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ONE

INTRODUCTION

High-performance computing relies on ever finer threading. Advances in processor technology include ever greater
numbers of cores, hyperthreading, accelerators with integrated blocks of cores, and special vectorized instructions,
all of which require more software parallelism to achieve peak performance. Traditional visualization solutions
cannot support this extreme level of concurrency. Extreme scale systems require a new programming model and
a fundamental change in how we design algorithms. To address these issues we created VTK-m: the visualization
toolkit for multi-/many-core architectures.

VTK-m supports a number of algorithms and the ability to design further algorithms through a top-down design
with an emphasis on extreme parallelism. VTK-m also provides support for finding and building links across
topologies, making it possible to perform operations that determine manifold surfaces, interpolate generated
values, and find adjacencies. Although VTK-m provides a simplified high-level interface for programming, its
template-based code removes the overhead of abstraction.

VTK-m simplifies the development of parallel scientific visualization algorithms by providing a framework of
supporting functionality that allows developers to focus on visualization operations. Consider the listings in
Figure 1.1 that compares the size of the implementation for the Marching Cubes algorithm in VTK-m with
the equivalent reference implementation in the CUDA software development kit. Because VTK-m internally
manages the parallel distribution of work and data, the VTK-m implementation is shorter and easier to maintain.
Additionally, VTK-m provides data abstractions not provided by other libraries that make code written in VTK-
m more versatile.

VTK-m is written in C++ and makes extensive use of templates. The toolkit is implemented as a header
library, meaning that all the code is implemented in header files (with extension .h) and completely included
in any code that uses it. This allows the compiler to inline and specialize code for better performance.

Did you know?

1.1 How to Use This Guide

This user’s guide is organized into three parts to help guide novice to advanced users and to provide a convenient
reference. Part I, Getting Started, provides everything needed to get up and running with VTK-m. In this part
we learn the basics of reading and writing data files, using filters to process data, and perform basic rendering
to view the results.

Part II, Using VTK-m, dives deeper into the VTK-m library and provides all the information needed to customize
VTK-m’s data structures and support multiple devices.
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1.2. Conventions Used in This Guide

CUDA SDK VTK-m
431 LOC 265 LOC

Figure 1.1: Comparison of the Marching Cubes algorithm in VTK-m and the reference implementation in the
CUDA SDK. Implementations in VTK-m are simpler, shorter, more general, and easier to maintain. (Lines of
code (LOC) measurements come from cloc.)

Part III, Developing with VTK-m, documents how to use VTK-m’s framework to develop new or custom visual-
ization algorithms. This part describes how worklets are used to implement and execute algorithms and how to
use worklets to implement new filters. Part III also describes the facilities available in the execution environment
that help write visualization algorithms.

Part IV, Advanced Development, exposes the inner workings of VTK-m and allows you to design new algorithmic
structures not already available.

1.2 Conventions Used in This Guide

When documenting the VTK-m API, the following conventions are used.

• Filenames are printed in a sans serif font.

• C++ code is printed in a monospace font.

4 Chapter 1. Introduction
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• Macros and namespaces from VTK-m are printed in red.

• Identifiers from VTK-m are printed in blue.

• Signatures, described in Chapter 14, and the tags used in them are printed in green.

This guide provides actual code samples throughout its discussions to demonstrate their use. These examples
are all valid code that can be compiled and used although it is often the case that code snippets are provided.
In such cases, the code must be placed in a larger context.

In this guide we periodically use these Did you know? boxes to provide additional information related to
the topic at hand.

Did you know?

Common Errors blocks are used to highlight some of the common problems or complications you might
encounter when dealing with the topic of discussion.

Common Errors

Chapter 1. Introduction 5
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TWO

BUILD AND INSTALL VTK-M

Before we begin describing how to develop with VTK-m, we have a brief overview of how to build VTK-m,
optionally install it on your system, and start your own programs that use VTK-m.

2.1 Getting VTK-m

VTK-m is an open source software product where the code is made freely available. To get the latest released
version of VTK-m, go to the VTK-m releases page:

http://m.vtk.org/index.php/VTK-m_Releases

For access to the most recent work, the VTK-m development team provides public anonymous read access to
their main source code repository. The main VTK-m repository on a gitlab instance hosted at Kitware, Inc. The
repository can be browsed from its project web page:

https://gitlab.kitware.com/vtk/vtk-m

The source code in the VTK-m repository is access through the git version control tool. If you have not used
git before, there are several resources available to help you get familiar with it. Github has a nice setup guide
(https://help.github.com/articles/set-up-git) to help you get up and running quickly. For more complete
documentation, we recommend the Pro Git book (https://git-scm.com/book).

To get a copy of the VTK-m repository, issue a git clone command.

Example 2.1: Cloning the main VTK-m git repository.
1 git clone https :// gitlab . kitware .com/vtk/vtk -m.git

The git clone command will create a copy of all the source code to your local machine. As time passes and you
want to get an update of changes in the repository, you can do that with the git pull command.

Example 2.2: Updating a git repository with the pull command.
1 git pull

http://m.vtk.org/index.php/VTK-m_Releases
https://gitlab.kitware.com/vtk/vtk-m
https://help.github.com/articles/set-up-git
https://git-scm.com/book


DRAFT

2.2. Configure VTK-m

The proceeding examples for using git are based on the git command line tool, which is particularly prevalent
on Unix-based and Mac systems. There also exist several GUI tools for accessing git repositories. These
tools each have their own interface and they can be quite different. However, they all should have roughly
equivalent commands named “clone” to download a repository given a url and “pull” to update an existing
repository.

Did you know?

2.2 Configure VTK-m

VTK-m uses a cross-platform configuration tool named CMake to simplify the configuration and building across
many supported platforms. CMake is available from many package distribution systems and can also be down-
loaded for many platforms from http://cmake.org.

Most distributions of CMake come with a convenient GUI application (cmake-gui) that allows you to browse
all of the available configuration variables and run the configuration. Many distributions also come with an
alternative terminal-based version (ccmake), which is helpful when accessing remote systems where creating GUI
windows is difficult.

One helpful feature of CMake is that it allows you to establish a build directory separate from the source directory,
and the VTK-m project requires that separation. Thus, when you run CMake for the first time, you want to set
the build directory to a new empty directory and the source to the downloaded or cloned files. The following
example shows the steps for the case where the VTK-m source is cloned from the git repository. (If you extracted
files from an archive downloaded from the VTK-m web page, the instructions are the same from the second line
down.)

Example 2.3: Running CMake on a cloned VTK-m repository.
1 git clone https :// gitlab . kitware .com/vtk/vtk -m.git
2 mkdir vtkm - build
3 cd vtkm - build
4 cmake -gui ../ vtk -m

The first time the CMake GUI runs, it initially comes up blank as shown at left in Figure 2.1. Verify that the
source and build directories are correct (located at the top of the GUI) and then click the “Configure” button
near the bottom. The first time you run configure, CMake brings up a dialog box asking what generator you
want for the project. This allows you to select what build system or IDE to use (e.g. make, ninja, Visual Studio).
Once you click “Finish,” CMake will perform its first configuration. Don’t worry if CMake gives an error about
an error in this first configuration process.

Most options in CMake can be reconfigured at any time, but not the compiler and build system used. These
must be set the first time configure is run and cannot be subsequently changed. If you want to change the
compiler or the project file types, you will need to delete everything in the build directory and start over.

Common Errors

After the first configuration, the CMake GUI will provide several configuration options as shown in Figure 2.1
on the right. You now have a chance to modify the configuration of VTK-m, which allows you to modify both

8 Chapter 2. Build and Install VTK-m
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Figure 2.1: The CMake GUI configuring the VTK-m project. At left is the initial blank configuration. At right
is the state after a configure pass.

the behavior of the compiled VTK-m code as well as find components on your system. Using the CMake GUI is
usually an iterative process where you set configuration options and re-run “Configure.” Each time you configure,
CMake might find new options, which are shown in red in the GUI.

It is often the case during this iterative configuration process that configuration errors occur. This can occur
after a new option is enabled but CMake does not automatically find the necessary libraries to make that feature
possible. For example, to enable TBB support, you may have to first enable building TBB, configure for TBB
support, and then tell CMake where the TBB include directories and libraries are.

Once you have set all desired configuration variables and resolved any CMake errors, click the “Generate”
button. This will create the build files (such as makefiles or project files depending on the generator chosen at
the beginning). You can then close the CMake GUI.

There are a great number of configuration parameters available when running CMake on VTK-m. The following
list contains the most common configuration parameters.

BUILD SHARED LIBS Determines whether static or shared libraries are built.

CMAKE BUILD TYPE Selects groups of compiler options from categories like Debug and Release. Debug
builds are, obviously, easier to debug, but they run much slower than Release builds. Use Release builds
whenever releasing production software or doing performance tests.

