (data);
T

OO Ut W
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CHAPTER
FOUR

PROVIDED FILTERS

Filters are functional units that take data as input and write new data as output. Filters operate on vtkm: :-
cont::DataSet objects, which are introduced with the file I/O operations in Chapter 3 and are described in
more detail in Chapter 12. For now we treat DataSet mostly as an opaque object that can be passed around
readers, writers, filters, and rendering units.

The structure of filters in VI'K-m is significantly simpler than their counterparts in VTK. VTK filters
are arranged in a dataflow network (a.k.a. a visualization pipeline) and execution management is handled
automatically. In contrast, VIK-m filters are simple imperative units, which are simply called with input
data and return output data.

VTK-m comes with several filters ready for use, and in this chapter we will give a brief overview of these filters.
All VTK-m filters are currently defined in the vtkm: :filter namespace. We group filters based on the type of
operation that they do and the shared interfaces that they have. Later Part III describes the necessary steps in
creating new filters in VI'K-m.

4.1 Field Filters

Every vtkm: :cont: :DataSet object contains a list of fields. A field describes some numerical value associated
with different parts of the data set in space. Fields often represent physical properties such as temperature,
pressure, or velocity. Field filters are a class of filters that generate a new field. These new fields are typically
derived from one or more existing fields or point coordinates on the data set. For example, mass, volume, and
density are interrelated, and any one can be derived from the other two.

All field filters contain an Execute method that takes two arguments. The first argument is a vtkm: :cont::-
DataSet object with the input data. The second argument specifies the field from which to derive a new field.
The field can be specified as either a string naming a field in the input DataSet object, as a vtkm: :cont: :Field
object, or as a coordinate system (typically retrived from a DataSet object with the GetCoordianteSystem
method). See Sections 12.3 and 12.4 for more information on fields and coordinate systems, respectively.

Field filters often need more information than just a data set and a field. Any additional information is provided
using methods in the filter class that changes the state. These methods are called before Execute. One such
method that all field filters have is SetOutputFieldName, which specifies the name assigned to the generated
field. If not specified, then the filter will use a default name.



4.1. Field Filters

The Execute method returns a vtkm: :filter: :ResultField object, which contains the state of the execution
and the data generated. A ResultField object has the following methods.

IsValid Returns a bool value specifying whether the execution completed successfully. If true, then the
execution was successful and the data stored in the ResultField is valid. If false, then the execution
failed.

GetDataSet Returns a DataSet containing the results of the execution. The data set returned is a shallow copy
of the input data with the generated field added.

GetField Returns the field information in a vtkm::cont::Field object. Field objects are described in Sec-
tion 12.3.

FieldAs Given a vtkm: :cont: : ArrayHandle object, allocates the array and copies the generated field data into
it.

The following example provides a simple demonstration of using a field filter. It specifically uses the point
elevation filter, which is one of the field filters.

Example 4.1: Using PointElevation, which is a field filter.

1 | VTKM_CONT

2 | vtkm::cont::DataSet ComputeAirPressure(vtkm::cont::DataSet dataSet)

314

4 vtkm::filter::PointElevation elevationFilter;

5

6 // Use the elevation filter to estimate atmospheric pressure based on the
7 // height of the point coordinates. Atmospheric pressure is 101325 Pa at
8 // sea level and drops about 12 Pa per meter.

9 elevationFilter.SetOutputFieldName ("pressure");

10 elevationFilter.SetLowPoint (0.0, 0.0, 0.0);

11 elevationFilter.SetHighPoint (0.0, 0.0, 2000.0);

12 elevationFilter.SetRange (101325.0, 77325.0);

13

14 vtkm::filter::ResultField result =

15 elevationFilter.Execute(dataSet, dataSet.GetCoordinateSystem());

16

17 if (!result.IsValid())

18 {

19 throw vtkm::cont::ErrorControlBadValue ("Failed to run elevation filter.");
20 }

21

22 return result.GetDataSet ();

23 |}

4.1.1 Cell Average

vtkm: :filter: :CellAverage is the cell average filter. It will take a data set with a collection of cells and a field
defined on the points of the data set and create a new field defined on the cells. The values of this new derived
field are computed by averaging the values of the input field at all the incident points. This is a simple way to
convert a point field to a cell field. Both the input data set and the input field are specified as arguments to the
Execute method.

The default name for the output cell field is the same name as the input point field. The name can be overridden
using the SetOutputFieldName method.

In addition the standard SetOutputFieldName and Execute methods, CellAverage provides the following meth-
ods.
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SetActiveCellSet Sets the index for the cell set to use from the DataSet provided to the Execute method.
The default index is 0, which is the first cell set. If you want to set the active cell set by name, you can
use the GetCellSetIndex method on the DataSet object that will be used with Execute.

GetActiveCellSetIndex Returns the index to be used when getting a cell set from the DataSet passed to
Execute. Set with SetActiveCellSet.

4.1.2 Point Elevation

vtkm: :filter::PointElevation computes the “elevation” of a field of point coordinates in space. The filter
will take a data set and a field of 3 dimensional vectors and compute the distance along a line defined by a low
point and a high point. Any point in the plane touching the low point and perpendicular to the line is set to the
minimum range value in the elevation whereas any point in the plane touching the high point and perpendicular
to the line is set to the maximum range value. All other values are interpolated linearly between these two
planes. This filter is commonly used to compute the elevation of points in some direction, but can be repurposed
for a variety of measures.

The input field (or coordinate system) is specified as the second argument to the Execute method. A vtkm::-
cont: :DataSet that is expected to contain the field is also given but is otherwise unused. Example 4.1 gives a
demonstration of the elevation filter.

The default name for the output field is “elevation”, but that can be overridden using the SetOutputFieldName
method.

In addition to the standard SetOutputFieldName and Execute methods, PointElevation provides the following
methods.

SetLowPoint/SetHighPoint This pair of methods is used to set the low and high points, respectively, of the
elevation. Each method takes three floating point numbers specifying the z, y, and z components of the
low or high point.

SetRange Sets the range of values to use for the output field. This method takes two floating point numbers
specifying the low and high values, respectively.

4.2 Data Set Filters

Data set filters are a class of filters that generate a new data set with a new topology. This new topology is
typically derived from an existing data set. For example, a data set can be significantly altered by adding,
removing, or replacing cells.

All data set filters contain an Execute method that takes one argument: a vtkm::cont: :DataSet object with
the input data.

Some data set filters need more information that just a data set when executing. Any additional information
is provided using methods in the filter class that changes the state. These methods are called before Execute.
One such method that all data set filters have is SetActiveCellSet, which selects which cell set in the input
DataSet to operate on. Likewise, SetActiveCoordinateSystem selects which coordinate system to operate on.
By default, the filter will operate on the first cell set and coordinate system. (See Sections 12.2 and 12.4 for
more information about cell sets and coordinate systems, respectively.)

The Execute method returns a vtkm: :filter: :ResultDataSet object, which contains the state of the execution
and the data generated. A ResultDataSet object has the following methods.
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IsValid Returns a bool value specifying whether the execution completed successfully. If true, then the
execution was successful and the data stored in the ResultField is valid. If false, then the execution
failed.

GetDataSet Returns a DataSet containing the results of the execution.

Because the new data set is derived from existing data, it can often inherit field information from the original
data. All data set filters also contain a MapFieldOntoOutput method to map fields from the output to the
input. This method takes two arguments. The first argument is the ResultDataSet object returned from
the last call to Execute. The second argument is a vtkm::cont::Field object that comes from the input.
MapFieldOntoOutput returns a bool that is true if the field was successfully mapped and added to the output
data set in the ResultDataSet object.

Not all data set filters support the mapping of all input fields to the output. If the mapping is not supported,
MapFieldOntoOutput will simply return false.

The following example provides a simple demonstration of using a data set filter. It specifically uses the vertex
clustering filter, which is one of the data set filters.

Example 4.2: Using VertexClustering, which is a data set filter.

1 vtkm::filter::VertexClustering vertexClustering;

2

3 vertexClustering.SetNumberOfDivisions (vtkm::Id3(128,128,128));
4

5 vtkm::filter::ResultDataSet result =

6 vertexClustering.Execute(originalSurface);

7

8 if (!result.IsValid())

9 {

10 throw vtkm::cont::ErrorControlBadValue ("Failed to run vertex clustering.");
11 }

12

13 for (vtkm::IdComponent fieldIndex = 0;

14 fieldIndex < originalSurface.GetNumberOfFields ();

15 fieldIndex++)

16 {

17 vertexClustering.MapFieldOntoOutput (result,

18 originalSurface.GetField(fieldIndex));
19 }

20

21 vtkm::cont::DataSet simplifiedSurface = result.GetDataSet ();

4.2.1 External Faces

vtkm::filter: :ExternalFaces is a filter that extracts all the external faces from a polyhedral data set. An
external face is any face that is on the boundary of a mesh. Thus, if there is a hole in a volume, the boundary
of that hole will be considered external. More formally, an external face is one that belongs to only one cell in a
mesh.
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The current implementation of the external faces filter only supports tetrahedron cell cells. Future versions
will support general 8D cell shapes. [REMOVE THIS WHEN THE CODE IS UPDATED. |

The external faces filter has no extra methods beyond the base methods of data set filters (such as Execute and
MapFieldOntoOutput) because it requires no further metadata for its operations.

4.2.2 \Vertex Clustering

vtkm: :filter: :VertexClustering is a filter that simplifies a polygonal mesh. It does so by dividing space into
a uniform grid of bin and then merges together all points located in the same bin. The smaller the dimensions of
this binning grid, the fewer polygons will be in the output cells and the coarser the representation. This surface
simplification is an important operation to support level of detail (LOD) rendering in visualization applications.
Example 4.2 provides a demonstration of the vertex clustering filter.

In addition to the standard Execute, MapFieldOntoOutput, and other methods, VertexClustering provides
the following methods.

SetNumber0fDivisions Set the dimensions of the uniform grid that establishes the bins used for clustering.
Setting smaller numbers of dimensions produces a smaller output, but with a coarser representation of the
surface. The dimensions are provided as a vtkm: : Id3.

GetNumberOfDimensions Returns the number of dimensions used for binning. The dimensions are returned as
a vtkm: :Id3.

4.3 Data Set and Field Filters

Data set and field filters are a class of filters that generate a new data set with a new topology. This new topology
is derived from an existing data set and at least one of the fields in the data set. For example, a field might
determine how each cell is culled, clipped, or sliced.

All data set and field filters contain an Execute method that takes two arguments. The first argument is
a vtkm::cont::DataSet object with the input data. The second argument specifies the field from which to
derive a new field. The field can be specified as either a string naming a field in the input DataSet object,
as a vtkm::cont::Field object, or as a coordinate system (typically retrieved from a DataSet object with
the GetCoordianteSystem method). See Sections 12.3 and 12.4 for more information on fields and coordinate
systems, respectively.

Some data set filters need more information that just a data set when executing. Any additional information
is provided using methods in the filter class that changes the state. These methods are called before Execute.
One such method that all data set filters have is SetActiveCellSet, which selects which cell set in the input
DataSet to operate on. Likewise, SetActiveCoordinateSystem selects which coordinate system to operate on.
By default, the filter will operate on the first cell set and coordinate system. (See Sections 12.2 and 12.4 for
more information about cell sets and coordinate systems, respectively.)

The Execute method returns a vtkm: :filter: :ResultDataSet object, which contains the state of the execution
and the data generated. A ResultDataSet object has the following methods.
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IsValid Returns a bool value specifying whether the execution completed successfully. If true, then the
execution was successful and the data stored in the ResultField is valid. If false, then the execution
failed.

GetDataSet Returns a DataSet containing the results of the execution.

Because the new data set is derived from existing data, it can often inherit field information from the original
data. All data set filters also contain a MapFieldOntoOutput method to map fields from the output to the
input. This method takes two arguments. The first argument is the ResultDataSet object returned from
the last call to Execute. The second argument is a vtkm::cont::Field object that comes from the input.
MapFieldOntoOutput returns a bool that is true if the field was successfully mapped and added to the output
data set in the ResultDataSet object.

Not all data set filters support the mapping of all input fields to the output. If the mapping is not supported,
MapFieldOntoOutput will simply return false.

The following example provides a simple demonstration of using a data set and field filter. It specifically uses
the Marching Cubes filter, which is one of the data set and field filters.

Example 4.3: Using MarchingCubes, which is a data set and field filter.

1 vtkm::filter::MarchingCubes marchingCubes;

2

3 marchingCubes.SetIsoValue (10.0);

4

5 vtkm::filter::ResultDataSet result =

6 marchingCubes.Execute (inData, "pointvar");

7

8 if (!'result.IsValid ())

9 {

10 throw vtkm::cont::ErrorControlBadValue ("Failed to run Marching Cubes.");
11 }

12

13 for (vtkm::IdComponent fieldIndex = O;

14 fieldIndex < inData.GetNumberOfFields ();

15 fieldIndex++)

16 {

17 marchingCubes .MapFieldOntoOutput (result, inData.GetField(fieldIndex));
18 }

19

20 vtkm::cont::DataSet isosurface = result.GetDataSet ();

4.3.1 Marching Cubes

Contouring is one of the most fundamental filters in scientific visualization. A contour is the locus where a field is
equal to a particular value. A topographic map showing curves of various elevations often used when hiking in hilly
regions is an example of contours of an elevation field in 2 dimensions. Extended to 3 dimensions, a contour gives
a surface. Thus, a contour is often called an isosurface. Marching Cubes is a well know algorithm for computing
contours and is implemented by vtkm: :filter: :MarchingCubes. Example 4.3 provides a demonstration of the
Marching Cubes filter.
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In addition to the standard Execute, MapFieldOntoQOutput, and other methods, MarchingCubes provides the
following methods.

SetIsoValue Provide the value on which to extract the contour. The contour will be the surface where the field
(provided to Execute) is equal to this value.
GetIsoValue Retrieve the currently set iso value.

SetMergeDuplicatePoints Sets a Boolean flag to determine whether coincident points in the data set should
be merged. Because the Marching Cubes filter (like all filters in VTK-m) runs in parallel, parallel threads
can (and often do) create duplicate versions of points. When this flag is set to true, a secondary operation
will find all duplicated points and combine them together.

GetMergeDuplicatePoints Returns the merge duplicate points flag.

SetGenerateNormals Sets a Boolean flag to determine whether to generate normal vectors for the surface.
Normals are used in shading calculations during rendering and can make the surface appear more smooth.
Generated normals are based on the gradient of the field being contoured.

GetGenerateNormals Returns the generate normals flag.

4.3.2 Threshold

A threshold operation removes topology elements from a data set that do not meet a specified criterion. The
vtkm: :filter: :Threshold filter removes all cells where the field (provided to Execute) is not between a range
of values.

In addition to the standard Execute, MapFieldOntoQOutput, and other methods, Threshold provides the following
methods.

SetLowerThreshold Sets the lower scalar value. Any cells where the scalar field is less than this value are
removed.

SetUpperThreshold Sets the upper scalar value. Any cells where the scalar field is more than this value are
removed.