CMAKE INSTALL PREFIX The root directory to place files when building the install target.

VTKm BUILD EXAMPLES The VTK-m repository comes with an examples directory. This macro determines
whether they are built.

VTKm ENABLE BENCHMARKS If on, the VTK-m build includes several benchmark programs. The bench-
marks are regression tests for performance.

Chapter 2. Build and Install VTK-m 9
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VTKm ENABLE CUDA Determines whether VTK-m is built to run on CUDA GPU devices.

VTKm ENABLE RENDERING Determines whether to build the rendering library.

VTKm ENABLE TBB Determines whether VTK-m is built to run on multi-core x86 devices using the Intel
Threading Building Blocks library.

VTKm ENABLE TESTING If on, the VTK-m build includes building many test programs. The VTK-m
source includes hundreds of regression tests to ensure quality during development.

VTKm USE 64BIT IDS If on, then VTK-m will be compiled to use 64-bit integers to index arrays and other
lists. If off, then VTK-m will use 32-bit integers. 32-bit integers take less memory but could cause failures
on larger data.

VTKm USE DOUBLE PRECISION If on, then VTK-m will use double precision (64-bit) floating point num-
bers for calculations where the precision type is not otherwise specified. If off, then single precision (32-bit)
floating point numbers are used. Regardless of this setting, VTK-m’s templates will accept either type.

2.3 Building VTK-m

Once CMake successfully configures VTK-m and generates the files for the build system, you are ready to build
VTK-m. As stated earlier, CMake supports generating configuration files for several different types of build tools.
Make and ninja are common build tools, but CMake also supports building project files for several different types
of integrated development environments such as Microsoft Visual Studio and Apple XCode.

The VTK-m libraries and test files are compiled when the default build is invoked. For example, if Makefiles
were generated, the build is invoked by calling make in the build directory. Expanding on Example 2.3

Example 2.4: Using make to build VTK-m.
1 git clone https :// gitlab . kitware .com/vtk/vtk -m.git
2 mkdir vtkm - build
3 cd vtkm - build
4 cmake -gui ../ vtk -m
5 make -j
6 make test
7 make install

The Makefiles and other project files generated by CMake support parallel builds, which run multiple com-
pile steps simultaneously. On computers that have multiple processing cores (as do almost all modern
computers), this can significantly speed up the overall compile. Some build systems require a special flag to
engage parallel compiles. For example, make requires the -j flag to start parallel builds as demonstrated in
Example 2.4.

Did you know?

10 Chapter 2. Build and Install VTK-m
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CMake allows you to switch between several types of builds including default, Debug, and Release. Programs
and libraries compiled as release builds can run much faster than those from other types of builds. Thus,
it is important to perform Release builds of all software released for production or where runtime is a
concern. Some integrated development environments such as Microsoft Visual Studio allow you to specify
the different build types within the build system. But for other build programs, like make, you have to
specify the build type in the CMAKE BUILD TYPE CMake configuration variable, which is described in
Section 2.2.

Common Errors

CMake creates several build “targets” that specify the group of things to build. The default target builds all
of VTK-m’s libraries as well as tests, examples, and benchmarks if enabled. The test target executes each of
the VTK-m regression tests and verifies they complete successfully on the system. The install target copies the
subset of files required to use VTK-m to a common installation directory. The install target may need to be run
as an administrator user if the installation directory is a system directory.

A good portion of VTK-m is a header-only library, which does not need to be built in a traditional sense.
However, VTK-m contains a significant amount of tests to ensure that the header code does compile and
run correctly on a given system. If you are not concerned with testing a build on a given system, you can
turn off building the testing, benchmarks, and examples using the CMake configuration variables described
in Section 2.2. This can shorten the VTK-m compile time.

Did you know?

2.4 Linking to VTK-m

Ultimately, the value of VTK-m is the ability to link it into external projects that you write. The header files and
libraries installed with VTK-m are typical, and thus you can link VTK-m into a software project using any type
of build system. However, VTK-m comes with several CMake configuration files that simplify linking VTK-m
into another project that is also managed by CMake. Thus, the documentation in this section is specifically for
finding and configuring VTK-m for CMake projects.

VTK-m can be configured from an external project using the find package CMake function. The behavior and
use of this function is well described in the CMake documentation. The first argument to find package is the
name of the package, which in this case is VTKm. CMake configures this package by looking for a file named
VTKmConfig.cmake, which will be located in the lib directory of the install or build of VTK-m. The configurable
CMake variable VTKm DIR can be set to the directory that contains this file.

The CMake find package function also supports several features not discussed here including specifying
a minimum or exact version of VTK-m and turning off some of the status messages. See the CMake
documentation for more details.

Did you know?

Chapter 2. Build and Install VTK-m 11
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The CMake package for VTK-m is broken down into components that let you load particular features of VTK-
m. Package components can be specified with the COMPONENTS and OPTIONAL COMPONENTS arguments to the
find package function. The following example demonstrates using find package to find the VTK-m package
that requires the Serial backend as well as the Rendering and OpenGL features as well as optionally using the
TBB and CUDA backends.

Example 2.5: Loading VTK-m configuration from an external CMake project.
1 find_package (VTKm REQUIRED
2 COMPONENTS Serial OpenGL Rendering
3 OPTIONAL_COMPONENTS TBB CUDA
4 )

The following components are available. Many of the features for these components are described elsewhere
within this book.

Base The “base” configuration required for using any part of VTK-m. This component is loaded automatically
even if no components are specified in find package.

Serial The serial backend for VTK-m, which is useful for debugging and when no other backend is available.

OpenGL Support for the integration of OpenGL features with VTK-m.

OSMesa Support for creating off screen canvases using the OSMesa library.

EGL Support for creating off screen canvases using the EGL library.

GLFW A convenience component that loads the necessary configuration to use the GLFW library, which provides
a cross-platform interface for creating OpenGL windows.

GLUT A convenience component that loads the necessary configuration to use the GLUT library, which provides
a cross-platform interface for creating OpenGL windows.

Interop Support for transferring VTK-m array data directly to OpenGL objects.

Rendering Use of the lightweight VTK-m rendering library, which provides basic rendering of VTK-m data
objects.

TBB The Intel Threading Building Blocks (TBB) backend for VTK-m, which uses multiple cores and threads
for parallel processing.

CUDA The CUDA backend for VTK-m, which uses GPU processors for parallel processing.

After the find package function completes, C++ libraries and executables can be created using the configura-
tion variables defined. The following is a simple example of creating an executable.

Example 2.6: Loading VTK-m configuration from an external CMake project.
1 find_package (VTKm REQUIRED
2 COMPONENTS Serial OpenGL Rendering
3 OPTIONAL_COMPONENTS TBB CUDA
4 )
5
6 add_executable ( myprog myprog .cxx)
7 target_include_directories ( myprog PRIVATE ${ VTKm_INCLUDE_DIRS })
8 target_link_libraries ( myprog ${ VTKm_LIBRARIES })
9 target_compile_options ( myprog PRIVATE ${ VTKm_COMPILE_OPTIONS })

12 Chapter 2. Build and Install VTK-m
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It is not sufficient to just call find package to compile code using VTK-m. You must also use the VTKm -
INCLUDE DIRS and VTKm LIBRARIES CMake variables to configure the compiler to load VTK-m’s compo-
nents. (Although technically not required, it is highly advisable to also use the VTKm COMPILE OPTIONS
variable as well.)

Common Errors

The following is a list of all the CMake variables defined when the find package function completes.

VTKm FOUND Set to true if the VTK-m CMake package, all its dependent packages, and all the specified
components were successfully configured. If find package was not called with the REQUIRED option, then
this variable should be checked before attempting to use VTK-m.

VTKm <component name> FOUND For each component specified in the find package call, one of these
variables will be defined as true or false depending on whether the component successfully loaded. For
components specified as an OPTIONAL COMPONENTS argument, the VTKm FOUND might still be true (be-
cause all required components succeeded) while the associated VTKm <component name> FOUND could
be false if that specific component failed to load.

VTKm INCLUDE DIRS Contains a list of all directories that need to be specified to properly include VTK-m
header files. These also include the directories needed for header files that VTK-m depends on and specified
components. Targets should use the target include directories CMake function to add this list of
directories to the compile commands.

VTKm LIBRARIES Contains a list of all requested VTK-m libraries and component libraries. Targets should
use the target link libraries CMake function to add this list of libraries to the link commands.

VTKm COMPILE OPTIONS Contains a string of options that VTK-m suggests to add to the compiler.
Targets should use the target compile options CMake function to add this list of options to the compile
commands.

Chapter 2. Build and Install VTK-m 13
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Before VTK-m can be used to process data, data need to be loaded into the system. VTK-m comes with a basic
file I/O package to get started developing very quickly. All the file I/O classes are declared under the vtkm::io
namespace.