GetLowerThreshold Returns the lower threshold value.

GetUpperThreshold Returns the upper threshold value.
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CHAPTER
FIVE

RENDERING

Rendering, the generation of images from data, is a key component to visualization. To assist with rendering,
VTK-m provides a rendering package to produce imagery from data, which is located in the vtkm: :rendering
namespace.

The rendering package in VTK-m is not intended to be a fully featured rendering system or library. Rather, it
is a lightweight rendering package with two primary use cases:

1. New users getting started with VI'K-m need a “quick and dirty” render method to see their visualization
results.

2. In situ visualization that integrates VI K-m with a simulation or other data-generation system might need
a lightweight rendering method.

Both of these use cases require just a basic rendering platform. Because VITK-m is designed to be integrated
into larger systems, it does not aspire to have a fully featured rendering system.

VTK-m’s big sister toolkit VTK is already integrated with VTK-m and has its own fully featured rendering
system. If you need more rendering capabilities than what VTK-m provides, you can leverage VTK instead.

5.1 Creating a Rendering Canvas

The first step in using VITK-m’s rendering package is to create a canvas, which is managed by vtkm: :render-
ing::Canvas and its subclasses. The Canvas object manages the frame buffers and the rendering context.

Subclasses of Canvas establish a context for different rendering systems. Currently, there are two main subclasses:
one for using OpenGL rendering (vtkm: :rendering: : CanvasGL) and one for using built in ray tracing (vtkm: : -
rendering: :CanvasRayTracer).

5.1.1 Creating an OpenGL Context with GLUT

One feature that is notably (and intentionally) missing from the VTK-m rendering package is the ability to
open a rendering window or build a graphical user interface. However, VIK-m can use an OpenGL context
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established elsewhere to perform rendering. OpenGL is a widely-accepted rendering library supported by all
hardware vendors on pretty much all computing platforms. It is also extensively used by many applications
performing rendering, particularly scientific visualization applications.

Once an OpenGL rendering context is established, it can be used by VIK-m by simply creating a vtkm::-
rendering: :CanvasGL. When created, CanvasGL will find the current OpenGL context, query its size, and
ready the VITK-m rendering system to use it.

Unfortunately, creating a window with an OpenGL context is platform dependent. There are numerous libraries
available that provide the ability to create an OpenGL window that have been ported to many platforms (such
as MS Windows, Unix, and Mac OSX). One such library is GLUT.

GLUT is a very simple utility toolkit that provides a basic mechanism for creating a window with an OpenGL
context. It additionally provides simple user interface features to capture keystrokes and mouse movements. For
the purposes of demonstration, we will provide examples that use GLUT to make a simple interactive rendering
application.

We are demonstrating rendering with GLUT for illustrative purposes only. VTK-m is not directly associated
with GLUT: It neither comes with GLUT nor depends on GLUT. You are welcome to follow these boilerplate
examples, or you can integrate with another rendering system of your choosing.

This section provides a terse description of getting a GLUT application up and running. This is not meant to
be a thorough description of the GLUT library. There are other resources that document using the GLUT API,
the most complete of which is the book OpenGL Programming for the X Window System by Mark J. Kilgard.
The information provided here is just enough to get you started.

¢

Although distributed for free, the original GLUT library was not released as open source. Unfortunately,
the GLUT copyright holders are not as actively developing GLUT as they once were, and consequently
some systems are declaring GLUT as deprecated. However, there some newer projects like FreeGLUT and
OpenGLUT that are open source, that are being more actively developed, and that are drop in replacements
to the original GLUT library. There are also alternative libraries such as GLFW that have similar capa-
bilities but a different API. These are not documented here, but are worth investigating if GLUT does not
work for you.

The first call made to the GLUT library should be to the function glutInit, which takes as arguments the argc
and argv arguments passed to the main C function. glutInit will find any window-system specific flags (such
as —~display), use them to initialize the windowing system, and strip them from the arguments.

Next, the parameters for the window to be created should be established. The function glutInitWindowSize
takes the width and the height of the renderable space in the window. The function glutInitDisplayMode
takes a mask of flags that are or-ed together to specify the capabilities of the window. We recommend the flags
GLUT_RGBA, GLUT_DOUBLE, GLUT_ALPHA, and GLUT_DEPTH. Once these are specified a call to glutCreateWindow
will create a window and initialize the OpenGL context. glutCreateWindow takes a string for an argument that
is used in the title bar of the window.
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Example 5.1: Initializing the GLUT library and creating a window to render into.
glutInit (&argc, argv);
glutInitWindowSize (960, 600);
glutInitDisplayMode (GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH);
glutCreateWindow ("VTK-m Example");

W N

Apart from the initial setup, most of the interaction with the GLUT library happens through callbacks. As
part of its initialization, an application provides function pointers to GLUT. GLUT then calls these provided
functions when certain events happen. GLUT supports many callbacks for different types of events. Here is the
small set of callbacks we use in our small example.

glutDisplayFunc The display function is called when the window needs to be redrawn. The callback should
issue the appropriate OpenGL rendering calls and then call glutSwapBuffers to show the result.

glutReshapeFunc The reshape function is called whenever the window is resized. The callback is given the
width and height of the new rendering window.

glutMouseFunc The mouse button function is called whenever a mouse button is pressed or released. The GLUT
system gives the index of the button, the state the button changed to (GLUT_DOWN or GLUT_UP) and the
pixel location of the event.

glutMotionFunc The mouse motion function is called whenever the mouse is moved while any button is pressed.
The callback is given the pixel location to where the mouse moved to, but not the state of any of the buttons.
If the button state is important, it must be preserved in a global variable. If the mouse motion should
result in a change in the rendered view, the function should call glutPostRedisplay, which will tell GLUT
to call the display function when the windowing system is ready.

glutKeygboardFunc The keyboard function is called whenever a regular key is pressed. The callback is given
the character of the key pressed as well as the pixel location of the mouse when the key was pressed. If
the key press should result in a change in the rendered view, the function should call glutPostRedisplay,
which will tell GLUT to call the display function when the windowing system is ready.

§ There are many other GLUT callbacks not documented here. Consult the GLUT documentation for more
information.

Example 5.2: Registering callbacks with GLUT.

glutDisplayFunc (DisplayCallback);
glutReshapeFunc (WindowReshapeCallback);
glutMouseFunc (MouseButtonCallback);
glutMotionFunc (MouseMoveCallback);
glutKeyboardFunc (KeyPressCallback);

Uk W N =

Once the GLUT library is initialized, the rendering window created, and all the necessary callbacks are registered,
call glutMainLoop. This causes GLUT to enter its main event loop where it will manage the windowing system.
glutMainLoop will never return. Rather, it will continue to respond to events and invoke the callbacks until the
program is otherwise interrupted.

Example 5.3 puts this all together to give a full example of a simple GLUT program rendering with VTK-m.
The output of the program is shown in Figure 5.1. The examples of the GLUT callbacks are straightforward.
The VIK-m rendering classes used are documented in the following sections.
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Example 5.3: A simple but full example of an application using GLUT and VTK-m together.
#include <vtkm/io/reader/VTKDataSetReader .h>

#include <vtkm/rendering/Actor.h>
#include <vtkm/rendering/Camera.h>
#include <vtkm/rendering/CanvasGL.h>
#include <vtkm/rendering/MapperGL.h>
#include <vtkm/rendering/View3D.h>

0O Utk WN

9 |#ifdef __APPLE__

10 | #include <GLUT/glut.h>
11 | #else

12 | #include <GL/glut.h>
13 | #endif

15 | namespace BasicGlutExample {
17 | vtkm::rendering::View3D #*gViewPointer = NULL;
19 | int gButtonState[3] = { GLUT_UP, GLUT_UP, GLUT_UP };

20 | int gMousePositionX;
21 | int gMousePositionY;

22

23 | void DisplayCallback ()

24 | {

25 gViewPointer ->Paint ();

26 glutSwapBuffers ();

27 | ¥

28

29 | void WindowReshapeCallback (int width, int height)

30 | {

31 gViewPointer ->GetCanvas () . ResizeBuffers (width, height);

32 |}

33

34 | void MouseButtonCallback(int buttonIndex, int state, int x, int y)
35 | {

36 gButtonState [buttonIndex] = state;

37 gMousePositionX = x;

38 gMousePositionY = y;

39 |

40

41 | void MouseMoveCallback(int x, int y)

42 | {

43 vtkm::Id width = gViewPointer ->GetCanvas ().GetWidth ();

44 vtkm::Id height = gViewPointer->GetCanvas ().GetHeight ();
45

46 vtkm::Float32 lastX = (2.0f*gMousePositionX)/width - 1.0f;
47 vtkm::Float32 lastY = 1.0f - (2.0f*gMousePositionY)/height;

48 vtkm::Float32 nextX = (2.0f*x)/width - 1.0f;
49 vtkm::Float32 nextY = 1.0f - (2.0fxy)/height;

50

51 if (gButtonState[0] == GLUT_DOWN)

52 {

53 gViewPointer ->GetCamera () . TrackballRotate (lastX, lastY, nextX, nextY);
54 }

55 else if (gButtonState[1] == GLUT_DOWN)

56 {

57 gViewPointer ->GetCamera () . Pan(nextX-lastX, nextY-lastY);
58 }

59 else if (gButtonState[2] == GLUT_DOWN)

60 {

61 gViewPointer ->GetCamera () . Zoom(nextY-lastY);

62 }

63
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64 gMousePositionX = x;

65 gMousePositionY = y;

66

67 glutPostRedisplay ();

68 | ¥

69

70 | void KeyPressCallback(unsigned char key, int x, int y)
71 14

72 switch (key)

73 {

74 case ’q’:

75 case ’Q’:

76 delete gViewPointer;

77 gViewPointer = NULL;

78 exit (0);

79 break;

80 }

81 |}

82

83 | int main(int argc, char xargvl[])

84 | {

85 // Initialize GLUT window and callbacks

86 glutInit (&argc, argv);

87 glutInitWindowSize (960, 600);

88 glutInitDisplayMode (GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH);
89 glutCreateWindow ("VTK-m Example");

90

91 glutDisplayFunc (DisplayCallback);

92 glutReshapeFunc (WindowReshapeCallback);

93 glutMouseFunc (MouseButtonCallback) ;

94 glutMotionFunc (MouseMoveCallback) ;

95 glutKeyboardFunc (KeyPressCallback);

96

97 // Initialize VTK-m rendering classes

98 vtkm::cont::DataSet surfaceData;

99 try

100 {

101 vtkm::io::reader::VTKDataSetReader reader ("data/cow.vtk");
102 surfaceData = reader.ReadDataSet ();

103 }

104 catch (vtkm::io::ErrorI0 &error)

105 {

106 std::cout << "Could not read file:" << std::endl

107 << error.GetMessage() << std::endl;

108 }

109 catch (...)

110 {

111 throw;

112 }

113

114 vtkm::rendering::Actor actor(surfaceData.GetCellSet (),
115 surfaceData.GetCoordinateSystem(),
116 surfaceData.GetField ("RandomPointScalars"));
117

118 vtkm::rendering::Scene scene;

119 scene.AddActor (actor);

120

121 vtkm::rendering::MapperGL mapper;

122 vtkm::rendering::CanvasGL canvas;

123

124 gViewPointer = new vtkm::rendering::View3D(scene, mapper, canvas);
125 gViewPointer ->Initialize ();

126

127 // Start the GLUT rendering system. This function typically does not return.
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128 glutMainLoop () ;
129

130 return O;

131 |}

VTK-m Example

Figure 5.1: Output of the rendering program listed in Example 5.3.

5.1.2 Creating an Off Screen Rendering Canvas

Another use case for rendering in VTK-m is rendering to an off screen buffer. This is the preferred method when
doing automated visualization such as when running visualization in situ with a simulation. VTK-m comes
built in with multiple methods to create off screen rendering contexts. There are multiple subclasses to vtkm: : -
rendering: :Canvas that, when constructed, create their own rendering contexts, so can be used immediately.
All of these classes take as parameters to their constructors the width and height of the image to create.

The following classes, when constructed, create an off screen rendering buffer.

vtkm: :rendering: :CanvasEGL Creates an off screen OpenGL rendering buffer using EGL. EGL provides an
interface to create a context for OpenGL rendering software without engaging the operating-system-specific
windowing system. For this to be available, VTK-m must have been configured to use the EGL library.

vtkm: :rendering: :CanvasOSMesa Creates an off screen OpenGL rendering buffer using the OSMesa library.
For this to be available, VTK-m must have been configured to use the OSMesa library. Also, be aware
that OSMesa contexts do not use GPU hardware.

vtkm: :rendering: :CanvasRayTracer Creates the frame buffers required for ray tracing. When invoking this
canvas, you must use other ray tracing component where applicable. OpenGL rendering does not work
with the CanvasRayTracer.

By their nature, when writing to an off screen canvas, you cannot directly see the result. Typically, programs
using off screen rendering save rendered images as files to be viewed later. For convenience, Canvas has a method
named SaveAs that will write the contents of the last saved image to a file. The files are written in portable
pixel map (PPM) format, which are also valid portable anymap format (PNM) files. This is a very simple
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format that is easy to read and write. PPM files are supported by the ImageMagick! software suite as well as
many other image software tools.

Example 5.4: Saving an image rendered in a Canvas to a file.
1 ‘ canvas.SaveAs ("MyVis.ppm");

Alternately, the rendered image can be retrieved directly from the Canvas by first calling the RefreshColor-
Buffer method and then calling GetColorBuffer. This retrieves the raw image data as a vtkm: :cont: :Array-
Handle. ArrayHandles are documented later in Chapter 7.

5.2 Scenes and Actors

The primary intent of the rendering package in VIK-m is to visually display the data that is loaded and
processed. Data are represented in VI K-m by vtkm: : cont: :DataSet objects. DataSet is presented in Chapters
3 and 4. For now we treat DataSet mostly as an opaque object that can be passed around readers, writers,
filters, and rendering units. Detailed documentation for DataSet is provided in Chapter 12.

To render a DataSet, the data are wrapped in a vtkm: :rendering: :Actor class. The Actor holds the compo-
nents of the DataSet to render (a cell set, a coordinate system, and a field). A color table can also be optionally
be specified, but a default color table will be specified otherwise.

Actors are collected together in an object called vtkm: :rendering: :Scene. An Actor is added to a Scene with
the AddActor method. The following example demonstrates creating a Scene with one Actor.

Example 5.5: Creating an Actor and adding it to a Scene.

1 vtkm::rendering::Actor actor(surfaceData.GetCellSet (),
2 surfaceData.GetCoordinateSystem(),
3 surfaceData.GetField ("RandomPointScalars"));
4
5 vtkm::rendering::Scene scene;
6 scene.AddActor (actor);
5.3 Mappers

A mapper is a unit that converts data (managed by an Actor) and issues commands to the rendering subsystem
to generate images. All mappers in VT K-m are a subclass of vtkm: :rendering: :Mapper. Different rendering
systems (as established by the Canvas) often require different mappers. Also, different mappers could render
different types of data in different ways. For example, one mapper might render polygonal surfaces whereas
another might render polyhedra as a translucent volume. Thus, a mapper should be picked to match both the
rendering system of the Canvas and the data in the Actor.

The following mappers are provided by VTK-m.
vtkm: :rendering: :MapperGL Uses OpenGL to render surfaces. If the data contain polyhedra, then their faces
are rendered. MapperGL only works in conjunction with CanvasGL or one of its subclasses.

vtkm: :rendering: :MapperRayTracer Uses VIK-m’s built in ray tracing system to render the visible surface
of a mesh. MapperRayTracer only works in conjunction with CanvasRayTracer.

vtkm: :rendering: :MapperVolume Uses VTK-m’s built in ray tracing system to render polyhedra as a translu-
cent volume. MapperVolume only works in conjunction with CanvasRayTracer.

Thttp://imagemagick.org
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5.4 Views

A view is a unit that collects all the structures needed to perform rendering. It contains everything needed to
take a Scene (Section 5.2) and use a Mapper (Section 5.3) to render it onto a Canvas (Section 5.1). The view
also annotates the image with spatial and scalar properties.

The base class for all views is vtkm: :rendering::View. View is an abstract class, and you must choose one
of the two provided subclasses, vtkm: :rendering: :View3D and vtkm: :rendering: :View2D, depending on the
type of data being presented. (All three classes are defined in the vtkm/rendering/View.h header file.) Both
View3D and View2D take a Scene, a Mapper, and a Canvas as arguments to their constructor.

Example 5.6: Constructing a View.

1 vtkm::rendering::Actor actor(surfaceData.GetCellSet (),

2 surfaceData.GetCoordinateSystem (),

3 surfaceData.GetField ("RandomPointScalars"));
4

5 vtkm::rendering::Scene scene;

6 scene.AddActor (actor);

7

8 vtkm::rendering::MapperGL mapper;

9 vtkm::rendering::CanvasGL canvas;

10

11 gViewPointer = new vtkm::rendering::View3D(scene, mapper, canvas);
12 gViewPointer ->Initialize ();

The View constructors also take an optional fourth argument for the background color. The background color
(like other colors) is specified using the vtkm: :rendering: :Color helper class, which manages the red, green,
and blue color channels as well as an optional alpha channel. These channel values are given as floating point
values between 0 and 1.

Example 5.7: Creating a View with a background color.

1 new vtkm::rendering::View3D(
2 scene, mapper, canvas, vtkm::rendering::Color(1.0f, 1.0f, 1.0£f));

Once the View is created but before it is used to render, the Initialize method should be called. This is
demonstrated in Example 5.6.

Once the Initialize method is called, the View is ready to render the scene. This happens by calling the Paint
method, which will render the data into the contained canvas. When using GLUT, as in Example 5.3, or with
most other GUI-based systems, Paint is called in the display callback.

Example 5.8: Using Canvas: :Paint in a display callback.
void DisplayCallback ()
{
gViewPointer ->Paint () ;

glutSwapBuffers ();
}

Tk W N~

5.5 Manipulating the Camera

The vtkm: :rendering: :View uses an object called vtkm::rendering: :Camera to describe the vantage point
from which to draw the geometry. The camera can be retrieved from the View’s GetCamera method. That
retrieved camera can be directly manipulated or a new camera can be provided by calling SetCamera on the
View.
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A Camera operates in one of two major modes: 2D mode or 3D mode. 2D mode is designed for looking at flat
geometry (or close to flat geometry) that is parallel to the x-y plane. 3D mode provides the freedom to place the
camera anywhere in 3D space. The different modes can be set with SetModeTo2D and SetModeTo3D, respectively.
The interaction with the camera in these two modes is very different.

5.5.1 2D Camera Mode

The 2D camera is restricted to looking at some region of the x-y plane.

View Range

The vantage point of a 2D camera can be specified by simply giving the region in the x-y plane to look at. This
region is specified by calling SetViewRange2D on Camera. This method takes the left, right, bottom, and top of
the region to view. Typically these are set to the range of the geometry in world space as shown in Figure 5.2.
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(X Min) (X Max)

Figure 5.2: The view range bounds to give a Camera.

There are 3 overloaded versions of the SetViewRange2D method. The first version takes the 4 range values, left,
right, bottom, and top, as separate arguments in that order. The second version takes two vtkm: :Range objects
specifying the range in the x and y directions, respectively. The third version trakes a single vtkm: :Bounds
object, which completely specifies the spatial range. (The range in z is ignored.) The Range and Bounds objects
are documented later in Sections 6.4.4 and 6.4.5, respectively.

Pan
A camera pan moves the viewpoint left, right, up, or down. A camera pan is performed by calling the Pan
method on Camera. Pan takes two arguments: the amount to pan in x and the amount to pan in y.

The pan is given with respect to the projected space. So a pan of 1 in the x direction moves the camera to focus
on the right edge of the image whereas a pan of —1 in the x direction moves the camera to focus on the left edge
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of the image. When using Pan to respond to mouse movements, a natural pan will divide the distance traveled
by the mouse pointer by the width and height of the screen as demonstrated in the following example.

Example 5.9: Pan the view based on mouse movements.

1 | void DoMousePan(vtkm::rendering::View &view,
2 vtkm::Id mouseStartX,
3 vtkm::Id mouseStartY,
4 vtkm::Id mouseEndX,
5 vtkm::Id mouseEndY)
6 | {
7 vtkm::Id screenWidth = view.GetCanvas().GetWidth ();
8 vtkm::Id screenHeight = view.GetCanvas ().GetHeight ();
9
10 // Convert the mouse position coordinates, given in pixels from 0 to
11 // width/height, to normalized screen coordinates from -1 to 1. Note that y
12 // screen coordinates are usually given from the top down whereas our
13 // geometry transforms are given from bottom up, so you have to reverse the y
14 // coordiantes.
15 vtkm::Float32 startX = (2.0f*mouseStartX)/screenWidth - 1.0f;
16 vtkm::Float32 startY = -((2.0f*mouseStartY)/screenHeight - 1.0f);
17 vtkm::Float32 endX = (2.0f*mouseEndX)/screenWidth - 1.0f;
18 vtkm::Float32 endY = -((2.0f*mouseEndY)/screenHeight - 1.0f);
19
20 view.GetCamera () .Pan(endX-startX, endY-startY);
21 |}
Zoom

A camera zoom draws the geometry larger or smaller. A camera zoom is performed by calling the Zoom method
on Camera. Zoom takes a single argument specifying the zoom factor. A positive number draws the geometry
larger (zoom in), and larger zoom factor results in larger geometry. Likewise, a negative number draws the
geometry smaller (zoom out). A zoom factor of 0 has no effect.

When using Zoom to respond to mouse movements, a natural zoom will divide the distance traveled by the mouse
pointer by the width or height of the screen as demonstrated in the following example.

Example 5.10: Zoom the view based on mouse movements.

1 | void DoMouseZoom(vtkm::rendering::View &view,

2 vtkm::Id mouseStartY,

3 vtkm::Id mouseEndY)

4 | {

5 vtkm::Id screenHeight = view.GetCanvas ().GetHeight ();

6

7 // Convert the mouse position coordinates, given in pixels from O to height,
8 // to normalized screen coordinates from -1 to 1. Note that y screen

9 // coordinates are usually given from the top down whereas our geometry
10 // transforms are given from bottom up, so you have to reverse the y

11 // coordiantes.

12 vtkm::Float32 startY = -((2.0f*mouseStartY)/screenHeight - 1.0f);

13 vtkm::Float32 endY = -((2.0f*mouseEndY)/screenHeight - 1.0f);

14

15 view.GetCamera ().Zoom(endY-startY);

16 |}

5.5.2 3D Camera Mode

The 3D camera is a free-form camera that can be placed anywhere in 3D space and can look in any direction.
The projection of the 3D camera is based on the pinhole camera model in which all viewing rays intersect a
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single point. This single point is the camera’s position.

Position and Orientation

The position of the camera, which is the point where the observer is viewing the scene, can be set with the
SetPosition method of Camera. The direction the camera is facing is specified by giving a position to focus
on. This is called either the “look at” point or the focal point and is specified with the SetLookAt method of
Camera. Figure 5.3 shows the relationship between the position and look at points.

Clipping
Range
Near

Clipping
Range
Far

Figure 5.3: The position and orientation parameters for a Camera.

In addition to specifying the direction to point the camera, the camera must also know which direction is
considered “up.” This is specified with the view up vector using the SetViewUp method in Camera. The view up
vector points from the camera position (in the center of the image) to the top of the image. The view up vector
in relation to the camera position and orientation is shown in Figure 5.3.

Another important parameter for the camera is its field of view. The field of view specifies how wide of a region
the camera can see. It is specified by giving the angle in degrees of the cone of visible region emanating from
the pinhole of the camera to the SetField0fView method in the Camera. The field of view angle in relation to
the camera orientation is shown in Figure 5.3. A field of view angle of 60° usually works well.

Finally, the camera must specify a clipping region that defines the valid range of depths for the object. This is
a pair of planes parallel to the image that all visible data must lie in. Each of these planes is defined simply
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by their distance to the camera position. The near clip plane is closer to the camera and must be in front of
all geometry. The far clip plane is further from the camera and must be behind all geometry. The distance to
both the near and far planes are specified with the SetClippingRange method in Camera. Figure 5.3 shows the
clipping planes in relationship to the camera position and orientation.

Example 5.11: Directly setting vtkm: :rendering: : Camera position and orientation.

1 camera.SetPosition(vtkm:: make_Vec (10.0, 6.0, 6.0));
2 camera.SetLookAt (vtkm::make_Vec (0.0, 0.0, 0.0));
3 camera.SetViewUp (vtkm::make_Vec (0.0, 1.0, 0.0));
4 camera.SetField0fView (60.0);
5 camera.SetClippingRange (0.1, 100.0);
Movement

In addition to specifically setting the position and orientation of the camera, vtkm: :rendering: : Camera contains
several convenience methods that move the camera relative to its position and look at point.

Two such methods are elevation and azimuth, which move the camera around the sphere centered at the look at
point. Elevation raises or lowers the camera. Positive values raise the camera up (in the direction of the view
up vector) whereas negative values lower the camera down. Azimuth moves the camera around the look at point
to the left or right. Positive values move the camera to the right whereas negative values move the camera to
the left. Both Elevation and Azimuth specify the amount of rotation in terms of degrees. Figure 5.4 shows the
relative movements of Elevation and Azimuth.

Elevation

Azimuth

Figure 5.4: Camera movement functions relative to position and orientation.

Example 5.12: Moving the camera around the look at point.

1 view.GetCamera (). Azimuth (45.0);
2 view.GetCamera () .Elevation(45.0);
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The Elevation and Azimuth methods change the position of the camera, but not the view up vector. This
can cause some wild camera orientation changes when the direction of the camera view is near parallel to
the view up vector, which often happens when the elevation is raised or lowered by about 90 degrees.

In addition to rotating the camera around the look at point, you can move the camera closer or further from the
look at point. This is done with the Dolly method. The Dolly method takes a single value that is the factor
to scale the distance between camera and look at point. Values greater than one move the camera away, values
less than one move the camera closer. The direction of dolly movement is shown in Figure 5.4.

Finally, the Roll method rotates the camera around the viewing direction. It has the effect of rotating the
rendered image. The Roll method takes a single value that is the angle to rotate in degrees. The direction of
roll movement is shown in Figure 5.4.

Interactive Rotations

A common and important mode of interaction with 3D views is to allow the user to rotate the object under
inspection by dragging the mouse. To facilitate this type of interactive rotation, vtkm: :rendering: :Camera
provides a convenience method named TrackballRotate. The TrackballRotate method takes a start and end
position of the mouse on the image and rotates viewpoint as if the user grabbed a point on a sphere centered in
the image at the start position and moved under the end position.

The TrackballRotate method is typically called from within a mouse movement callback. The callback must
record the pixel position from the last event and the new pixel position of the mouse. Those pixel positions must
be normalized to the range -1 to 1 where the position (-1,-1) refers to the lower left of the image and (1,1) refers
to the upper right of the image. The following example demonstrates the typical operations used to establish
rotations when dragging the mouse.

Example 5.13: Interactive rotations through mouse dragging with Camera: :TrackballRotate.

1 | void DoMouseRotate(vtkm::rendering::View &view,

2 vtkm::Id mouseStartX,

3 vtkm::Id mouseStartyY,

4 vtkm::Id mouseEndX,

5 vtkm::Id mouseEndY)

6 | {

7 vtkm::Id screenWidth = view.GetCanvas ().GetWidth();

8 vtkm::Id screenHeight = view.GetCanvas ().GetHeight ();

9

10 // Convert the mouse position coordinates, given in pixels from O to
11 // width/height, to normalized screen coordinates from -1 to 1. Note that y
12 // screen coordinates are usually given from the top down whereas our
13 // geometry transforms are given from bottom up, so you have to reverse the y
14 // coordiantes.

15 vtkm::Float32 startX = (2.0f*mouseStartX)/screenWidth - 1.0f;

16 vtkm::Float32 startY = -((2.0f*mouseStartY)/screenHeight - 1.0f);

17 vtkm::Float32 endX = (2.0f*mouseEndX)/screenWidth - 1.0f;

18 vtkm::Float32 endY = -((2.0f*mouseEndY)/screenHeight - 1.0f);

19

20 view.GetCamera (). TrackballRotate (startX, startY, endX, endY);

21 |}
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Pan

A camera pan moves the viewpoint left, right, up, or down. A camera pan is performed by calling the Pan
method on Camera. Pan takes two arguments: the amount to pan in x and the amount to pan in y.

The pan is given with respect to the projected space. So a pan of 1 in the x direction moves the camera to focus
on the right edge of the image whereas a pan of —1 in the x direction moves the camera to focus on the left edge
of the image. When using Pan to respond to mouse movements, a natural pan will divide the distance traveled
by the mouse pointer by the width and height of the screen as demonstrated in the following example.

Example 5.14: Pan the view based on mouse movements.

1 | void DoMousePan(vtkm::rendering::View &view,

2 vtkm::Id mouseStartX,

3 vtkm::Id mouseStartY,

4 vtkm::Id mouseEndX,

5 vtkm::Id mouseEndY)

6 | {

7 vtkm::Id screenWidth = view.GetCanvas().GetWidth();

8 vtkm::Id screenHeight = view.GetCanvas().GetHeight ();

9

10 // Convert the mouse position coordinates, given in pixels from O to
11 // width/height, to normalized screen coordinates from -1 to 1. Note that y
12 // screen coordinates are usually given from the top down whereas our
13 // geometry transforms are given from bottom up, so you have to reverse the y
14 // coordiantes.

15 vtkm::Float32 startX = (2.0f*mouseStartX)/screenWidth - 1.0f;

16 vtkm::Float32 startY = -((2.0f*mouseStartY)/screenHeight - 1.0f);

17 vtkm::Float32 endX = (2.0f*mouseEndX)/screenWidth - 1.0f;

18 vtkm::Float32 endY = -((2.0f*mouseEndY)/screenHeight - 1.0f);

19

20 view.GetCamera () .Pan(endX-startX, endY-startY);

21 |}

Pan operates in image space, not world space. Panning does not change the camera position or orientation. Thus
the look at point will be off center with respect to the image.