Files are just one of many ways to get data in and out of VTK-m. In Part II we explore efficient ways to
define VTK-m data structures. In particular, Section 12.1 describes how to build VTK-m data set objects
and Section 10.4 documents how to adapt data structures defined in other libraries to be used directly in
VTK-m.

Did you know?

3.1 Readers

All reader classes provided by VTK-m are located in the vtkm::io::reader namespace. The general interface
for each reader class is to accept a filename in the constructor and to provide a ReadDataSet method to load
the data from disk.

The data in the file are returned in a vtkm::cont::DataSet object. Chapter 12 provides much more details
about the contents of a data set object, but for now we treat DataSet as an opaque object that can be passed
around readers, writers, filters, and rendering units.

3.1.1 Legacy VTK File Reader

Legacy VTK files are a simple open format for storing visualization data. These files typically have a .vtk
extension. Legacy VTK files are popular because they are simple to create and read and are consequently
supported by a large number of tools. The format of legacy VTK files is well documented in The VTK User’s
Guide1. Legacy VTK files can also be read and written with tools like ParaView and VisIt.

Legacy VTK files can be read using the vtkm::io::reader::VTKDataSetReader class. The constructor for
this class takes a string containing the filename. The ReadDataSet method reads the data from the previously
indicated file and returns a vtkm::cont::DataSet object, which can be used with filters and rendering.

1A free excerpt describing the file format is available at http://www.vtk.org/Wiki/File:VTK-File-Formats.pdf.

http://www.vtk.org/Wiki/File:VTK-File-Formats.pdf
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Example 3.1: Reading a legacy VTK file.
1 # include <vtkm/io/ reader / VTKDataSetReader .h>
2
3 vtkm :: cont :: DataSet OpenDataFromVTKFile ()
4 {
5 vtkm :: io :: reader :: VTKDataSetReader reader (" data.vtk ");
6
7 return reader . ReadDataSet ();
8 }

3.2 Writers

All writer classes provided by VTK-m are located in the vtkm::io::writer namespace. The general interface for
each writer class is to accept a filename in the constructor and to provide a WriteDataSet method to save data
to the disk. The WriteDataSet method takes a vtkm::cont::DataSet object as an argument, which contains
the data to write to the file.

3.2.1 Legacy VTK File Writer

Legacy VTK files can be written using the vtkm::io::writer::VTKDataSetWriter class. The constructor for
this class takes a string containing the filename. The WriteDataSet method takes a vtkm::cont::DataSet
object and writes its data to the previously indicated file.

Example 3.2: Writing a legacy VTK file.
1 # include <vtkm/io/ writer / VTKDataSetWriter .h>
2
3 void SaveDataAsVTKFile (vtkm :: cont :: DataSet data)
4 {
5 vtkm :: io :: writer :: VTKDataSetWriter writer (" data.vtk ");
6
7 writer . WriteDataSet (data );
8 }

16 Chapter 3. File I/O
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Filters are functional units that take data as input and write new data as output. Filters operate on vtkm::-
cont::DataSet objects, which are introduced with the file I/O operations in Chapter 3 and are described in
more detail in Chapter 12. For now we treat DataSet mostly as an opaque object that can be passed around
readers, writers, filters, and rendering units.

The structure of filters in VTK-m is significantly simpler than their counterparts in VTK. VTK filters
are arranged in a dataflow network (a.k.a. a visualization pipeline) and execution management is handled
automatically. In contrast, VTK-m filters are simple imperative units, which are simply called with input
data and return output data.

Did you know?

VTK-m comes with several filters ready for use, and in this chapter we will give a brief overview of these filters.
All VTK-m filters are currently defined in the vtkm::filter namespace. We group filters based on the type of
operation that they do and the shared interfaces that they have. Later Part III describes the necessary steps in
creating new filters in VTK-m.

4.1 Filter Results

When you execute a filter, it returns a vtkm::filter::Result object. The Result object contains information
about whether the execution was successful and provides the resulting data. A Result object has the following
methods.

IsDataSetValid Returns a bool value specifying whether the filter has successfully executed. If true, then the
execution was successful and the data stored in this Result is valid. If false, then the execution failed,
and any attempt at retrieving data from the Result will result in an error.

GetDataSet Returns a DataSet containing the results of the execution. Often, the data set returned is a shallow
copy of the input data with the generated data added.

IsFieldValid Returns a bool value specifying whether the filter has succeeded has provided a field that was
added to the data. Some types of filters, such as the ones documented in Section 4.2, generate a new field
on the data. If this is true, then field data is available in addition to the DataSet.
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GetField Returns the field information in a vtkm::cont::Field object. Field objects are described in Sec-
tion 12.3. This field is automatically added to the DataSet that can be retrieved with GetDataSet, but
sometimes it is useful to get the field array independently. Not all filters return field information. Use
IsFieldValid to see if the field data are available.

FieldAs Given a vtkm::cont::ArrayHandle object, allocates the array and copies the generated field data into
it. This field is automatically added to the DataSet that can be retrieved with GetDataSet, but sometimes
it is useful to get the field array independently. Not all filters return field information. Use IsFieldValid
to see if the field data are available. FieldAs returns a bool that is set to false rather than throwing an
error when the operation fails.

4.2 Field Filters

Every vtkm::cont::DataSet object contains a list of fields. A field describes some numerical value associated
with different parts of the data set in space. Fields often represent physical properties such as temperature,
pressure, or velocity. Field filters are a class of filters that generate a new field. These new fields are typically
derived from one or more existing fields or point coordinates on the data set. For example, mass, volume, and
density are interrelated, and any one can be derived from the other two.

All field filters contain an Execute method that takes two arguments. The first argument is a vtkm::cont::-
DataSet object with the input data. The second argument specifies the field from which to derive a new field.
The field can be specified as either a string naming a field in the input DataSet object, as a vtkm::cont::Field
object, or as a coordinate system (typically retrived from a DataSet object with the GetCoordianteSystem
method). See Sections 12.3 and 12.4 for more information on fields and coordinate systems, respectively.

Field filters often need more information than just a data set and a field. Any additional information is provided
using methods in the filter class that changes the state. These methods are called before Execute. One such
method that all field filters have is SetOutputFieldName, which specifies the name assigned to the generated
field. If not specified, then the filter will use a default name.

The Execute method returns a vtkm::filter::Result object, which contains the state of the execution and
the data generated. Result is documented in Section 4.1.

The following example provides a simple demonstration of using a field filter. It specifically uses the point
elevation filter, which is one of the field filters.

Example 4.1: Using PointElevation, which is a field filter.
1 VTKM_CONT
2 vtkm :: cont :: DataSet ComputeAirPressure (vtkm :: cont :: DataSet dataSet )
3 {
4 vtkm :: filter :: PointElevation elevationFilter ;
5
6 // Use the elevation filter to estimate atmospheric pressure based on the
7 // height of the point coordinates . Atmospheric pressure is 101325 Pa at
8 // sea level and drops about 12 Pa per meter .
9 elevationFilter . SetOutputFieldName (" pressure ");

10 elevationFilter . SetLowPoint (0.0 , 0.0 , 0.0);
11 elevationFilter . SetHighPoint (0.0 , 0.0 , 2000.0);
12 elevationFilter . SetRange (101325.0 , 77325.0);
13
14 vtkm :: filter :: Result result =
15 elevationFilter . Execute (dataSet , dataSet . GetCoordinateSystem ());
16
17 if (! result . IsDataSetValid ())
18 {
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19 throw vtkm :: cont :: ErrorBadValue (" Failed to run elevation filter .");
20 }
21
22 return result . GetDataSet ();
23 }

4.2.1 Cell Average

vtkm::filter::CellAverage is the cell average filter. It will take a data set with a collection of cells and a field
defined on the points of the data set and create a new field defined on the cells. The values of this new derived
field are computed by averaging the values of the input field at all the incident points. This is a simple way to
convert a point field to a cell field. Both the input data set and the input field are specified as arguments to the
Execute method.

The default name for the output cell field is the same name as the input point field. The name can be overridden
using the SetOutputFieldName method.

In addition the standard SetOutputFieldName and Execute methods, CellAverage provides the following meth-
ods.

SetActiveCellSet Sets the index for the cell set to use from the DataSet provided to the Execute method.
The default index is 0, which is the first cell set. If you want to set the active cell set by name, you can
use the GetCellSetIndex method on the DataSet object that will be used with Execute.

GetActiveCellSetIndex Returns the index to be used when getting a cell set from the DataSet passed to
Execute. Set with SetActiveCellSet.

4.2.2 Point Average

vtkm::filter::PointAverage is the point average filter. It will take a data set with a collection of cells and
a field defined on the cells of the data set and create a new field defined on the points. The values of this new
derived field are computed by averaging the values of the input field at all the incident cells. This is a simple
way to convert a cell field to a point field. Both the input data set and the input field are specified as arguments
to the Execute method.