Zoom

A camera zoom draws the geometry larger or smaller. A camera zoom is performed by calling the Zoom method
on Camera. Zoom takes a single argument specifying the zoom factor. A positive number draws the geometry
larger (zoom in), and larger zoom factor results in larger geometry. Likewise, a negative number draws the
geometry smaller (zoom out). A zoom factor of 0 has no effect.

When using Zoom to respond to mouse movements, a natural zoom will divide the distance traveled by the mouse
pointer by the width or height of the screen as demonstrated in the following example.

Example 5.15: Zoom the view based on mouse movements.

1 | void DoMouseZoom(vtkm::rendering::View &view,

2 vtkm::Id mouseStartY,

3 vtkm::Id mouseEndY)

4141

5 vtkm::Id screenHeight = view.GetCanvas().GetHeight ();

6

7 // Convert the mouse position coordinates, given in pixels from O to height,
8 // to normalized screen coordinates from -1 to 1. Note that y screen

9 // coordinates are usually given from the top down whereas our geometry
10 // transforms are given from bottom up, so you have to reverse the y

11 // coordiantes.

12 vtkm::Float32 startY = -((2.0f*mouseStartY)/screenHeight - 1.0f);
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13 vtkm::Float32 endY = -((2.0f*mouseEndY)/screenHeight - 1.0f);
14

15 view.GetCamera ().Zoom(endY-startY);

16 | }

Zoom operates in image space, not world space. Zooming differs from Dolly in that the reported position of the
camera does not change. Instead, the image gets magnified or shrunk.

Reset

Setting a specific camera position and orientation can be frustrating, particularly when the size, shape, and
location of the geometry is not known a priori. Typically this involves querying the data and finding a good
camera orientation.

To make this process simpler, vtkm: : rendering: : Camera has a convenience method named ResetToBounds that
automatically positions the camera based on the spatial bounds of the geometry. The most expedient method to
find the spatial bounds of the geometry being rendered is to get the vtkm: :rendering: : Scene object and call
GetSpatialBounds. The Scene object can be retrieved from the vtkm: :rendering: :View, which, as described
in Section 5.4, is the central object for managing rendering.

Example 5.16: Resetting a Camera to view geometry.

1 | void ResetCamera(vtkm::rendering::View &view)

2 | {

3 vtkm::Bounds bounds = view.GetScene().GetSpatialBounds ();
4 view.GetCamera () .ResetToBounds (bounds) ;

5}

The ResetToBounds method operates by placing the look at point in the center of the bounds and then placing
the position of the camera relative to that look at point. The position is such that the view direction is the
same as before the call to ResetToBounds and the distance between the camera position and look at point has
the bounds roughly fill the rendered image. This behavior is a convenient way to update the camera to make
the geometry most visible while still preserving the viewing position. If you want to reset the camera to a new
viewing angle, it is best to set the camera to be pointing in the right direction and then calling ResetToBounds
to adjust the position.

Example 5.17: Resetting a Camera to be axis aligned.
view.GetCamera().SetPosition(vtkm::make_Vec (0.0, 0.0, 0.0));
view.GetCamera ().SetLookAt (vtkm::make_Vec (0.0, 0.0, -1.0));
view.GetCamera () .SetViewUp (vtkm::make_Vec (0.0, 1.0, 0.0));
vtkm::Bounds bounds = view.GetScene().GetSpatialBounds ();
view.GetCamera () .ResetToBounds (bounds);
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5.6 Color Tables

An important feature of VIK-m’s rendering units is the ability to pseudocolor objects based on scalar data.
This technique maps each scalar to a potentially unique color. This mapping from scalars to colors is defined
by a vtkm::rendering::ColorTable object. A ColorTable can be specified as an optional argument when
constructing a vtkm: :rendering: :Actor. (Use of Actors is discussed in Section 5.2.)

Example 5.18: Specifying a ColorTable for an Actor.

1 vtkm::rendering::Actor actor(surfaceData.GetCellSet (),

2 surfaceData.GetCoordinateSystem(),

3 surfaceData.GetField ("RandomPointScalars"),
4 vtkm::rendering::ColorTable ("thermal"));
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The easiest way to create a ColorTable is to provide the name of one of the many predefined sets of color
provided by VTK-m. A list of all available predefined color tables is provided below.

Wl  cool2warm A color table designed to be perceptually even, to work well on shaded 3D
surfaces, and to generally perform well across many uses. This is also the
default color map and will be used if no ColorTable is given to an Actor
or if “default” is specified.

blue A monochromatic blue color map.
orange A monochromatic orange color map.
[ Wl temperature A very saturated diverging color map.
BT T ainbow There have been many scientific perceptual studies on the effectiveness of

different color maps, and this rainbow color map is by far the most studied.
These perceptual studies uniformly agree that this rainbow color map is
terrible. Never use it.

B 0 B levels A map of 5 distinct colors.

Y T  dense This is similar to the rainbow color map but with an intentional variation in
brightness. This probably makes the map more effective, but not by much.

Il E P sharp A map of 11 fairly distinct colos.

B T thermal A diverging color map of heat-based colors.

[T | oL An isoluminant (constant brightness) color map of varying hues. Isolumi-

nant color maps are sometimes recommended for 3D surfaces, but they have
poor perceptual resolution.

R CubicYF A modification to the rainbow color map to make it more perceptually
uniform. This corrects some (but not all) of the problems with the rainbow
color map.

CubicL Similar to CubicYF but extends the hues to red at the expense of some
perceptual non-linearity.
LinearL Runs throught the same hues as the rainbow color map but also adjusts the

brightness from minimum (black) to maximum (white) in a perceptually
linear manner. This is sometimes referred to as the Kindlmann color map.

LinLhot Based on the colors for black body radiation, but modified to be perceptu-
ally linear.

" PuRd A sequential color map from unsaturated purple to red.
W Blues A sequential color map of blue varied by saturation.
" BuGn A sequential color map from unsaturated blue to green.
" BuPu A sequential color map from unsaturated blue to purple.

W GnBu A sequential color map from unsaturated green to blue.
W Greens A sequential color map of green varied by saturation.

T Greys A sequential color map of grays of different lightness.
W Oranges A sequential color map of orange varied by saturation.
" OrRd A sequential color map from unsaturated orange to red.
W PuBu A sequential color map from unsaturated purple to blue.
W PuBuGn A sequential color map from unsaturated purple to blue to green.

" PuRd A sequential color map from unsaturated purple to red.
W Purples A sequential color map of purple varied by saturation.
W RdPu A sequential color map from unsaturated red tu purple.

W  Reds A sequential color map of red varied by saturation.

T  Y1GnBu A sequential color map from yellow to green to blue.
T YiGn A sequential color map from yellow to green.

W YIOrBr A sequential color map from yellow to orange to brown.
W YIOrRd A sequential color map from yellow to orange to red.
Bl B:BG A diverging color map from brown to greenish blue.
M PiYG A diverging color map from pink to yellowish green.

| |

>

Chapter 5. Rendering



5.6. Color Tables

I Al PRGn
B O PO
= Jll RdBu
[ Ml RdGy
[ Ml RdYIBu
| M RdYIGn
[ W Spectral
B
EEE OE 1 Paied
Pastell
Pastel2
B W Setl
I Set2
I ] Set3
| B Accent

A diverging color map from purple to green.

A diverging color map from orange to purple.

A diverging color map from red to blue.

A diverging color map from red to gray.

A diverging color map from red to blue through yellow.

A diverging color map from red to green through yellow.

A diverging color map incorporating most of the spectral hues.

A collection of 8 distinct dark colors.

A collection of 12 distinct colors paired into light and dark versions of 6

different hues.
A collection of 9 distinct pastel (light) colors.

A collection of 8 distinct pastel (light) colors.
A collection of 9 distinct colors.

A collection of 8 distinct colors.

A collection of 12 distinct colors.

A collection of 8 colors.

[THERE IS MORE FUNCTIONALITY TO DOCUMENT IN ColorTable. IN PARTICULAR, BUILDING COLOR TABLES
BY ADDING CONTROL POINTS. HOWEVER, I AM NOT BOTHERING TO DOCUMENT THAT RIGHT NOW BECAUSE
(1) I DON’T THINK MANY PEOPLE WILL USE IT AND (2) IT IS PRETTY CLEAR FROM THE DOXYGEN.]
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CHAPTER
SIX

BASIC PROVISIONS

This section describes the core facilities provided by VIK-m. These include macros, types, and classes that
define the environment in which code is run, the core types of data stored, and template introspection. We also
start with a description of package structure used by VTK-m.

6.1 General Approach

VTK-m is designed to provide a pervasive parallelism throughout all its visualization algorithms, meaning that
the algorithm is designed to operate with independent concurrency at the finest possible level throughout. VTK-
m provides this pervasive parallelism by providing a programming construct called a worklet, which operates on
a very fine granularity of data. The worklets are designed as serial components, and VI'K-m handles whatever
layers of concurrency are necessary, thereby removing the onus from the visualization algorithm developer.
Worklet operation is then wrapped into filters, which provide a simplified interface to end users.

A worklet is essentially a small functor or kernel designed to operate on a small element of data. (The name
“worklet” means a small amount of work. We mean small in this sense to be the amount of data, not necessarily
the amount of instructions performed.) The worklet is constrained to contain a serial and stateless function.
These constraints form three critical purposes. First, the constraints on the worklets allow VTK-m to schedule
worklet invocations on a great many independent concurrent threads and thereby making the algorithm per-
vasively parallel. Second, the constraints allow VIK-m to provide thread safety. By controlling the memory
access the toolkit can insure that no worklet will have any memory collisions, false sharing, or other parallel pro-
gramming pitfalls. Third, the constraints encourage good programming practices. The worklet model provides
a natural approach to visualization algorithm design that also has good general performance characteristics.

VTK-m allows developers to design algorithms that are run on massive amounts of threads. However, VI'K-m
also allows developers to interface to applications, define data, and invoke algorithms that they have written or
are provided otherwise. These two modes represent significantly different operations on the data. The operating
code of an algorithm in a worklet is constrained to access only a small portion of data that is provided by the
framework. Conversely, code that is building the data structures needs to manage the data in its entirety, but
has little reason to perform computations on any particular element.

Consequently, VI'K-m is divided into two environments that handle each of these use cases. Each environment
has its own API, and direct interaction between the environments is disallowed. The environments are as follows.

Execution Environment This is the environment in which the computational portion of algorithms are exe-
cuted. The API for this environment provides work for one element with convenient access to information
such as connectivity and neighborhood as needed by typical visualization algorithms. Code for the execu-
tion environment is designed to always execute on a very large number of threads.



6.2. Package Structure

Control Environment This is the environment that is used to interface with applications, interface with
I/O devices, and schedule parallel execution of the algorithms. The associated API is designed for users
that want to use VI'K-m to analyze their data using provided or supplied filters. Code for the control
environment is designed to run on a single thread (or one single thread per process in an MPI job).

These dual programming environments are partially a convenience to isolate the application from the execution
of the worklets and are partially a necessity to support GPU languages with host and device environments. The
control and execution environments are logically equivalent to the host and device environments, respectively, in
CUDA and other associated GPU languages.
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Figure 6.1: Diagram of the VI'K-m framework.

Figure 6.1 displays the relationship between the control and execution environment. The typical workflow when
using VTK-m is that first the control thread establishes a data set in the control environment and then invokes a
parallel operation on the data using a filter. From there the data is logically divided into its constituent elements,
which are sent to independent invocations of a worklet. The worklet invocations, being independent, are run on
as many concurrent threads as are supported by the device. On completion the results of the worklet invocations
are collected to a single data structure and a handle is returned back to the control environment.

Are you only planning to use filters in VITK-m that already exist? If so, then everything you work with will
be in the control environment. The execution environment is only used when implementing algorithms for
filters.

6.2 Package Structure

VTK-m is organized in a hierarchy of nested packages. VI K-m places definitions in namespaces that correspond
to the package (with the exception that one package may specialize a template defined in a different namespace).

The base package is named vtkm. All classes within VTK-m are placed either directly in the vtkm package or in
a package beneath it. This helps prevent name collisions between VTK-m and any other library.

As described in Section 6.1, the VI K-m API is divided into two distinct environments: the control environment
and the execution environment. The API for these two environments are located in the vtkm: : cont and vtkm: : -
exec packages, respectively. Items located in the base vtkm namespace are available in both environments.
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Although it is conventional to spell out names in identifiers (see the coding conventions in Chapter A), there is
an exception to abbreviate control and execution to cont and exec, respectively. This is because it is also part of
the coding convention to declare the entire namespace when using an identifier that is part of the corresponding
package. The shorter names make the identifiers easier to read, faster to type, and more feasible to pack lines
in 80 column displays. These abbreviations are also used instead of more common abbreviations (e.g. ctrl for
control) because, as part of actual English words, they are easier to type.

Further functionality in VTK-m is built on top of the base vtkm, vtkm::cont, and vtkm::exec packages.
Support classes for building worklets, described in Chapter 14, are contained in the vtkm: :worklet package.
Other facilities in VTK-m are provided in their own packages such as vtkm: :io, vtkm::filter, and vtkm::-
rendering. These packages are described in Part I.

VTK-m contains code that uses specialized compiler features, such as those with CUDA, or libraries, such as Intel
Threading Building Blocks, that will not be available on all machines. Code for these features are encapsulated
in their own packages under the vtkm: : cont namespace: vtkm: :cont::cuda and vtkm: :cont: :tbb.

VTK-m contains OpenGL interoperability that allows data generated with VIK-m to be efficiently transferred
to OpenGL objects. This feature is encapsulated in the vtkm: : opengl package.

Figure 6.2 provides a diagram of the VTK-m package hierarchy.
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Figure 6.2: VTK-m package hierarchy.

By convention all classes will be defined in a file with the same name as the class name (with a .h extension)
located in a directory corresponding to the package name. For example, the vtkm: : cont: : ArrayHandle class is
found in the vtkm/cont/ArrayHandle.h header. There are, however, exceptions to this rule. Some smaller classes
and types are grouped together for convenience. These exceptions will be noted as necessary.

Within each namespace there may also be internal and detail sub-namespaces. The internal namespaces
contain features that are used internally and may change without notice. The detail namespaces contain
features that are used by a particular class but must be declared outside of that class. Users should generally
ignore classes in these namespaces.

6.3 Function and Method Environment Modifiers

Any function or method defined by VTK-m must come with a modifier that determines in which environments
the function may be run. These modifiers are C macros that VTK-m uses to instruct the compiler for which
architectures to compile each method. Most user code outside of VITK-m need not use these macros with the
important exception of any classes passed to VIK-m. This occurs when defining new worklets, array storage,
and device adapters.

VTK-m provides three modifier macros, VTKM_CONT, VTKM_EXEC, and VTKM_EXEC_CONT, which are used to declare
functions and methods that can run in the control environment, execution environment, and both environments,
respectively. These macros get defined by including just about any VTK-m header file, but including vtkm /-
Types.h will ensure they are defined.