The default name for the output cell field is the same name as the input point field. The name can be overridden
using the SetOutputFieldName method.

In addition the standard SetOutputFieldName and Execute methods, PointAverage provides the following
methods.

SetActiveCellSet Sets the index for the cell set to use from the DataSet provided to the Execute method.
The default index is 0, which is the first cell set. If you want to set the active cell set by name, you can
use the GetCellSetIndex method on the DataSet object that will be used with Execute.

GetActiveCellSetIndex Returns the index to be used when getting a cell set from the DataSet passed to
Execute. Set with SetActiveCellSet.
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4.2.3 Point Elevation

vtkm::filter::PointElevation computes the “elevation” of a field of point coordinates in space. The filter
will take a data set and a field of 3 dimensional vectors and compute the distance along a line defined by a low
point and a high point. Any point in the plane touching the low point and perpendicular to the line is set to the
minimum range value in the elevation whereas any point in the plane touching the high point and perpendicular
to the line is set to the maximum range value. All other values are interpolated linearly between these two
planes. This filter is commonly used to compute the elevation of points in some direction, but can be repurposed
for a variety of measures.

The input field (or coordinate system) is specified as the second argument to the Execute method. A vtkm::-
cont::DataSet that is expected to contain the field is also given but is otherwise unused. Example 4.1 gives a
demonstration of the elevation filter.

The default name for the output field is “elevation”, but that can be overridden using the SetOutputFieldName
method.

In addition to the standard SetOutputFieldName and Execute methods, PointElevation provides the following
methods.

SetLowPoint/SetHighPoint This pair of methods is used to set the low and high points, respectively, of the
elevation. Each method takes three floating point numbers specifying the x, y, and z components of the
low or high point.

SetRange Sets the range of values to use for the output field. This method takes two floating point numbers
specifying the low and high values, respectively.

4.2.4 Surface Normals

vtkm::filter::SurfaceNormals computes the surface normals of a polygonal data set at its points and/or cells.
The filter takes a data set as input and by default, uses the active coordinate system to compute the normals.
Optionally, a coordinate system or a point field of 3d vectors can be explicitly provided to the Execute method.
The cell normals are computed based on each cell’s winding order using vector cross-product. For non-polygonal
cells, a zeroed vector is assigned. The point normals are computed by averaging the cell normals of the incident
cells of each point.

The default name for the output fields is “Normals”, but that can be overriden using the SetCellNormalsName
and SetPointNormalsName methods.

In addition to the standard field filters methods, SurfaceNormals provides the following methods.

SetGenerateCellNormals/GetGenerateCellNormals These methods can be used to set/get the flag to specify
if the cell normals should be generated.

SetGeneratePointNormals/GetGeneratePointNormals These methods can be used to set/get the flag to spec-
ify if the point normals should be generated.

SetCellNormalsName/GetCellNormalsName These methods can be used to set/get the output cell normals field
name.

SetPointNormalsName/GetPointNormalsName These methods can be used to set/get the output point normals
field name.
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4.2.5 Gradients

vtkm::filter::Gradients computes the gradient of a point based input field for every element in the input data
set. The gradient computation can either generate cell center based gradients which are fast but less accurate,
or more accurate but slower point based gradients. The default for the filter is output as cell centered gradients,
but can be changed by using the SetComputePointGradient method. The default name for the output fields is
“Gradients”, but that can be overriden using the SetOutputFieldName method.

In addition to the standard field filters methods, Gradients provides the following methods.

SetComputePointGradient/GetComputePointGradient These methods can be used to change if we are com-
puting point of cell based gradients. The output field(s) of this filter will be point based if this is enabled.

SetComputeDivergence/GetComputeDivergence These methods can be used to set/get the flag to specify if
the divergence filed will be generated. By default the name of the array will be “Divergence” but can
be changed by using SetDivergenceName. The field will be a cell field unless ComputePointGradient is
enabled. The input array must have 3 components in order to compute this. The default is off.

SetComputeVorticity/GetComputeVorticity These methods can be used to set/get the flag to specify if the
vorticity filed will be generated. By default the name of the array will be “Vorticity” but can be changed
by using SetVorticityName. The field will be a cell field unless ComputePointGradient is enabled. The
input array must have 3 components in order to compute this. The default is off.

SetComputeQCriterion/GetComputeQCriterion These methods can be used to set/get the flag to specify if
the Q-Criterion filed will be generated. By default the name of the array will be “QCriterion” but can
be changed by using SetQCriterionName. The field will be a cell field unless ComputePointGradient is
enabled. The input array must have 3 components in order to compute this. The default is off.

SetComputeGradient/GetComputeGradient These methods control the ability to write out the actual gradient
field. When processing fields that have 3 components it is desirable to compute information such as
Divergence, Vorticity, or Q-Criterion without incurring the cost of also having to write out the 3x3 gradient
result. The default is on.

SetColumnMajorOrdering/SetRowMajorOrdering When processing input fields that have 3 components, the
output will be a a 3x3 gradient. By default VTK-m outputs all matrix like arrays in Row Major ordering
(C-Ordering). When integrating with libraries like VTK or with FORTRAN codes which use Column
Major ordering. The default is Row Major. This setting is only relevant for 3 component input fields when
SetComputeGradient is enabled.

SetDivergenceName/GetDivergenceName These methods can be used to set/get the output cell normals field
name. The default is “Divergence”.

SetVorticityName/GetVorticityName These methods can be used to set/get the output Vorticity field name.
The default is “Vorticity”

SetQCriterionName/GetQCriterionName These methods can be used to set/get the output Q-Criterion field
name. The default is “QCriterion”.

4.3 Data Set Filters

Data set filters are a class of filters that generate a new data set with a new topology. This new topology is
typically derived from an existing data set. For example, a data set can be significantly altered by adding,
removing, or replacing cells.
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All data set filters contain an Execute method that takes one argument: a vtkm::cont::DataSet object with
the input data.

Some data set filters need more information that just a data set when executing. Any additional information
is provided using methods in the filter class that changes the state. These methods are called before Execute.
One such method that all data set filters have is SetActiveCellSet, which selects which cell set in the input
DataSet to operate on. Likewise, SetActiveCoordinateSystem selects which coordinate system to operate on.
By default, the filter will operate on the first cell set and coordinate system. (See Sections 12.2 and 12.4 for
more information about cell sets and coordinate systems, respectively.)

The Execute method returns a vtkm::filter::Result object, which contains the state of the execution and
the data generated. Result is documented in Section 4.1.

Because the new data set is derived from existing data, it can often inherit field information from the original
data. All data set filters also contain a MapFieldOntoOutput method to map fields from the output to the input.
This method takes two arguments. The first argument is the Result object returned from the last call to Execute.
The second argument is a vtkm::cont::Field object that comes from the input. MapFieldOntoOutput returns
a bool that is true if the field was successfully mapped and added to the output data set in the Result object.

Not all data set filters support the mapping of all input fields to the output. If the mapping is not supported,
MapFieldOntoOutput will simply return false.

Common Errors

The following example provides a simple demonstration of using a data set filter. It specifically uses the vertex
clustering filter, which is one of the data set filters.

Example 4.2: Using VertexClustering, which is a data set filter.
1 vtkm :: filter :: VertexClustering vertexClustering ;
2
3 vertexClustering . SetNumberOfDivisions (vtkm :: Id3 (128 ,128 ,128));
4
5 vtkm :: filter :: Result result = vertexClustering . Execute ( originalSurface );
6
7 if (! result . IsDataSetValid ())
8 {
9 throw vtkm :: cont :: ErrorBadValue (" Failed to run vertex clustering .");

10 }
11
12 for (vtkm :: IdComponent fieldIndex = 0;
13 fieldIndex < originalSurface . GetNumberOfFields ();
14 fieldIndex ++)
15 {
16 vertexClustering . MapFieldOntoOutput (result ,
17 originalSurface . GetField ( fieldIndex ));
18 }
19
20 vtkm :: cont :: DataSet simplifiedSurface = result . GetDataSet ();

4.3.1 Clean Grid

vtkm::filter::CleanGrid is a filter that converts a cell set to an explicit representation and potentially removes
redundant or unused data. It does this by iterating over all cells in the data set, and for each one creating the
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explicit cell representation that is stored in the output. (Explicit cell sets are described in Section 12.2.2.) One
benefit of using CleanGrid is that it can optionally remove unused points[ and combine coincident points
when implemented]. Another benefit is that the resulting cell set will be of a known specific type.

The result of vtkm::filter::CleanGrid is not necessarily smaller, memory-wise, than its input. For
example, “cleaning” a data set with a structured topology will actually result in a data set that requires
much more memory to store an explicit topology.

Common Errors

In addition to the standard Execute, MapFieldOntoOutput, and other methods, CleanGrid provides the following
methods.