The modifier macro is placed after the template declaration, if there is one, and before the return type for the
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function. Here is a simple example of a function that will square a value. Since most types you would use this
function on have operators in both the control and execution environments, the function is declared for both
places.

Example 6.1: Usage of an environment modifier macro on a function.
template<typename ValueType>
VTKM_EXEC_CONT
ValueType Square (const ValueType &inValue)
{
return inValue * inValue;

}

S UL W N

The primary function of the modifier macros is to inject compiler-specific keywords that specify what architecture
to compile code for. For example, when compiling with CUDA, the control modifiers have __host__ in them
and execution modifiers have __device__ in them.

There is one additional modifier macro that is not used for functions but rather used when declaring a constant
data object that is used in the execution environment. This macro is named VTKM_EXEC_CONSTANT and is used
to declare a constant lookup table used when executing a worklet. Its primary reason for existing is to add
a __constant__ keyword when compiling with CUDA. This modifier currently has no effect on any other
compiler.

Finally, it is sometimes the case that a function declared as VTKM_EXEC_CONT has to call a method declared as
VTKM_EXEC or VTKM_CONT. Generally functions should not call other functions with incompatible control/exe-
cution modifiers, but sometimes a generic VTKM_EXEC_CONT function calls another function determined by the
template parameters, and the valid environments of this subfunction may be inconsistent. For cases like this, you
can use the VTKM_SUPPRESS_EXEC_WARNINGS to tell the compiler to ignore the inconsistency when resolving the
template. When applied to a templated function or method, VTKM_SUPPRESS_EXEC_WARNINGS is placed before
the template keyword. When applied to a non-templated method in a templated class, VTKM_SUPPRESS_EXEC_-
WARNINGS is placed before the environment modifier macro.

Example 6.2: Suppressing warnings about functions from mixed environments.

1 | VTKM_SUPPRESS_EXEC_WARNINGS

2 | template<typename Functor>

3 | VTKM_EXEC_CONT

4 | void OverlyComplicatedForLoop (Functor &functor, vtkm::Id numInterations)
5 1

6 for (vtkm::Id index = 0; index < numInterations; index++)

7 {

8 functor () ;

9 }

10 | ¥

6.4 Core Data Types

Except in rare circumstances where precision is not a concern, VIK-m does not directly use the core C types
like int, float, and double. Instead, VTK-m provides its own core types, which are declared in vtkm/Types.h.

6.4.1 Single Number Types

To ensure portability across different compilers and architectures, VI'K-m provides typedefs for the following
basic types with explicit precision: vtkm: :Float32, vtkm: :Float64, vtkm: :Int8, vtkm: :Int16, vtkm: : Int32,
vtkm: :Int64, vtkm::UInt8, vtkm::UInt16, vtkm::UInt32, and vtkm::UInt64. Under most circumstances
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when using VTK-m (and performing visualization in general) the type of data is determined by the source of the
data or resolved through templates. In the case where a specific type of data is required, these VTK-m—defined
types should be preferred over basic C types like int or float.

Many of the structures in VTK-m require indices to identify elements like points and cells. All indices for arrays
and other lists use the type vtkm: :Id. By default this type is a 32-bit wide integer but can be easily changed
by compile options. The CMake configuration option VTKM_USE_64BIT_IDS can be used to change vtkm: : Id
to be 64 bits wide. This configuration can be overridden by defining the C macro VTKM_USE_64BIT_IDS or
VTKM_NO_64BIT_IDS to force vtkm::Id to be either 64 or 32 bits. These macros must be defined before any
VTK-m header files are included to take effect.

There is also a secondary index type named vtkm::IdComponent that is used to index components of short
vectors (discussed in Section 6.4.2). This type is an integer that might be a shorter width than vtkm: : Id.

There is also the rare circumstance in which an algorithm in VITK-m computes data values for which there is
no indication what the precision should be. For these circumstances, the type vtkm: : FloatDefault is provided.
By default this type is a 32-bit wide floating point number but can be easily changed by compile options. The
CMake configuration option VTKM_USE_DOUBLE_PRECISION can be used to change vtkm: :FloatDefault to
be 64 bits wide. This configuration can be overridden by defining the C macro VTKM_USE_DOUBLE_PRECISION
or VTKM_NO_DOUBLE_PRECISION to force vtkm: :FloatDefault to be either 64 or 32 bits. These macros must
be defined before any VTK-m header files are included to take effect.

For convenience, you can include either vtkm/internal /ConfigureFor32.h or vtkm/internal /ConfigureFor64.h to force
both vtkm: :Id and vtkm::FloatDefault to be 32 or 64 bits.

6.4.2 Vector Types

Visualization algorithms also often require operations on short vectors. Arrays indexed in up to three dimensions
are common. Data are often defined in 2-space and 3-space, and transformations are typically done in homoge-
neous coordinates of length 4. To simplify these types of operations, VI K-m provides the vtkm: :Vec<T,Size>
templated type, which is essentially a fixed length array of a given type.

The default constructor of vtkm::Vec objects leaves the values uninitialized. All vectors have a constructor
with one argument that is used to initialize all components. All vtkm::Vec objects with a size of 4 or less is
specialized to also have a constructor that allows you to set the individual components. Likewise, there is a
vtkm: :make_Vec function that builds initialized vector types of up to 4 components. Once created, you can use
the bracket operator to get and set component values with the same syntax as an array.

Example 6.3: Creating vector types.

1 vtkm::Vec<vtkm::Float32,3> A(1); // A is (1, 1, 1)
2 A[1] = 2; // A is now (1, 2, 1)
3 vtkm::Vec<vtkm::Float32,3> B(1, 2, 3); // B is (1, 2, 3)
4 vtkm::Vec<vtkm::Float32,3> C = vtkm::make_Vec(3, 4, 5); // C is (3, 4, 5)

The types vtkm: :Id2 and vtkm: :Id3 are typedefs of vtkm::Vec<vtkm::Id,2> and vtkm::Vec<vtkm::Id,2>.
These are used to index arrays of 2 and 3 dimensions, which is common.

Vectors longer than 4 are also supported, but independent component values must be set after construction.
The vtkm: :Vec class contains a constant named NUM_COMPONENTS to specify how many components are in the
vector. The class also has a GetNumberOfComponents method that also returns the number of components that
are in the vector.

Example 6.4: A Longer Vector.

1 vtkm::Vec<vtkm::Float64, 5> A(2); // A is (2, 2, 2, 2, 2)
2 for (vtkm::IdComponent index = 1; index < A.NUM_COMPONENTS; index++)
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3 {

4 Alindex] = A[index-1] * 1.5;

5 }

6 // A is now (2, 3, 4.5, 6.75, 10.125)

vtkm: : Vec supports component-wise arithmetic using the operators for plus (+), minus (=), multiply (*), and
divide (/). It also supports scalar to vector multiplication with the multiply operator. The comparison operators
equal (==) is true if every pair of corresponding components are true and not equal (!=) is true otherwise. A
special vtkm: :dot function is overloaded to provide a dot product for every type of vector.

Example 6.5: Vector operations.

1 vtkm::Vec<vtkm::Float32,3> A(1, 2, 3);

2 vtkm::Vec<vtkm::Float32,3> B(4, 5, 6.5);

3 vtkm::Vec<vtkm::Float32,3> C = A + B; // C is (5, 7, 9.5)
4 vtkm::Vec<vtkm::Float32,3> D = 2.0f *x C; // D is (10, 14, 19)
5 vtkm::Float32 s = vtkm::dot(A, B); // s is 33.5

6 bool bl = (A == B); // bl is false

7 bool b2 = (A == vtkm::make_Vec(1l, 2, 3)); // b2 is true

These operators, of course, only work if they are also defined for the component type of the vtkm: :Vec. For
example, the multiply operator will work fine on objects of type vtkm: : Vec<char,3>, but the multiply operator
will not work on objects of type vtkm::Vec<std::string,3> because you cannot multiply objects of type
std::string.

In addition to generalizing vector operations and making arbitrarily long vectors, vtkm: : Vec can be repurposed
for creating any sequence of homogeneous objects. Here is a simple example of using vtkm: :Vec to hold the
state of a polygon.

Example 6.6: Repurposing a vtkm: :Vec.
1 vtkm::Vec<vtkm::Vec<vtkm::Float32,2>, 3> equilateralTriangle(
2 vtkm::make_Vec (0.0, 0.0),
3 vtkm::make_Vec (1.0, 0.0),
4 vtkm::make_Vec (0.5, 0.8660254));

The vtkm: :Vec class provides a convenient structure for holding and passing small vectors of data. However,
there are times when using Vec is inconvenient or inappropriate. For example, the size of vtkm: :Vec must be
known at compile time, but there may be need for a vector whose size is unknown until compile time. Also, the
data populating a vtkm: :Vec might come from a source that makes it inconvenient or less efficient to construct
a vtkm: :Vec. For this reason, VITK-m also provides several Vec-like objects that behave much like vtkm: :Vec
but are a different class. These Vec-like objects have the same interface as vtkm: :Vec except that the NUM_-
COMPONENTS constant is not available on those that are sized at run time. Vec-like objects also come with a
CopyInto method that will take their contents and copy them into a standard Vec class. (The standard Vec
class also has a CopyInto method for consistency.)

The first Vec-like object is vtkm: : VecC, which exposes a C-type array as a Vec. The constructor for vtkm: : VecC
takes a C array and a size of that array. There is also a constant version of VecC named vtkm: : VecCConst, which
takes a constant array and cannot be mutated. The vtkm/Types.h header defines both VecC and VecCConst as
well as multiple versions of vtkm: :make_VecC to easily convert a C array to either a VecC or VecCConst.

The following example demonstrates converting values from a constant table into a vtkm: : VecCConst for further
consumption. The table and associated methods define how 8 points come together to form a hexahedron.

Example 6.7: Using vtkm: : VecCConst with a constant array.
1 | VTKM_EXEC_CONSTANT
2 | static const vtkm::IdComponent HexagonIndexToIJKTable [8][3] = {
3 {0, 0, 0},
4 {1, 0, 01,
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{1, 1, 0},
{ 0’ 1’ 0 }9
{0, 0, 112,
{1, 0, 11},
{1, 1, 1},
{0, 1, 11}
};
VTKM_EXEC_CONSTANT
static const vtkm::IdComponent HexagonIJKToIndexTable [2][2][2] = {
{ // i=0
{0,473}, // j=0
{3, 7% // 3=t
1,
{// i=t
{1,813 // j=
{2,613} // j=t
}
};
VTKM_EXEC

vtkm::VecCConst<vtkm::IdComponent> HexagonIndexToIJK(vtkm::IdComponent index)
{

return vtkm::make_VecC(HexagonIndexToIJKTable [index], 3);
}

VTKM_EXEC
vtkm::IdComponent HexagonIJKToIndex (vtkm::VecCConst<vtkm::IdComponent> ijk)
{

return HexagonIJKToIndexTable[ijk[0]1]1[ijk[1]1]1[ijk[2]1];

}

The vtkm: :VecC and vtkm: :VecCConst classes only hold a pointer to a buffer that contains the data. They
do not manage the memory holding the data. Thus, if the pointer given to vtkm: : VecC or vtkm: : VecCConst
becomes invalid, then using the object becomes invalid. Make sure that the scope of the vtkm: :VecC or

vtkm: : VecCConst does not outlive the scope of the data it points to.

The next Vec-like object is vtkm: :VecVariable, which provides a Vec-like object that can be resized at run time
to a maximum value. Unlike VecC, VecVariable holds its own memory, which makes it a bit safer to use. But
also unlike VecC, you must define the maximum size of VecVariable at compile time. Thus, VecVariable is
really only appropriate to use when there is a predetermined limit to the vector size that is fairly small.

The following example uses a vtkm: : VecVariable to store the trace of edges within a hexahedron. This example
uses the methods defined in Example 6.7.
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Example 6.8: Using vtkm: :VecVariable.

vtkm::VecVariable<vtkm::IdComponent ,4>
HexagonShortestPath(vtkm::IdComponent startPoint, vtkm::IdComponent endPoint)
{
vtkm::VecCConst<vtkm::IdComponent> startIJK = HexagonIndexToIJK(startPoint);
vtkm::VecCConst<vtkm::IdComponent > endIJK = HexagonIndexToIJK(endPoint);

vtkm::Vec<vtkm::IdComponent ,3> currentIJK;
startIJK.CopyInto (currentIJK);
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10 vtkm::VecVariable<vtkm::IdComponent ,4> path;

11 path.Append (startPoint);

12 for (vtkm::IdComponent dimension = 0; dimension < 3; dimension++)
13 {

14 if (currentIJK[dimension] != endIJK[dimension])
15 {

16 currentIJK[dimension] = endIJK[dimension];

17 path.Append (HexagonIJKToIndex (currentIJK));
18 }

19 }

20

21 return path;

22 |}

VTK-m provides further examples of Vec-like objects as well. For example, the vtkm: :VecFromPortal and
vtkm: :VecFromPortalPermute objects allow you to treat a subsection of an arbitrarily large array as a Vec.
These objects work by attaching to array portals, which are described in Section 7.2. Another example of a
Vec-like object is vtkm: : VecRectilinearPointCoordinates, which efficiently represents the point coordinates
in an axis-aligned hexahedron. Such shapes are common in structured grids. These and other data sets are
described in Chapter 12.

6.4.3 Pair

VTK-m defines a vtkm: :Pair<T1,T2> templated object that behaves just like std::pair from the standard
template library. The difference is that vtkm: :Pair will work in both the execution and control environment,
whereas the STL std: :pair does not always work in the execution environment.

The VTK-m version of vtkm: :Pair supports the same types, fields, and operations as the STL version. VTK-m
also provides a vtkm: :make_Pair function for convenience.

6.4.4 Range

VTK-m provides a convenience structure named vtkm: :Range to help manage a range of values. The Range
struct contains two data members, Min and Max, which represent the ends of the range of numbers. Min and
Max are both of type vtkm: :Float64. Min and Max can be directly accessed, but Range also comes with the
following helper functions to make it easier to build and use ranges. Note that all of these functions treat the
minimum and maximum value as inclusive to the range.

IsNonEmpty Returns true if the range covers at least one value.

Contains Takes a single number and returns true if that number is contained within the range.

Length Returns the distance between Min and Max. Empty ranges return a length of 0. Note that if the range
is non-empty and the length is 0, then Min and Max must be equal, and the range contains exactly one
number.

Center Returns the number equidistant to Min and Max. If the range is empty, NaN is returned.

Include Takes either a single number or another range and modifies this range to include the given number or
range. If necessary, the range is grown just enough to encompass the given argument. If the argument is
already in the range, nothing changes.

Union A nondestructive version of Include, which builds a new Range that is the union of this range and the
argument. The + operator is also overloaded to compute the union.
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The following example demonstrates the operation of vtkm: :Range.

Example 6.9: Using vtkm: :Range.