SetCompactPointFields Sets a Boolean flag that determines whether unused points are removed from the
output. If true (the default), then the output data set will have a new coordinate system containing only
those points being used by the cell set, and the indices of the cells will be adjusted to the new ordering of
points. If false, then the output coordinate systems will be a shallow copy of the input coordinate systems.

GetCompactPointFields Returns the Boolean flag set in the latest call to SetCompactPointFields.

4.3.2 External Faces

vtkm::filter::ExternalFaces is a filter that extracts all the external faces from a polyhedral data set. An
external face is any face that is on the boundary of a mesh. Thus, if there is a hole in a volume, the boundary
of that hole will be considered external. More formally, an external face is one that belongs to only one cell in a
mesh.

The external faces filter has no extra methods beyond the base methods of data set filters (such as Execute and
MapFieldOntoOutput) because it requires no further metadata for its operations.

4.3.3 Vertex Clustering

vtkm::filter::VertexClustering is a filter that simplifies a polygonal mesh. It does so by dividing space into
a uniform grid of bin and then merges together all points located in the same bin. The smaller the dimensions of
this binning grid, the fewer polygons will be in the output cells and the coarser the representation. This surface
simplification is an important operation to support level of detail (LOD) rendering in visualization applications.
Example 4.2 provides a demonstration of the vertex clustering filter.

In addition to the standard Execute, MapFieldOntoOutput, and other methods, VertexClustering provides
the following methods.

SetNumberOfDivisions Set the dimensions of the uniform grid that establishes the bins used for clustering.
Setting smaller numbers of dimensions produces a smaller output, but with a coarser representation of the
surface. The dimensions are provided as a vtkm::Id3.

GetNumberOfDimensions Returns the number of dimensions used for binning. The dimensions are returned as
a vtkm::Id3.
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4.4 Data Set and Field Filters

Data set and field filters are a class of filters that generate a new data set with a new topology. This new topology
is derived from an existing data set and at least one of the fields in the data set. For example, a field might
determine how each cell is culled, clipped, or sliced.

All data set and field filters contain an Execute method that takes two arguments. The first argument is
a vtkm::cont::DataSet object with the input data. The second argument specifies the field from which to
derive a new field. The field can be specified as either a string naming a field in the input DataSet object,
as a vtkm::cont::Field object, or as a coordinate system (typically retrieved from a DataSet object with
the GetCoordianteSystem method). See Sections 12.3 and 12.4 for more information on fields and coordinate
systems, respectively.

Some data set filters need more information that just a data set when executing. Any additional information
is provided using methods in the filter class that changes the state. These methods are called before Execute.
One such method that all data set filters have is SetActiveCellSet, which selects which cell set in the input
DataSet to operate on. Likewise, SetActiveCoordinateSystem selects which coordinate system to operate on.
By default, the filter will operate on the first cell set and coordinate system. (See Sections 12.2 and 12.4 for
more information about cell sets and coordinate systems, respectively.)

The Execute method returns a vtkm::filter::Result object, which contains the state of the execution and
the data generated. Result is documented in Section 4.1.

Because the new data set is derived from existing data, it can often inherit field information from the original
data. All data set filters also contain a MapFieldOntoOutput method to map fields from the output to the input.
This method takes two arguments. The first argument is the Result object returned from the last call to Execute.
The second argument is a vtkm::cont::Field object that comes from the input. MapFieldOntoOutput returns
a bool that is true if the field was successfully mapped and added to the output data set in the Result object.

Not all data set filters support the mapping of all input fields to the output. If the mapping is not supported,
MapFieldOntoOutput will simply return false.

Common Errors

The following example provides a simple demonstration of using a data set and field filter. It specifically uses
the Marching Cubes filter, which is one of the data set and field filters.

Example 4.3: Using MarchingCubes, which is a data set and field filter.
1 vtkm :: filter :: MarchingCubes marchingCubes ;
2
3 marchingCubes . SetIsoValue (10.0);
4
5 vtkm :: filter :: Result result = marchingCubes . Execute (inData , " pointvar ");
6
7 if (! result . IsDataSetValid ())
8 {
9 throw vtkm :: cont :: ErrorBadValue (" Failed to run Marching Cubes .");

10 }
11
12 for (vtkm :: IdComponent fieldIndex = 0;
13 fieldIndex < inData . GetNumberOfFields ();
14 fieldIndex ++)
15 {
16 marchingCubes . MapFieldOntoOutput (result , inData . GetField ( fieldIndex ));
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17 }
18
19 vtkm :: cont :: DataSet isosurface = result . GetDataSet ();

4.4.1 Marching Cubes

Contouring is one of the most fundamental filters in scientific visualization. A contour is the locus where a field is
equal to a particular value. A topographic map showing curves of various elevations often used when hiking in hilly
regions is an example of contours of an elevation field in 2 dimensions. Extended to 3 dimensions, a contour gives
a surface. Thus, a contour is often called an isosurface. Marching Cubes is a well know algorithm for computing
contours and is implemented by vtkm::filter::MarchingCubes. Example 4.3 provides a demonstration of the
Marching Cubes filter.

In addition to the standard Execute, MapFieldOntoOutput, and other methods, MarchingCubes provides the
following methods.

SetIsoValue Provide the value on which to extract the contour. The contour will be the surface where the field
(provided to Execute) is equal to this value.

GetIsoValue Retrieve the currently set iso value.

SetMergeDuplicatePoints Sets a Boolean flag to determine whether coincident points in the data set should
be merged. Because the Marching Cubes filter (like all filters in VTK-m) runs in parallel, parallel threads
can (and often do) create duplicate versions of points. When this flag is set to true, a secondary operation
will find all duplicated points and combine them together.

GetMergeDuplicatePoints Returns the merge duplicate points flag.

SetGenerateNormals Sets a Boolean flag to determine whether to generate normal vectors for the surface.
Normals are used in shading calculations during rendering and can make the surface appear more smooth.
By default, the generated normals are based on the gradient of the field being contoured and can be quite
expensive to compute. A faster method is available that computes the normals based on the faces of the
isosurface mesh, but the normals do not look as good as the gradient based normals. Fast normals can be
enabled using the flags described bellow.

GetGenerateNormals Returns the generate normals flag.

SetComputeFastNormalsForStructured Sets a Boolean flag to use the fast method of normals computation for
Structured datasets. This is only valid if the generate normals flag is set.

GetComputeFastNormalsForStructured Returns the value of the ComputeFastNormalsForStructured flag.

SetComputeFastNormalsForUnstructured Sets a Boolean flag to use the fast method of normals computation
for unstructured datasets. This is only valid if the generate normals flag is set.

GetComputeFastNormalsForUnstructured Returns the value of the ComputeFastNormalsForUnstructured
flag.
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4.4.2 Threshold

A threshold operation removes topology elements from a data set that do not meet a specified criterion. The
vtkm::filter::Threshold filter removes all cells where the field (provided to Execute) is not between a range
of values.

In addition to the standard Execute, MapFieldOntoOutput, and other methods, Threshold provides the following
methods.

SetLowerThreshold Sets the lower scalar value. Any cells where the scalar field is less than this value are
removed.

SetUpperThreshold Sets the upper scalar value. Any cells where the scalar field is more than this value are
removed.

GetLowerThreshold Returns the lower threshold value.

GetUpperThreshold Returns the upper threshold value.
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RENDERING

Rendering, the generation of images from data, is a key component to visualization. To assist with rendering,
VTK-m provides a rendering package to produce imagery from data, which is located in the vtkm::rendering
namespace.

The rendering package in VTK-m is not intended to be a fully featured rendering system or library. Rather, it
is a lightweight rendering package with two primary use cases:

1. New users getting started with VTK-m need a “quick and dirty” render method to see their visualization
results.

2. In situ visualization that integrates VTK-m with a simulation or other data-generation system might need
a lightweight rendering method.

Both of these use cases require just a basic rendering platform. Because VTK-m is designed to be integrated
into larger systems, it does not aspire to have a fully featured rendering system.

VTK-m’s big sister toolkit VTK is already integrated with VTK-m and has its own fully featured rendering
system. If you need more rendering capabilities than what VTK-m provides, you can leverage VTK instead.

Did you know?

5.1 Creating a Rendering Canvas

The first step in using VTK-m’s rendering package is to create a canvas, which is managed by vtkm::render-
ing::Canvas and its subclasses. The Canvas object manages the frame buffers and the rendering context.

Subclasses of Canvas establish a context for different rendering systems. Currently, there are two main subclasses:
one for using OpenGL rendering (vtkm::rendering::CanvasGL) and one for using built in ray tracing (vtkm::-
rendering::CanvasRayTracer).

5.1.1 Creating an OpenGL Context with GLUT

One feature that is notably (and intentionally) missing from the VTK-m rendering package is the ability to
open a rendering window or build a graphical user interface. However, VTK-m can use an OpenGL context
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established elsewhere to perform rendering. OpenGL is a widely-accepted rendering library supported by all
hardware vendors on pretty much all computing platforms. It is also extensively used by many applications
performing rendering, particularly scientific visualization applications.

Once an OpenGL rendering context is established, it can be used by VTK-m by simply creating a vtkm::-
rendering::CanvasGL. When created, CanvasGL will find the current OpenGL context, query its size, and
ready the VTK-m rendering system to use it.

Unfortunately, creating a window with an OpenGL context is platform dependent. There are numerous libraries
available that provide the ability to create an OpenGL window that have been ported to many platforms (such
as MS Windows, Unix, and Mac OSX). One such library is GLUT.

GLUT is a very simple utility toolkit that provides a basic mechanism for creating a window with an OpenGL
context. It additionally provides simple user interface features to capture keystrokes and mouse movements. For
the purposes of demonstration, we will provide examples that use GLUT to make a simple interactive rendering
application.

We are demonstrating rendering with GLUT for illustrative purposes only. VTK-m is not directly associated
with GLUT: It neither comes with GLUT nor depends on GLUT. You are welcome to follow these boilerplate
examples, or you can integrate with another rendering system of your choosing.

Did you know?

This section provides a terse description of getting a GLUT application up and running. This is not meant to
be a thorough description of the GLUT library. There are other resources that document using the GLUT API,
the most complete of which is the book OpenGL Programming for the X Window System by Mark J. Kilgard.
The information provided here is just enough to get you started.

Although distributed for free, the original GLUT library was not released as open source. Unfortunately,
the GLUT copyright holders are not as actively developing GLUT as they once were, and consequently
some systems are declaring GLUT as deprecated. However, there some newer projects like FreeGLUT and
OpenGLUT that are open source, that are being more actively developed, and that are drop in replacements
to the original GLUT library. There are also alternative libraries such as GLFW that have similar capa-
bilities but a different API. These are not documented here, but are worth investigating if GLUT does not
work for you.

Common Errors

The first call made to the GLUT library should be to the function glutInit, which takes as arguments the argc
and argv arguments passed to the main C function. glutInit will find any window-system specific flags (such
as -display), use them to initialize the windowing system, and strip them from the arguments.

Next, the parameters for the window to be created should be established. The function glutInitWindowSize
takes the width and the height of the renderable space in the window. The function glutInitDisplayMode
takes a mask of flags that are or-ed together to specify the capabilities of the window. We recommend the flags
GLUT RGBA, GLUT DOUBLE, GLUT ALPHA, and GLUT DEPTH. Once these are specified a call to glutCreateWindow
will create a window and initialize the OpenGL context. glutCreateWindow takes a string for an argument that
is used in the title bar of the window.
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Example 5.1: Initializing the GLUT library and creating a window to render into.
1 glutInit (& argc , argv );
2 glutInitWindowSize (960 , 600);
3 glutInitDisplayMode ( GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH );
4 glutCreateWindow ("VTK -m Example ");

Apart from the initial setup, most of the interaction with the GLUT library happens through callbacks. As
part of its initialization, an application provides function pointers to GLUT. GLUT then calls these provided
functions when certain events happen. GLUT supports many callbacks for different types of events. Here is the
small set of callbacks we use in our small example.

glutDisplayFunc The display function is called when the window needs to be redrawn. The callback should
issue the appropriate OpenGL rendering calls and then call glutSwapBuffers to show the result.

glutReshapeFunc The reshape function is called whenever the window is resized. The callback is given the
width and height of the new rendering window.

glutMouseFunc The mouse button function is called whenever a mouse button is pressed or released. The GLUT
system gives the index of the button, the state the button changed to (GLUT DOWN or GLUT UP) and the
pixel location of the event.

glutMotionFunc The mouse motion function is called whenever the mouse is moved while any button is pressed.
The callback is given the pixel location to where the mouse moved to, but not the state of any of the buttons.
If the button state is important, it must be preserved in a global variable. If the mouse motion should
result in a change in the rendered view, the function should call glutPostRedisplay, which will tell GLUT
to call the display function when the windowing system is ready.

glutKeygboardFunc The keyboard function is called whenever a regular key is pressed. The callback is given
the character of the key pressed as well as the pixel location of the mouse when the key was pressed. If
the key press should result in a change in the rendered view, the function should call glutPostRedisplay,
which will tell GLUT to call the display function when the windowing system is ready.

There are many other GLUT callbacks not documented here. Consult the GLUT documentation for more
information.

Did you know?

Example 5.2: Registering callbacks with GLUT.
1 glutDisplayFunc ( DisplayCallback );
2 glutReshapeFunc ( WindowReshapeCallback );
3 glutMouseFunc ( MouseButtonCallback );
4 glutMotionFunc ( MouseMoveCallback );
5 glutKeyboardFunc ( KeyPressCallback );

Once the GLUT library is initialized, the rendering window created, and all the necessary callbacks are registered,
call glutMainLoop. This causes GLUT to enter its main event loop where it will manage the windowing system.
glutMainLoop will never return. Rather, it will continue to respond to events and invoke the callbacks until the
program is otherwise interrupted.

Example 5.3 puts this all together to give a full example of a simple GLUT program rendering with VTK-m.
The output of the program is shown in Figure 5.1. The examples of the GLUT callbacks are straightforward.
The VTK-m rendering classes used are documented in the following sections.
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Example 5.3: A simple but full example of an application using GLUT and VTK-m together.
1 # include <vtkm/io/ reader / VTKDataSetReader .h>
2
3 # include <vtkm/ rendering / Actor .h>
4 # include <vtkm/ rendering / Camera .h>
5 # include <vtkm/ rendering / CanvasGL .h>
6 # include <vtkm/ rendering / MapperGL .h>
7 # include <vtkm/ rendering / View3D .h>
8
9 # ifdef __APPLE__

10 # include <GLUT/glut.h>
11 #else
12 # include <GL/glut.h>
13 # endif
14
15 namespace BasicGlutExample {
16
17 vtkm :: rendering :: View3D * gViewPointer = NULL;
18
19 int gButtonState [3] = { GLUT_UP , GLUT_UP , GLUT_UP };
20 int gMousePositionX ;
21 int gMousePositionY ;
22
23 void DisplayCallback ()
24 {
25 gViewPointer -> Paint ();
26 glutSwapBuffers ();
27 }
28
29 void WindowReshapeCallback (int width , int height )
30 {
31 gViewPointer -> GetCanvas (). ResizeBuffers (width , height );
32 }
33
34 void MouseButtonCallback (int buttonIndex , int state , int x, int y)
35 {
36 gButtonState [ buttonIndex ] = state ;
37 gMousePositionX = x;
38 gMousePositionY = y;
39 }
40
41 void MouseMoveCallback (int x, int y)
42 {
43 vtkm :: Id width = gViewPointer -> GetCanvas (). GetWidth ();
44 vtkm :: Id height = gViewPointer -> GetCanvas (). GetHeight ();
45
46 vtkm :: Float32 lastX = (2.0f* gMousePositionX )/ width - 1.0f;
47 vtkm :: Float32 lastY = 1.0f - (2.0f* gMousePositionY )/ height ;
48 vtkm :: Float32 nextX = (2.0f*x)/ width - 1.0f;
49 vtkm :: Float32 nextY = 1.0f - (2.0f*y)/ height ;
50
51 if ( gButtonState [0] == GLUT_DOWN )
52 {
53 gViewPointer -> GetCamera (). TrackballRotate (lastX , lastY , nextX , nextY );
54 }
55 else if ( gButtonState [1] == GLUT_DOWN )
56 {
57 gViewPointer -> GetCamera (). Pan(nextX -lastX , nextY - lastY );
58 }
59 else if ( gButtonState [2] == GLUT_DOWN )
60 {
61 gViewPointer -> GetCamera (). Zoom(nextY - lastY );
62 }
63
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64 gMousePositionX = x;
65 gMousePositionY = y;
66
67 glutPostRedisplay ();
68 }
69
70 void KeyPressCallback ( unsigned char key , int x, int y)
71 {
72 switch (key)
73 {
74 case ’q ’:
75 case ’Q ’:
76 delete gViewPointer ;
77 gViewPointer = NULL;
78 exit (0);
79 break ;
80 }
81 }
82
83 int main(int argc , char *argv [])
84 {
85 // Initialize GLUT window and callbacks
86 glutInit (& argc , argv );
87 glutInitWindowSize (960 , 600);
88 glutInitDisplayMode ( GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH );
89 glutCreateWindow ("VTK -m Example ");
90
91 glutDisplayFunc ( DisplayCallback );
92 glutReshapeFunc ( WindowReshapeCallback );
93 glutMouseFunc ( MouseButtonCallback );
94 glutMotionFunc ( MouseMoveCallback );
95 glutKeyboardFunc ( KeyPressCallback );
96
97 // Initialize VTK -m rendering classes
98 vtkm :: cont :: DataSet surfaceData ;
99 try