1 vtkm::Range range; // default constructor is empty range
2 bool bl = range.IsNonEmpty(); // bl is false
3
4 range.Include (0.5); // range now is [0.5 .. 0.5]
5 bool b2 = range.IsNonEmpty(); // b2 is true
6 bool b3 = range.Contains(0.5); // b3 is true
7 bool b4 = range.Contains (0.6); // b4 is false
8
9 range.Include (2.0); // range is now [0.5 .. 2]
10 bool b5 = range.Contains (0.5); // b3 is true
11 bool b6 = range.Contains (0.6); // b4 is true
12
13 range.Include (vtkm::Range (-1, 1)); // range is now [-1 .. 2]
14
15 range.Include (vtkm::Range (3, 4)); // range is now [-1 .. 4]
16
17 vtkm::Float64 lower = range.Min; // lower is -1
18 vtkm::Float64 upper = range.Max; // upper is 4
19 vtkm::Float64 length = range.Length(); // length is 5
20 vtkm::Float64 center = range.Center(); // center is 1.5
6.4.5 Bounds

VTK-m provides a convenience structure named vtkm: :Bounds to help manage an axis-aligned region in 3D
space. Among other things, this structure is often useful for representing a bounding box for geometry. The
Bounds struct contains three data members, X, Y, and Z, which represent the range of the bounds along each re-
spective axis. All three of these members are of type vtkm: :Range, which is discussed previously in Section 6.4.4.
X, Y, and Z can be directly accessed, but Bounds also comes with the following helper functions to make it easier
to build and use ranges.

IsNonEmpty Returns true if the bounds cover at least one value.
Contains Takes a vtkm: :Vec of size 3 and returns true if those point coordinates are contained within the range.

Center Returns the point at the center of the range as a vtkm: :Vec<vtkm: :Float64,3>.

Include Takes either a vtkm: :Vec of size 3 or another bounds and modifies this bounds to include the given
point or bounds. If necessary, the bounds are grown just enough to encompass the given argument. If the
argument is already in the bounds, nothing changes.

Union A nondestructive version of Include, which builds a new Bounds that is the union of this bounds and
the argument. The + operator is also overloaded to compute the union.

The following example demonstrates the operation of vtkm: :Bounds.

Example 6.10: Using vtkm: :Bounds.

1 vtkm::Bounds bounds; // default constructor makes empty
2 bool bl = bounds.IsNonEmpty (); // bl is false

3

4 bounds.Include (vtkm::make_Vec (0.5, 2.0, 0.0)); // bounds contains only

5 // the point [0.5, 2, 0]

6 bool b2 = bounds.IsNonEmpty (); // b2 is true

7 bool b3 = bounds.Contains(vtkm::make_Vec (0.5, 2.0, 0.0)); // b3 is true

8 bool b4 = bounds.Contains(vtkm::make_Vec(l, 1, 1)); // b4 is false
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9 bool b5 = bounds.Contains(vtkm::make_Vec (0, 0, 0)); // b5 is false

10

11 bounds.Include (vtkm::make_Vec(4, -1, 2)); // bounds is region [0.5 .. 4] in X,
12 // [-1 .. 2] in Y,
13 // and [0 .. 2] in Z

14 bool b6 = bounds.Contains (vtkm::make_Vec (0.5, 2.0, 0.0)); // b6 is true

15 bool b7 = bounds.Contains(vtkm::make_Vec(1l, 1, 1)); // b7 is true

16 bool b8 = bounds.Contains(vtkm::make_Vec(0, 0, 0)); // b8 is false

17

18 vtkm::Bounds otherBounds (vtkm::make_Vec (0, 0, 0), vtkm::make_Vec(3, 3, 3));

19 // otherBounds is region [0 .. 3] in X, Y, and Z
20 bounds.Include (otherBounds); // bounds is now region [0 .. 4] in X,

21 // [-1 .. 3] in Y,

22 // and [0 .. 3] in Z

23

24 vtkm::Vec<vtkm::Float64 ,3> lower (bounds.X.Min, bounds.Y.Min, bounds.Z.Min);

25 // lower is [0, -1, 0]
26 vtkm::Vec<vtkm::Float64 ,3> upper (bounds.X.Max, bounds.Y.Max, bounds.Z.Max);

27 // upper is [4, 3, 3]

28

29 vtkm::Vec<vtkm::Float64 ,3> center = bounds.Center(); // center is [2, 1, 1.5]

6.5 Traits

When using templated types, it is often necessary to get information about the type or specialize code based
on general properties of the type. VITK-m uses traits classes to publish and retrieve information about types.
A traits class is simply a templated structure that provides typedefs for tag structures, empty types used for
identification. The traits classes might also contain constant numbers and helpful static functions. See Effective
C++ Third Edition by Scott Mayers for a description of traits classes and their uses.

6.5.1 Type Traits

The vtkm: :TypeTraits<T> templated class provides basic information about a core type. These type traits
are available for all the basic C++ types as well as the core VITK-m types described in Section 6.4. vtkm::-
TypeTraits contains the following elements.

NumericTag This type is set to either vtkm: :TypeTraitsRealTag or vtkm: :TypeTraitsIntegerTag to signal
that the type represents either floating point numbers or integers.

DimensionalityTag This type is set to either vtkm: :TypeTraitsScalarTag or vtkm::TypeTraitsVectorTag
to signal that the type represents either a single scalar value or a tuple of values.

The definition of vtkm: : TypeTraits for vtkm: :Float32 could like something like this.

Example 6.11: Definition of vtkm: :TypeTraits<vtkm::Float32>.

1 | namespace vtkm {
2
3 | template<>
4 | struct TypeTraits<vtkm::Float32>
54
6 typedef vtkm::TypeTraitsRealTag NumericTag;
7 typedef vtkm::TypeTraitsScalarTag DimensionalityTag;
8 |1};
9
10 |}
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Here is a simple example of using vtkm: :TypeTraits to implement a generic function that behaves like the
remainder operator (%) for all types including floating points and vectors.
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Example 6.12: Using TypeTraits for a generic remainder.
#include <vtkm/TypeTraits.h>

#include <vtkm/Math.h>

template<typename T>
T AnyRemainder (const T &numerator, const T &denominator);

namespace detail {

template<typename T>
T AnyRemainderImpl (const T &numerator,
const T &denominator,
vtkm::TypeTraitsIntegerTag,
vtkm:: TypeTraitsScalarTag)
{
return numerator % denominator;

}

template<typename T>

T AnyRemainderImpl (const T &numerator,
const T &denominator,
vtkm::TypeTraitsRealTag,
vtkm:: TypeTraitsScalarTag)

{
// The VTK-m math library contains a Remainder function that operates on
// floating point numbers.
return vtkm::Remainder (numerator, denominator);

}

template<typename T, typename NumericTag>

T AnyRemainderImpl (const T &numerator,
const T &denominator,
NumericTag,
vtkm::TypeTraitsVectorTag)

T result;

for (int componentIndex = 0;
componentIndex < T::NUM_COMPONENTS;
componentIndex++)

result [componentIndex] =
AnyRemainder (numerator [componentIndex], denominator [componentIndex]);
}
return result;

}
} // namespace detail

template<typename T>
T AnyRemainder (const T &numerator, const T &denominator)

{
return detail::AnyRemainderImpl (
numerator,
denominator,
typename vtkm::TypeTraits<T>::NumericTag(),
typename vtkm::TypeTraits<T>::DimensionalityTag());
¥
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6.5.2 Vector Traits

The templated vtkm: :Vec class contains several items for introspection (such as the component type and its
size). However, there are other types behave similarly to Vec objects but have different ways to perform this
introspection. For example, VTK-m contains Vec-like objects that essentially behave the same but might have
different features such as a variable number of components. Also, there may be reason to interchangeably use
basic scalar values, like an integer or floating point number, with vectors.

To provide a consistent interface to access these multiple types that represents vectors, the vtkm: : VecTraits<T>
templated class provides information and accessors to vector types. It contains the following elements.

ComponentType This type is set to the type for each component in the vector. For example, a vtkm: :Id3 has
ComponentType defined as vtkm: : Id.

IsSizeStatic This type is set to either vtkm: :VecTraitsTagSizeStatic if the vector has a static number of
components that can be determined at compile time or set to vtkm: :VecTraitsTagSizeVariable if the
size of the vector is determined at run time. If IsSizeStatic is set to VecTraitsTagSizeVariable, then
VecTraits will be missing some information that cannot be determined at compile time.

HasMultipleComponents This type is set to either vtkm: :VecTraitsTagSingleComponent if the vector length
is size 1 or vtkm: :VecTraitsTagMultipleComponents otherwise. This tag can be useful for creating spe-
cialized functions when a vector is really just a scalar. If the vector type is of variable size (that is,
IsSizeStatic is VecTraitsTagSizeVariable), then HasMultipleComponents might be VecTraitsTag-
MultipleComponents even when at run time there is only one component.

NUM_COMPONENTS An integer specifying how many components are contained in the vector. NUM_COMPONENTS is
not available for vector types of variable size (that is, IsSizeStatic is VecTraitsTagSizeVariable).

GetNumber0fComponents A static method that takes an instance of a vector and returns the number of compo-
nents the vector contains. The result of GetNumberOfComponents is the same value of NUM_COMPONENTS
for vector types that have a static size (that is, IsSizeStatic is VecTraitsTagSizeStatic). But unlike
NUM_COMPONENTS, GetNumberOfComponents works for vectors of any type.

GetComponent A static method that takes a vector and returns a particular component.
SetComponent A static method that takes a vector and sets a particular component to a given value.

CopyInto A static method that copies the components of a vector to a vtkm: :Vec.

The definition of vtkm::VecTraits for vtkm: :Id3 could look something like this.

Example 6.13: Definition of vtkm: :VecTraits<vtkm::Id3>.

1 | namespace vtkm {

2

3 | template<>

4 | struct VecTraits<vtkm::Id3>

5 14

6 typedef vtkm::Id ComponentType;

7 static const int NUM_COMPONENTS = 3;

8 typedef vtkm::VecTraitsTagSizeStatic IsSizeStatic;

9 typedef VecTraitsTagMultipleComponents HasMultipleComponents;
10

11 VTKM_EXEC_CONT

12 static vtkm::IdComponent GetNumberOfComponents (const VecType &vec) {
13 return NUM_COMPONENTS;

14 }

15
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VTKM_EXEC_CONT
static vtkm::Id &GetComponent (vtkm::Id3 &vector, int component) {
return vector [component];

}

VTKM_EXEC_CONT
static void SetComponent (vtkm::Id3 &vector, int component, vtkm::Id value) {
vector [component] = value;

}

template<vtkm::IdComponent destSize>
VTKM_EXEC_CONT
static void
CopyInto(const VecType &src, vtkm::Vec<vtkm::Id,destSize> &dest)
{
for (vtkm::IdComponent index = 0;
(index < NUM_COMPONENTS) && (index < OtherSize);
index++)
{
dest [index] = src[index];
}
}
};

} // namespace vtkm

The real power of vector traits is that they simplify creating generic operations on any type that can look like
a vector. This includes operations on scalar values as if they were vectors of size one. The following code uses
vector traits to simplify the implementation of less functors that define an ordering that can be used for sorting
and other operations.
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Example 6.14: Using VecTraits for less functors.
#include <vtkm/VecTraits.h>

// This functor provides a total ordering of vectors. Every compared vector
// will be either less, greater, or equal (assuming all the vector components
// also have a total ordering).
template<typename T>
struct LessTotalOrder
{
VTKM_EXEC_CONT
bool operator () (const T &left, const T &right)
{
for (int index = 0; index < vtkm::VecTraits<T>::NUM_COMPONENTS; index++)
{
typedef typename vtkm::VecTraits<T>::ComponentType ComponentType;
const ComponentType &leftValue =
vtkm::VecTraits<T>::GetComponent (left, index);
const ComponentType &rightValue =
vtkm::VecTraits<T>::GetComponent (right, index);
if (leftValue < rightValue) { return true; }
if (rightValue < leftValue) { return false; }
}
// 1If we are here, the vectors are equal (or at least equivalent).
return false;

}

// This functor provides a partial ordering of vectors. It returns true if and
// only if all components satisfy the less operation. It is possible for

// vectors to be neither less, greater, nor equal, but the transitive closure
// is still valid.

template<typename T>
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32 | struct LessPartialOrder

33 |4

34 VTKM_EXEC_CONT

35 bool operator () (const T &left, const T &right)

36 {

37 for (int index = 0; index < vtkm::VecTraits<T>::NUM_COMPONENTS; index++)
38 {

39 typedef typename vtkm::VecTraits<T>::ComponentType ComponentType;
40 const ComponentType &leftValue =

41 vtkm::VecTraits<T>::GetComponent (left, index);

42 const ComponentType &rightValue =

43 vtkm::VecTraits<T>::GetComponent (right, index);

44 if (!(leftValue < rightValue)) { return false; }

45 }

46 // I1If we are here, all components satisfy less than relation.

47 return true;

48 }

49 | };

6.6 List Tags

VTK-m internally uses template metaprogramming, which utilizes C++ templates to run source-generating
programs, to customize code to various data and compute platforms. Omne basic structure often uses with
template metaprogramming is a list of class names (also sometimes called a tuple or vector, although both of
those names have different meanings in VTK-m).

Many VTK-m users only need predefined lists, such as the type lists specified in Section 6.6.2. Those users
can skip most of the details of this section. However, it is sometimes useful to modify lists, create new lists, or
operate on lists, and these usages are documented here.

VTK-m uses a tag-based mechanism for defining lists, which differs significantly from lists in many other template
metaprogramming libraries such as with boost: :mpl::vector or boost: :vector. Rather than enumerating all
list entries as template arguments, the list is referenced by a single tag class with a descriptive name. The intention
is to make fully resolved types shorter and more readable. (Anyone experienced with template programming
knows how insanely long and unreadable types can get in compiler errors and warnings.)

6.6.1 Building List Tags

List tags are constructed in VITK-m by defining a struct that publicly inherits from another list tags. The base
list tags are defined in the vtkm/ListTag.h header.

The most basic list is defined with vtkm: :ListTagEmpty. This tag represents an empty list.

vtkm: :ListTagBase<T, ...> represents a list of the types given as template parameters. vtkm: :ListTagBase
supports a variable number of parameters with the maximum specified by VTKM_MAX_BASE_LIST.

Finally, lists can be combined together with vtkm: :ListTagJoin<ListTagl,ListTag2>, which concatinates two
lists together.

The following example demonstrates how to build list tags using these base lists classes. Note first that all the
list tags are defined as struct rather than class. Although these are roughly synonymous in C++, struct
inheritance is by default public, and public inheritance is important for the list tags to work. Note second that
these tags are created by inheritance rather than using typedef. Although typedef will work, it will lead to
much uglier type names defined by the compiler.
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Example 6.15: Creating list tags.
#include <vtkm/ListTag.h>

// Placeholder classes representing things that might be in a template
// metaprogram list.

class Foo;

class Bar;

class Baz;

class Qux;

9 | class Xyzzy;
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11 | // The names of the following tags are indicative of the lists they contain.

13 | struct Foolist : vtkm::ListTagBase<Foo> { };

14

15 | struct FooBarList : vtkm::ListTagBase<Foo,Bar> { 1};

16

17 | struct BazQuxXyzzylList : vtkm::ListTagBase<Baz,Qux,Xyzzy> { };

18

19 | struct QuxBazBarFoolList : vtkm::ListTagBase<Qux,Baz,Bar,Foo> { };
20

21 | struct FooBarBazQuxXyzzyList

22 : vtkm::ListTagJoin<FooBarList, BazQuxXyzzyList> { };

6.6.2 Type Lists

One of the major use cases for template metaprogramming lists in VTK-m is to identify a set of potential data
types for arrays. The vtkm/TypeListTag.h header contains predefined lists for known VTK-m types. Although
technically all these lists are of C++ types, the types we refer to here are those data types stored in data arrays.
The following lists are provided.

vtkm: : TypeListTagId Contains the single item vtkm: :Id.
vtkm: : TypeListTagId2 Contains the single item vtkm: :Id2.

vtkm: : TypeListTagId3 Contains the single item vtkm::Id3.

vtkm: : TypeListTagIndex A list of all types used to index arrays. Contains vtkm: :I1d, vtkm: :Id2, and vtkm: : -
Id3.

vtkm: :TypeListTagFieldScalar A list containing types used for scalar fields. Specifically, it contains floating
point numbers of different widths (i.e. vtkm: :Float32 and vtkm: :Float64).

vtkm: : TypeListTagFieldVec2 A list containing types for values of fields with 2 dimensional vectors. All these
vectors use floating point numbers.

vtkm: : TypeListTagFieldVec3 A list containing types for values of fields with 3 dimensional vectors. All these
vectors use floating point numbers.

vtkm: : TypeListTagFieldVec3 A list containing types for values of fields with 3 dimensional vectors. All these
vectors use floating point numbers.

vtkm: : TypeListTagField A list containing all the types generally used for fields. It is the combination of
vtkm: : TypeListTagFieldScalar, vtkm::TypeListTagFieldVec2, vtkm::TypeListTagFieldVec3, and
vtkm: :TypeListTagFieldVec4.

vtkm: : TypeListTagScalarAll A list of all scalar types. It contains signed and unsigned integers of widths from
8 to 64 bits. It also contains floats of 32 and 64 bit widths.
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vtkm: : TypeListTagVecCommon A list of the most common vector types. It contains all vtkm: :Vec class of size
2 through 4 containing components of unsigned bytes, signed 32-bit integers, signed 64-bit integers, 32-bit
floats, or 64-bit floats.

vtkm: : TypeListTagVecAll A list of all vtkm: :Vec classes with standard integers or floating points as compo-
nents and lengths between 2 and 4.

vtkm: : TypeListTagAll A list of all types included in vtkm/Types.h with vtkm: : Vecs with up to 4 components.

vtkm: : TypeListTagCommon A list containing only the most used types in visualization. This includes signed
integers and floats that are 32 or 64 bit. It also includes 3 dimensional vectors of floats. This is the default
list used when resolving the type in dynamic arrays (described in Chapter 11).

If these lists are not sufficient, it is possible to build new type lists using the existing type lists and the list bases
from Section 6.6.1 as demonstrated in the following example.

Example 6.16: Defining new type lists.

1 |#define VTKM_DEFAULT_TYPE_LIST_TAG MyCommonTypes

2

3 |#include <vtkm/ListTag.h>

4 |#include <vtkm/TypeListTag.h>

5

6 |// A list of 2D vector types.

7 | struct Vec2List

8 vtkm::ListTagBase<vtkm::Id2,

9 vtkm::Vec<vtkm::Float32,2>,

10 vtkm::Vec<vtkm::Float64,2> > { };

11

12 | // An application that uses 2D geometry might commonly encounter this list of
13 |// types.

14 | struct MyCommonTypes : vtkm::ListTagJoin<Vec2List ,vtkm::TypeListTagCommon> { };

The vtkm/TypeListTag.h header also defines a macro named VTKM_DEFAULT_TYPE_LIST_TAG that defines a de-
fault list of types to use in classes like vtkm::cont::DynamicArrayHandle (Chapter 11). This list can be
overridden by defining the VTKM_DEFAULT_TYPE_LIST_TAG macro before any VIK-m headers are included. If
included after a VTK-m header, the list is not likely to take effect. Do not ignore compiler warnings about the
macro being redefined, which you will not get if defined correctly. Example 6.16 also contains an example of
overriding the VTKM_DEFAULT_TYPE_LIST_TAG macro.

6.6.3 Operating on Lists

VTK-m template metaprogramming lists are typically just passed to VI'K-m methods that internally operate
on the lists. Although not typically used outside of the VTK-m library, these operations are also available.

The vtkm/ListTag.h header comes with a vtkm: :ListForEach function that takes a functor object and a list tag.
It then calls the functor object with the default object of each type in the list. This is most typically used with
C++ run-time type information to convert a run-time polymorphic object to a statically typed (and possibly
inlined) call.

The following example shows a rudimentary version of coverting a dynamically-typed array to a statically-typed
array similar to what is done in VTK-m classes like vtkm: : cont : : DynamicArrayHandle (which is documented
in Chapter 11).

Example 6.17: Converting dynamic types to static types with ListForEach.

1 | struct MyArrayBase {
2 // A virtual destructor makes sure C++ RTTI will be generated. It also helps
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3 // ensure subclass destructors are called.

4 virtual ~“MyArrayBase() { 1}

513}

6

7 | template<typename T>

8 | struct MyArrayImpl : public MyArrayBase {

9 std::vector<T> Array;

10 | };

11

12 | template<typename T>

13 | void PrefixSum(std::vector<T> &array)

14 | {

15 T sum(typename vtkm::VecTraits<T>::ComponentType (0));
16 for (typename std::vector<T>::iterator iter = array.begin();
17 iter != array.end();

18 iter++)

19 {

20 sum = sum + *iter;

21 *iter = sum;

22 }

23 |}

24

25 | struct PrefixSumFunctor {

26 MyArrayBase *ArrayPointer;

27

28 PrefixSumFunctor (MyArrayBase *arrayPointer) : ArrayPointer (arrayPointer) { }
29

30 template<typename T>

31 void operator () (T) {

32 typedef MyArrayImpl<T> ConcreteArrayType;

33 ConcreteArrayType *concreteArray =

34 dynamic_cast<ConcreteArrayType *>(this->ArrayPointer);
35 if (concreteArray != NULL)

36 {

37 PrefixSum(concreteArray->Array);

38 }

39 }

40 | };

41

42 | void DoPrefixSum(MyArrayBase *array)

43 | {

44 PrefixSumFunctor functor = PrefixSumFunctor (array);
45 vtkm::ListForEach (functor, vtkm::TypeListTagCommon ());
46 | ¥

6.7 Error Handling

VTK-m uses exceptions to report errors. All exceptions thrown by VITK-m will be a subclass of vtkm: :cont::-
Error. For simple error reporting, it is possible to simply catch a vtkm::cont::Error and report the error
message string reported by the GetMessage method.

Example 6.18: Simple error reporting.

1 | int main(int argc, char x**argv)

2 | {

3 try

4 {

5 // Do something cool with VTK-m
6 //

7 }

8

catch (vtkm::cont::Error error)
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9 {

10 std::cout << error.GetMessage() << std::endl;
11 return 1;

12 }

13 return O0;

14 |}

There are several subclasses to vtkm::cont::Error. The specific subclass gives an indication of the type of
error that occured when the exception was thrown. Catching one of these subclasses may help a program better
recover from errors.

vtkm: :cont: :ErrorControlBadAllocation Thrown when there is a problem accessing or manipulating mem-
ory. Often this is thrown when an allocation fails because there is insufficient memory, but other memory
access errors can cause this to be thrown as well.

vtkm: :cont: :ErrorControlBadType Thrown when VIK-m attempts to perform an operation on an object that
is of an incompatible type.

vtkm: :cont: :ErrorControlBadValue Thrown when a VI'K-m function or method encounters an invalid value
that inhibits progress.

vtkm: :cont: :ErrorExecution Throw when an error is signaled in the execution environment for example when
a worklet is being executed.

vtkm: :cont: :ErrorControlInternal Thrown when VTK-m detects an internal state that should never be
reached. This error usually indicates a bug in VTK-m or, at best, VTK-m failed to detect an invalid input
it should have.

vtkm: :io: :ErrorI0 Thrown by a reader or writer when a file error is encountered.

In addition to the aforementioned error signaling, the vtkm/Assert.h header file defines a macro named VTKM_-
ASSERT. This macro behaves the same as the POSIX assert macro. It takes a single argument that is a condition
that is expected to be true. If it is not true, the program is halted and a message is printed. Asserts are useful
debugging tools to ensure that software is behaving and being used as expected.

Example 6.19: Using VTKM_ASSERT.
template<typename T>
VTKM_CONT
T GetArrayValue(vtkm::cont::ArrayHandle<T> arrayHandle, vtkm::Id index)
{
VTKM_ASSERT (index >= 0);
VTKM_ASSERT (index < arrayHandle.GetNumberOfValues());

S U W N

% Like the POSIX assert, if the NDEBUG macro is defined, then VTKM_ASSERT will become an empty expres-

sion. Typically NDEBUG is defined with a compiler flag (like ~-DNDEBUG) for release builds to better optimize
the code. CMake will automatically add this flag for release builds.
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A helpful warning provided by many compilers alerts you of unused variables. (This warning is commonly
enabled on VTK-m regression test nightly builds.) If a function argument is used only in a VTKM_ASSERT,
then it will be required for debug builds and be unused in release builds. To get around this problem, add
a statement to the function of the form (void)wvariableName ;. This statement will have no effect on the
code generated but will suppress the warning for release builds.

Because VI'K-m makes heavy use of C++ templates, it is possible that these templates could be used with
inappropriate types in the arguments. Using an unexpected type in a template can lead to very confusing errors,
so it is better to catch such problems as early as possible. The VTKM_STATIC_ASSERT macro, defined in vtkm/-
StaticAssert.h makes this possible. This macro takes a constant expression that can be evaluated at compile time
and verifies that the result is true.

In the following example, VTKM_STATIC_ASSERT and its sister macro VTKM_STATIC_ASSERT_MSG, which allows
you to give a descriptive message for the failure, are used to implement checks on a templated function that is
designed to work on any scalar type that is represented by 32 or more bits.

Example 6.20: Using VTKM_STATIC_ASSERT.

1 | template<typename T>

2 | VTKM_EXEC_CONT

3 | void MyMathFunction(T &value)

4141

5 VTKM_STATIC_ASSERT(

6 (std::is_same<typename vtkm::TypeTraits<T>::DimensionalityTag,

7 vtkm:: TypeTraitsScalarTag>::value));

8

9 VTKM_STATIC_ASSERT_MSG(

10 sizeof (T) >= 4, "MyMathFunction needs types with at least 32 bits.");

In addition to the several trait template classes provided by VTK-m to introspect C++ types, the C++
standard type_traits header file contains several helpful templates for general queries on types. Example 6.20
demonstrates the use of one such template: std::is_same.

-\/\/\/V\/@

Many templates used to introspect types resolve to the tags std: :true_type and std::false_type rather
than the constant values true and false that VTKM_STATIC_ASSERT expects. The std::true_type and
std::false_type tags can be converted to the Boolean literal by adding ::value to the end of them.
Failing to do so will cause VTKM_STATIC_ASSERT to behave incorrectly. FExample 6.20 demonstrates getting
the Boolean literal from the result of std::is_same.

|
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CHAPTER
SEVEN

ARRAY HANDLES

An array handle, implemented with the vtkm::cont: :ArrayHandle class, manages an array of data that can
be accessed or manipulated by VITK-m algorithms. It is typical to construct an array handle in the control
environment to pass data to an algorithm running in the execution environment. It is also typical for an
algorithm running in the execution environment to allocate and populate an array handle, which can then be
read back in the control environment. It is also possible for an array handle to manage data created by one
VTK-m algorithm and passed to another, remaining in the execution environment the whole time and never
copied to the control environment.

The array handle may have up to two copies of the array, one for the control environment and one for
the execution environment. However, depending on the device and how the array is being used, the array
handle will only have one copy when possible. Copies between the environments are implicit and lazy. They
are copied only when an operation needs data in an environment where the data is not.

vtkm: :cont: :ArrayHandle behaves like a shared smart pointer in that when the C++ object is copied, each
copy holds a reference to the same array. These copies are reference counted so that when all copies of the
vtkm: :cont: :ArrayHandle are destroyed, any allocated memory is released.

7.1 Creating Array Handles

vtkm: :cont: :ArrayHandle is a templated class with two template parameters. The first template parameter
is the only one required and specifies the base type of the entries in the array. The second template parameter
specifies the storage used when storing data in the control environment. Storage objects are discussed later in
Chapter 10, and for now we will use the default value.

Example 7.1: Declaration of the vtkm: : cont: :ArrayHandle templated class.
template<
typename T,
typename StorageTag = VTKM_DEFAULT_STORAGE_TAG>
class ArrayHandle;
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There are multiple ways to create and populate an array handle. The default vtkm: :cont: : ArrayHandle con-
structor will create an empty array with nothing allocated in either the control or execution environment. This
is convenient for creating arrays used as the output for algorithms.
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Example 7.2: Creating an ArrayHandle for output data.
1 ‘vtkm::cont::ArrayHand1e<vtkm::Float32> outputArray;

Constructing an ArrayHandle that points to a provided C array or std::vector is straightforward with the
vtkm: :cont: :make_ArrayHandle functions. These functions will make an array handle that points to the array
data that you provide.

Example 7.3: Creating an ArrayHandle that points to a provided C array.

1 vtkm::Float32 dataBuffer [50];
2 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
3
4 vtkm::cont::ArrayHandle<vtkm::Float32> inputArray =
5 vtkm::cont::make_ArrayHandle (dataBuffer, 50);
Example 7.4: Creating an ArrayHandle that points to a provided std: :vector.
1 std::vector<vtkm::Float32> dataBuffer;
2 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
3
4 vtkm::cont::ArrayHandle<vtkm::Float32> inputArray =
5 vtkm::cont::make_ArrayHandle (dataBuffer);

Be aware that vtkm: : cont: :make_ArrayHandle makes a shallow pointer copy. This means that if you change or
delete the data provided, the internal state of ArrayHandle becomes invalid and undefined behavior can ensue.
The most common manifestation of this error happens when a std::vector goes out of scope. This subtle
interaction will cause the vtkm: :cont: :ArrayHandle to point to an unallocated portion of the memory heap.
For example, if the code in Example 7.4 where to be placed within a callable function or method, it could cause
the vtkm: :cont: : ArrayHandle to become invalid.

¢

Because ArrayHandle does not manage data provided by make_ArrayHandle, you should only use these as
temporary objects. Example 7.5 demonstrates a method of copying one of these temporary arrays into safe
managed memory, and Section 7.3 describes how to put data directly into an ArrayHandle object.

Example 7.5: Invalidating an ArrayHandle by letting the source std: :vector leave scope.