100 {
101 vtkm :: io :: reader :: VTKDataSetReader reader (" data/cow.vtk ");
102 surfaceData = reader . ReadDataSet ();
103 }
104 catch (vtkm :: io :: ErrorIO & error )
105 {
106 std :: cout << " Could not read file :" << std :: endl
107 << error . GetMessage () << std :: endl;
108 }
109 catch (...)
110 {
111 throw ;
112 }
113
114 vtkm :: rendering :: Actor actor ( surfaceData . GetCellSet (),
115 surfaceData . GetCoordinateSystem (),
116 surfaceData . GetField (" RandomPointScalars "));
117
118 vtkm :: rendering :: Scene scene ;
119 scene . AddActor ( actor );
120
121 vtkm :: rendering :: MapperGL mapper ;
122 vtkm :: rendering :: CanvasGL canvas ;
123
124 gViewPointer = new vtkm :: rendering :: View3D (scene , mapper , canvas );
125 gViewPointer -> Initialize ();
126
127 // Start the GLUT rendering system . This function typically does not return .
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128 glutMainLoop ();
129
130 return 0;
131 }

Figure 5.1: Output of the rendering program listed in Example 5.3.

5.1.2 Creating an Off Screen Rendering Canvas

Another use case for rendering in VTK-m is rendering to an off screen buffer. This is the preferred method when
doing automated visualization such as when running visualization in situ with a simulation. VTK-m comes
built in with multiple methods to create off screen rendering contexts. There are multiple subclasses to vtkm::-
rendering::Canvas that, when constructed, create their own rendering contexts, so can be used immediately.
All of these classes take as parameters to their constructors the width and height of the image to create.

The following classes, when constructed, create an off screen rendering buffer.

vtkm::rendering::CanvasEGL Creates an off screen OpenGL rendering buffer using EGL. EGL provides an
interface to create a context for OpenGL rendering software without engaging the operating-system-specific
windowing system. For this to be available, VTK-m must have been configured to use the EGL library.

vtkm::rendering::CanvasOSMesa Creates an off screen OpenGL rendering buffer using the OSMesa library.
For this to be available, VTK-m must have been configured to use the OSMesa library. Also, be aware
that OSMesa contexts do not use GPU hardware.

vtkm::rendering::CanvasRayTracer Creates the frame buffers required for ray tracing. When invoking this
canvas, you must use other ray tracing component where applicable. OpenGL rendering does not work
with the CanvasRayTracer.

By their nature, when writing to an off screen canvas, you cannot directly see the result. Typically, programs
using off screen rendering save rendered images as files to be viewed later. For convenience, Canvas has a method
named SaveAs that will write the contents of the last saved image to a file. The files are written in portable pixel
map (PPM) format, which are also valid portable anymap format (PNM) files. This is a very simple format that
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is easy to read and write. PPM files are supported by the ImageMagick1 software suite as well as many other
image software tools.

Example 5.4: Saving an image rendered in a Canvas to a file.
1 canvas . SaveAs (" MyVis .ppm ");

Alternately, the rendered image can be retrieved directly from the Canvas by first calling the RefreshColor-
Buffer method and then calling GetColorBuffer. This retrieves the raw image data as a vtkm::cont::Array-
Handle. ArrayHandles are documented later in Chapter 7.

5.2 Scenes and Actors

The primary intent of the rendering package in VTK-m is to visually display the data that is loaded and
processed. Data are represented in VTK-m by vtkm::cont::DataSet objects. DataSet is presented in Chapters
3 and 4. For now we treat DataSet mostly as an opaque object that can be passed around readers, writers,
filters, and rendering units. Detailed documentation for DataSet is provided in Chapter 12.

To render a DataSet, the data are wrapped in a vtkm::rendering::Actor class. The Actor holds the compo-
nents of the DataSet to render (a cell set, a coordinate system, and a field). A color table can also be optionally
be specified, but a default color table will be specified otherwise.

Actors are collected together in an object called vtkm::rendering::Scene. An Actor is added to a Scene with
the AddActor method. The following example demonstrates creating a Scene with one Actor.

Example 5.5: Creating an Actor and adding it to a Scene.
1 vtkm :: rendering :: Actor actor ( surfaceData . GetCellSet (),
2 surfaceData . GetCoordinateSystem (),
3 surfaceData . GetField (" RandomPointScalars "));
4
5 vtkm :: rendering :: Scene scene ;
6 scene . AddActor ( actor );

5.3 Mappers

A mapper is a unit that converts data (managed by an Actor) and issues commands to the rendering subsystem
to generate images. All mappers in VTK-m are a subclass of vtkm::rendering::Mapper. Different rendering
systems (as established by the Canvas) often require different mappers. Also, different mappers could render
different types of data in different ways. For example, one mapper might render polygonal surfaces whereas
another might render polyhedra as a translucent volume. Thus, a mapper should be picked to match both the
rendering system of the Canvas and the data in the Actor.

The following mappers are provided by VTK-m.

vtkm::rendering::MapperGL Uses OpenGL to render surfaces. If the data contain polyhedra, then their faces
are rendered. MapperGL only works in conjunction with CanvasGL or one of its subclasses.

vtkm::rendering::MapperRayTracer Uses VTK-m’s built in ray tracing system to render the visible surface
of a mesh. MapperRayTracer only works in conjunction with CanvasRayTracer.

vtkm::rendering::MapperVolume Uses VTK-m’s built in ray tracing system to render polyhedra as a translu-
cent volume. MapperVolume only works in conjunction with CanvasRayTracer.

1http://imagemagick.org
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5.4 Views

A view is a unit that collects all the structures needed to perform rendering. It contains everything needed to
take a Scene (Section 5.2) and use a Mapper (Section 5.3) to render it onto a Canvas (Section 5.1). The view
also annotates the image with spatial and scalar properties.

The base class for all views is vtkm::rendering::View. View is an abstract class, and you must choose one of the
three provided subclasses, vtkm::rendering::View3D, vtkm::rendering::View2D, and vtkm::rendering::-
View3D, depending on the type of data being presented. All three view classes take a Scene, a Mapper, and a
Canvas as arguments to their constructor.

Example 5.6: Constructing a View.
1 vtkm :: rendering :: Actor actor ( surfaceData . GetCellSet (),
2 surfaceData . GetCoordinateSystem (),
3 surfaceData . GetField (" RandomPointScalars "));
4
5 vtkm :: rendering :: Scene scene ;
6 scene . AddActor ( actor );
7
8 vtkm :: rendering :: MapperGL mapper ;
9 vtkm :: rendering :: CanvasGL canvas ;

10
11 gViewPointer = new vtkm :: rendering :: View3D (scene , mapper , canvas );
12 gViewPointer -> Initialize ();

The View constructors also take an optional fourth argument for the background color. The background color
(like other colors) is specified using the vtkm::rendering::Color helper class, which manages the red, green,
and blue color channels as well as an optional alpha channel. These channel values are given as floating point
values between 0 and 1.

Example 5.7: Creating a View with a background color.
1 new vtkm :: rendering :: View3D (
2 scene , mapper , canvas , vtkm :: rendering :: Color (1.0f, 1.0f, 1.0f));

Once the View is created but before it is used to render, the Initialize method should be called. This is
demonstrated in Example 5.6.

Once the Initialize method is called, the View is ready to render the scene. This happens by calling the Paint
method, which will render the data into the contained canvas. When using GLUT, as in Example 5.3, or with
most other GUI-based systems, Paint is called in the display callback.

Example 5.8: Using Canvas::Paint in a display callback.
1 void DisplayCallback ()
2 {
3 gViewPointer -> Paint ();
4 glutSwapBuffers ();
5 }

5.5 Manipulating the Camera

The vtkm::rendering::View uses an object called vtkm::rendering::Camera to describe the vantage point
from which to draw the geometry. The camera can be retrieved from the View’s GetCamera method. That
retrieved camera can be directly manipulated or a new camera can be provided by calling SetCamera on the
View.
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A Camera operates in one of two major modes: 2D mode or 3D mode. 2D mode is designed for looking at flat
geometry (or close to flat geometry) that is parallel to the x-y plane. 3D mode provides the freedom to place the
camera anywhere in 3D space. The different modes can be set with SetModeTo2D and SetModeTo3D, respectively.
The interaction with the camera in these two modes is very different.

5.5.1 2D Camera Mode

The 2D camera is restricted to looking at some region of the x-y plane.

View Range

The vantage point of a 2D camera can be specified by simply giving the region in the x-y plane to look at. This
region is specified by calling SetViewRange2D on Camera. This method takes the left, right, bottom, and top of
the region to view. Typically these are set to the range of the geometry in world space as shown in Figure 5.2.