1 | VTKM_CONT

2 |vtkm::cont::ArrayHandle<vtkm::Float32> BadDataLoad ()

314

4 std::vector<vtkm::Float32> dataBuffer;

5 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
6

7 vtkm::cont::ArrayHandle<vtkm::Float32> inputArray =

8 vtkm::cont::make_ArrayHandle (dataBuffer);

9

10 return inputArray;

11 // THIS IS WRONG! At this point dataBuffer goes out of scope and deletes its
12 // memory. However , inputArray has a pointer to that memory, which becomes an
13 // invalid pointer in the returned object. Bad things will happen when the
14 // ArrayHandle is used.

15 |}

16

17 | VTKM_CONT

18 | vtkm::cont::ArrayHandle<vtkm::Float32> SafeDatalLoad ()

19 | {
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20 std::vector<vtkm::Float32> dataBuffer;

21 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
22

23 vtkm::cont::ArrayHandle<vtkm::Float32> tmpArray =

24 vtkm::cont::make_ArrayHandle (dataBuffer);

25

26 // This copies the data from one ArrayHandle to another (in the execution
27 // environment). Although it is an extraneous copy, it is usually pretty fast
28 // on a parallel device. Another option is to make sure that the buffer in
29 // the std::vector never goes out of scope before all the ArrayHandle

30 // references, but this extra step allows the ArrayHandle to manage its own
31 // memory and ensure everything is valid.

32 vtkm::cont::ArrayHandle<vtkm::Float32> inputArray;

33 vtkm::cont::DeviceAdapterAlgorithm <VTKM_DEFAULT_DEVICE_ADAPTER_TAG>::Copy (
34 tmpArray, inputArray);

35

36 return inputArray;

37 // This is safe.

38 | ¥

7.2 Array Portals

An array handle defines auxiliary structures called array portals that provide direct access into its data. An
array portal is a simple object that is somewhat functionally equivalent to an STL-type iterator, but with a
much simpler interface. Array portals can be read-only (const) or read-write and they can be accessible from
either the control environment or the execution environment. All these variants have similar interfaces although
some features that are not applicable can be left out.

An array portal object contains each of the following:

ValueType A typedef of the type for each item in the array.
GetNumber0fValues A method that returns the number of entries in the array.
Get A method that returns the value at a given index.

Set A method that changes the value at a given index. This method does not need to exist for read-only (const)
array portals.

The following code example defines an array portal for a simple C array of scalar values. This definition has no
practical value (it is covered by the more general vtkm: :cont::internal::ArrayPortalFromIterators), but
demonstrates the function of each component.

Example 7.6: A simple array portal implementation.

1 | template<typename T>

2 | class SimpleScalarArrayPortal

3| {

4 | public:

5 typedef T ValueType;

6

7 // There is no specification for creating array portals, but they generally
8 // need a constructor like this to be practical.

9 VTKM_EXEC_CONT

10 SimpleScalarArrayPortal (ValueType *array, vtkm::Id numberOfValues)
11 : Array(array), NumberOfValues(numberOfValues) { 1}

12

13 VTKM_EXEC_CONT
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14 SimpleScalarArrayPortal () : Array(NULL), NumberOfValues(0) { 1}

15

16 VTKM_EXEC_CONT

17 vtkm::Id GetNumberOfValues () const { return this->NumberOfValues; 1}
18

19 VTKM_EXEC_CONT

20 ValueType Get(vtkm::Id index) const { return this->Array[index]; }
21

22 VTKM_EXEC_CONT

23 void Set(vtkm::Id index, ValueType value) const {

24 this->Array[index] = value;

25 }

26

27 | private:

28 ValueType *Array;

29 vtkm::Id NumberOfValues;

30 | };

Although array portals are simple to implement and use, and array portals’ functionality is similar to iterators,
there exists a great deal of code already based on STL iterators and it is often convienient to interface with an
array through an iterator rather than an array portal. The vtkm::cont: :ArrayPortalToIterators class can
be used to convert an array portal to an STL-compatible iterator. The class is templated on the array portal
type and has a constructor that accepts an instance of the array portal. It contains the following features.

IteratorType A typedef of an STL-compatible random-access iterator that can provide the same access as the
array portal.

GetBegin A method that returns an STL-compatible iterator of type IteratorType that points to the beginning
of the array.

GetEnd A method that returns an STL-compatible iterator of type IteratorType that points to the end of the
array.

Example 7.7: Using ArrayPortalToIterators.

1 | template<typename PortalType>

2 | VTKM_CONT

3 | std::vector<typename PortalType::ValueType>

4 | CopyArrayPortalToVector (const PortalType &portal)

5

6 typedef typename PortalType::ValueType ValueType;

7 std::vector<ValueType> result(portal.GetNumberOfValues ());

8

9 vtkm::cont::ArrayPortalToIterators<PortalType> iterators(portal);
10

11 std::copy(iterators.GetBegin(), iterators.GetEnd(), result.begin());
12

13 return result;

14 |}

As a convenience, vtkm/cont/ArrayPortalTolterators.h also defines a pair of functions named ArrayPortalToI-
teratorBegin and ArrayPortalToIteratorEnd that each take an array portal as an argument and return a
begin and end iterator, respectively.

Example 7.8: Using ArrayPortalToIteratorBegin and ArrayPortalToIteratorEnd.
std::vector<vtkm::Float32> myContainer (portal.GetNumberOfValues ());

std::copy(vtkm::cont::ArrayPortalToIlteratorBegin(portal),
vtkm::cont::ArrayPortalToIteratorEnd (portal),
myContainer.begin());
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ArrayHandle contains two typedefs for array portal types that are capable of interfacing with the underlying
data in the control environment. These are PortalControl and PortalConstControl, which define read-write
and read-only (const) array portals, respectively.

ArrayHandle also contains similar typedefs for array portals in the execution environment. Because these types
are dependent on the device adapter used for execution, these typedefs are embedded in a templated class named
ExecutionTypes. Within ExecutionTypes are the typedefs Portal and PortalConst defining the read-write
and read-only (const) array portals, respectively, for the execution environment for the given device adapter tag.

Because vtkm: :cont: :ArrayHandle is control environment object, it provides the methods GetPortalControl
and GetPortalConstControl to get the associated array portal objects. These methods also have the side effect
of refreshing the control environment copy of the data, so this can be a way of synchronizing the data. Be
aware that when an ArrayHandle is created with a pointer or std::vector, it is put in a read-only mode,
and GetPortalControl can fail (although GetPortalConstControl will still work). Also be aware that calling
GetPortalControl will invalidate any copy in the execution environment, meaning that any subsequent use will
cause the data to be copied back again.

Example 7.9: Using portals from an ArrayHandle.

1 | template<typename T>

2 | void SortCheckArrayHandle (vtkm::cont::ArrayHandle<T> arrayHandle)

314

4 typedef typename vtkm::cont::ArrayHandle<T>::PortalControl

5 PortalType;

6 typedef typename vtkm::cont::ArrayHandle<T>::PortalConstControl

7 PortalConstType;

8

9 PortalType readwritePortal = arrayHandle.GetPortalControl ();

10 // This is actually pretty dumb. Sorting would be generally faster in
11 // parallel in the execution environment using the device adapter algorithms.
12 std::sort(vtkm::cont::ArrayPortalToIlteratorBegin(readwritePortal),

13 vtkm::cont::ArrayPortalToIteratorEnd (readwritePortal));

14

15 PortalConstType readPortal = arrayHandle.GetPortalConstControl ();

16 for (vtkm::Id index = 1; index < readPortal.GetNumberOfValues (); index++)
17 {

18 if (readPortal.Get(index-1) > readPortal.Get(index))

19 {

20 std::cout << "Sorting is wrong!" << std::endl;

21 break;

22 }

23 }

24 |}

&

Most operations on arrays in VI'K-m should really be done in the execution environment. Keep in mind
that whenever doing an operation using a control array portal, that operation will likely be slow for large
arrays. However, some operations, like performing file I/0, make sense in the control environment.

7.3 Allocating and Populating Array Handles

vtkm: :cont: :ArrayHandle is capable of allocating its own memory. The most straightforward way to allocate
memory is to call the Allocate method. The Allocate method takes a single argument, which is the number
of elements to make the array.
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Example 7.10: Allocating an ArrayHandle.
vtkm::cont::ArrayHandle<vtkm::Float32> arrayHandle;

const vtkm::Id ARRAY_SIZE = 50;
arrayHandle.Allocate (ARRAY_SIZE);

W N

The ability to allocate memory is a key difference between ArrayHandle and many other common forms
of smart pointers. When one ArrayHandle allocates new memory, all other ArrayHandles pointing to
the same managed memory get the newly allocated memory. This can be particularly surprising when the
ortginally managed memory is empty. For example, older versions of std: :vector initialized all its values
by setting them to the same object. When a vector of ArrayHandles was created and one entry was
allocated, all entries changed to the same allocation.

Once an ArrayHandle is allocated, it can be populated by using the portal returned from GetPortalControl,
as described in Section 7.2. This is roughly the method used by the readers in the I/O package (Chapter 3).

Example 7.11: Populating a newly allocated ArrayHandle.

1 vtkm::cont::ArrayHandle<vtkm::Float32> arrayHandle;

2

3 const vtkm::Id ARRAY_SIZE = 50;

4 arrayHandle.Allocate (ARRAY_SIZE);

5

6 typedef vtkm::cont::ArrayHandle<vtkm::Float32>::PortalControl PortalType;
7 PortalType portal = arrayHandle.GetPortalControl ();

8

9 for (vtkm::Id index = 0; index < ARRAY_SIZE; index++)
10 {

11 portal.Set(index, GetValueForArray (index));

12 }

7.4 Interface to Execution Environment

One of the main functions of the array handle is to allow an array to be defined in the control environment and
then be used in the execution environment. When using an ArrayHandle with filters or worklets, this transition
is handled automatically. However, it is also possible to invoke the transfer for use in your own scheduled
algorithms.

The ArrayHandle class manages the transition from control to execution with a set of three methods that
allocate, transfer, and ready the data in one operation. These methods all start with the prefix Prepare and are
meant to be called before some operation happens in the execution environment. The methods are as follows.

PrepareForInput Copies data from the control to the execution environment, if necessary, and readies the data
for read-only access.

PrepareForInPlace Copies the data from the control to the execution environment, if necessary, and readies
the data for both reading and writing.

PrepareForOutput Allocates space (the size of which is given as a parameter) in the execution environment, if
necessary, and readies the space for writing.
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The PrepareForInput and PrepareForInPlace methods each take a single argument that is the device adapter
tag where execution will take place (see Section 8.1 for more information on device adapter tags). Prepare-
ForOutput takes two arguments: the size of the space to allocate and the device adapter tag. Each of these meth-
ods returns an array portal that can be used in the execution environment. PrepareForInput returns an object
of type ArrayHandle: :ExecutionTypes<DeviceAdapterTag>: :PortalConst whereas PrepareForInPlace and
PrepareForQOutput each return an object of type ArrayHandle: :ExecutionTypes<DeviceAdapterTag>: :Por-
tal.

Although these Prepare methods are called in the control environment, the returned array portal can only
be used in the execution environment. Thus, the portal must be passed to an invocation of the execution
environment. Typically this is done with a call to Schedule in vtkm: :cont::DeviceAdapterAlgorithm. This
and other device adapter algorithms are described in detail in Section 8.2, but here is a quick example of using
these execution array portals in a simple functor.

Example 7.12: Using an execution array portal from an ArrayHandle.

1 | template<typename T, typename Device>

2 | struct DoubleFunctor : public vtkm::exec::FunctorBase

314

4 typedef typename vtkm::cont::ArrayHandle<T>::

5 template ExecutionTypes<Device>::PortalConst InputPortalType;
6 typedef typename vtkm::cont::ArrayHandle<T>::

7 template ExecutionTypes<Device>::Portal OutputPortalType;

8

9 VTKM_CONT

10 DoubleFunctor (InputPortalType inputPortal, OutputPortalType outputPortal)
11 : InputPortal (inputPortal), OutputPortal (outputPortal) { 1}

12

13 VTKM_EXEC

14 void operator () (vtkm::Id index) const {

15 this->0utputPortal.Set(index, 2*this->InputPortal.Get(index));
16 }

17

18 InputPortalType InputPortal;

19 OutputPortalType OutputPortal;

20 | };

21

22 | template<typename T, typename Device>

23 | void DoubleArray(vtkm::cont::ArrayHandle<T> inputArray,

24 vtkm::cont::ArrayHandle<T> outputArray,

25 Device)

26 | {

27 vtkm::Id numValues = inputArray.GetNumberOfValues();

28

29 DoubleFunctor<T, Device> functor(

30 inputArray.PrepareForInput (Device()),

31 outputArray.PrepareForOutput (numValues, Device()));

32

33 vtkm::cont::DeviceAdapterAlgorithm<Device>::Schedule (functor, numValues);
34 |}

It should be noted that the array handle will expect any use of the execution array portal to finish before the next
call to any ArrayHandle method. Since these Prepare methods are typically used in the process of scheduling
an algorithm in the execution environment, this is seldom an issue.
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There are many operations on ArrayHandle that can invalidate the array portals, so do not keep them
around indefinitely. It is generally better to keep a reference to the ArrayHandle and use one of the
Prepare each time the data are accessed in the execution environment.
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CHAPTER
EIGHT

DEVICE ADAPTERS

As multiple vendors vie to provide accelerator-type processors, a great variance in the computer architecture
exists. Likewise, there exist multiple compiler environments and libraries for these devices such as CUDA,
OpenMP, and various threading libraries. These compiler technologies also vary from system to system.

To make porting among these systems at all feasible, we require a base language support, and the language we
use is C+4. The majority of the code in VITK-m is constrained to the standard C++ language constructs to
minimize the specialization from one system to the next.

Each device and device technology requires some level of code specialization, and that specialization is encapsu-
lated in a unit called a device adapter. Thus, porting VIK-m to a new architecture can be done by adding only
a device adapter.

The device adapter is shown diagrammatically as the connection between the control and execution environments
in Figure 6.1 on page 46. The functionality of the device adapter comprises two main parts: a collection of parallel
algorithms run in the execution environment and a module to transfer data between the control and execution
environments.

This chapter describes how tags are used to specify which devices to use for operations within VIK-m. The
chapter also outlines the features provided by a device adapter that allow you to directly control a device. Finally,
we document how to create a new device adapter to port or specialize VIK-m for a different device or system.

8.1 Device Adapter Tag

A device adapter is identified by a device adapter tag. This tag, which is simply an empty struct type, is used as
the template parameter for several classes in the VTK-m control environment and causes these classes to direct
their work to a particular device.

There are two ways to select a device adapter. The first is to make a global selection of a default device adapter.
The second is to specify a specific device adapter as a template parameter.

8.1.1 Default Device Adapter

A default device adapter tag is specified in vtkm/cont/DeviceAdapter.h (although it can also by specified in many
other VTK-m headers via header dependencies). If no other information is given, VTK-m attempts to choose
a default device adapter that is a best fit for the system it is compiled on. VTK-m currently select the default
device adapter with the following sequence of conditions.

e If t