Bottom
(Y Min)

Top
(Y Max)

Left
(X Min)

Right
(X Max)

Figure 5.2: The view range bounds to give a Camera.

There are 3 overloaded versions of the SetViewRange2D method. The first version takes the 4 range values, left,
right, bottom, and top, as separate arguments in that order. The second version takes two vtkm::Range objects
specifying the range in the x and y directions, respectively. The third version trakes a single vtkm::Bounds
object, which completely specifies the spatial range. (The range in z is ignored.) The Range and Bounds objects
are documented later in Sections 6.4.4 and 6.4.5, respectively.

Pan

A camera pan moves the viewpoint left, right, up, or down. A camera pan is performed by calling the Pan
method on Camera. Pan takes two arguments: the amount to pan in x and the amount to pan in y.

The pan is given with respect to the projected space. So a pan of 1 in the x direction moves the camera to focus
on the right edge of the image whereas a pan of −1 in the x direction moves the camera to focus on the left edge
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of the image. When using Pan to respond to mouse movements, a natural pan will divide the distance traveled
by the mouse pointer by the width and height of the screen as demonstrated in the following example.

Example 5.9: Pan the view based on mouse movements.
1 void DoMousePan (vtkm :: rendering :: View &view ,
2 vtkm :: Id mouseStartX ,
3 vtkm :: Id mouseStartY ,
4 vtkm :: Id mouseEndX ,
5 vtkm :: Id mouseEndY )
6 {
7 vtkm :: Id screenWidth = view. GetCanvas (). GetWidth ();
8 vtkm :: Id screenHeight = view. GetCanvas (). GetHeight ();
9

10 // Convert the mouse position coordinates , given in pixels from 0 to
11 // width /height , to normalized screen coordinates from -1 to 1. Note that y
12 // screen coordinates are usually given from the top down whereas our
13 // geometry transforms are given from bottom up , so you have to reverse the y
14 // coordiantes .
15 vtkm :: Float32 startX = (2.0f* mouseStartX )/ screenWidth - 1.0f;
16 vtkm :: Float32 startY = -((2.0f* mouseStartY )/ screenHeight - 1.0f);
17 vtkm :: Float32 endX = (2.0f* mouseEndX )/ screenWidth - 1.0f;
18 vtkm :: Float32 endY = -((2.0f* mouseEndY )/ screenHeight - 1.0f);
19
20 view. GetCamera (). Pan(endX -startX , endY - startY );
21 }

Zoom

A camera zoom draws the geometry larger or smaller. A camera zoom is performed by calling the Zoom method
on Camera. Zoom takes a single argument specifying the zoom factor. A positive number draws the geometry
larger (zoom in), and larger zoom factor results in larger geometry. Likewise, a negative number draws the
geometry smaller (zoom out). A zoom factor of 0 has no effect.

When using Zoom to respond to mouse movements, a natural zoom will divide the distance traveled by the mouse
pointer by the width or height of the screen as demonstrated in the following example.

Example 5.10: Zoom the view based on mouse movements.
1 void DoMouseZoom (vtkm :: rendering :: View &view ,
2 vtkm :: Id mouseStartY ,
3 vtkm :: Id mouseEndY )
4 {
5 vtkm :: Id screenHeight = view. GetCanvas (). GetHeight ();
6
7 // Convert the mouse position coordinates , given in pixels from 0 to height ,
8 // to normalized screen coordinates from -1 to 1. Note that y screen
9 // coordinates are usually given from the top down whereas our geometry

10 // transforms are given from bottom up , so you have to reverse the y
11 // coordiantes .
12 vtkm :: Float32 startY = -((2.0f* mouseStartY )/ screenHeight - 1.0f);
13 vtkm :: Float32 endY = -((2.0f* mouseEndY )/ screenHeight - 1.0f);
14
15 view. GetCamera (). Zoom(endY - startY );
16 }

5.5.2 3D Camera Mode

The 3D camera is a free-form camera that can be placed anywhere in 3D space and can look in any direction.
The projection of the 3D camera is based on the pinhole camera model in which all viewing rays intersect a
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single point. This single point is the camera’s position.

Position and Orientation

The position of the camera, which is the point where the observer is viewing the scene, can be set with the
SetPosition method of Camera. The direction the camera is facing is specified by giving a position to focus
on. This is called either the “look at” point or the focal point and is specified with the SetLookAt method of
Camera. Figure 5.3 shows the relationship between the position and look at points.

Look At

PositionField of
View

View
Up

Clipping
Range
Near

Clipping
Range

Far

Figure 5.3: The position and orientation parameters for a Camera.

In addition to specifying the direction to point the camera, the camera must also know which direction is
considered “up.” This is specified with the view up vector using the SetViewUp method in Camera. The view up
vector points from the camera position (in the center of the image) to the top of the image. The view up vector
in relation to the camera position and orientation is shown in Figure 5.3.

Another important parameter for the camera is its field of view. The field of view specifies how wide of a region
the camera can see. It is specified by giving the angle in degrees of the cone of visible region emanating from
the pinhole of the camera to the SetFieldOfView method in the Camera. The field of view angle in relation to
the camera orientation is shown in Figure 5.3. A field of view angle of 60◦ usually works well.

Finally, the camera must specify a clipping region that defines the valid range of depths for the object. This is
a pair of planes parallel to the image that all visible data must lie in. Each of these planes is defined simply

Chapter 5. Rendering 37



DRAFT

5.5. Manipulating the Camera

by their distance to the camera position. The near clip plane is closer to the camera and must be in front of
all geometry. The far clip plane is further from the camera and must be behind all geometry. The distance to
both the near and far planes are specified with the SetClippingRange method in Camera. Figure 5.3 shows the
clipping planes in relationship to the camera position and orientation.

Example 5.11: Directly setting vtkm::rendering::Camera position and orientation.
1 camera . SetPosition (vtkm :: make_Vec (10.0 , 6.0 , 6.0));
2 camera . SetLookAt (vtkm :: make_Vec (0.0 , 0.0 , 0.0));
3 camera . SetViewUp (vtkm :: make_Vec (0.0 , 1.0 , 0.0));
4 camera . SetFieldOfView (60.0);
5 camera . SetClippingRange (0.1 , 100.0);

Movement

In addition to specifically setting the position and orientation of the camera, vtkm::rendering::Camera contains
several convenience methods that move the camera relative to its position and look at point.

Two such methods are elevation and azimuth, which move the camera around the sphere centered at the look at
point. Elevation raises or lowers the camera. Positive values raise the camera up (in the direction of the view
up vector) whereas negative values lower the camera down. Azimuth moves the camera around the look at point
to the left or right. Positive values move the camera to the right whereas negative values move the camera to
the left. Both Elevation and Azimuth specify the amount of rotation in terms of degrees. Figure 5.4 shows the
relative movements of Elevation and Azimuth.

Dolly

Elevation

Azimuth

Roll

Figure 5.4: Camera movement functions relative to position and orientation.

Example 5.12: Moving the camera around the look at point.
1 view. GetCamera (). Azimuth (45.0);
2 view. GetCamera (). Elevation (45.0);
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The Elevation and Azimuth methods change the position of the camera, but not the view up vector. This
can cause some wild camera orientation changes when the direction of the camera view is near parallel to
the view up vector, which often happens when the elevation is raised or lowered by about 90 degrees.

Common Errors

In addition to rotating the camera around the look at point, you can move the camera closer or further from the
look at point. This is done with the Dolly method. The Dolly method takes a single value that is the factor
to scale the distance between camera and look at point. Values greater than one move the camera away, values
less than one move the camera closer. The direction of dolly movement is shown in Figure 5.4.

Finally, the Roll method rotates the camera around the viewing direction. It has the effect of rotating the
rendered image. The Roll method takes a single value that is the angle to rotate in degrees. The direction of
roll movement is shown in Figure 5.4.

Interactive Rotations

A common and important mode of interaction with 3D views is to allow the user to rotate the object under
inspection by dragging the mouse. To facilitate this type of interactive rotation, vtkm::rendering::Camera
provides a convenience method named TrackballRotate. The TrackballRotate method takes a start and end
position of the mouse on the image and rotates viewpoint as if the user grabbed a point on a sphere centered in
the image at the start position and moved under the end position.

The TrackballRotate method is typically called from within a mouse movement callback. The callback must
record the pixel position from the last event and the new pixel position of the mouse. Those pixel positions must
be normalized to the range -1 to 1 where the position (-1,-1) refers to the lower left of the image and (1,1) refers
to the upper right of the image. The following example demonstrates the typical operations used to establish
rotations when dragging the mouse.

Example 5.13: Interactive rotations through mouse dragging with Camera::TrackballRotate.
1 void DoMouseRotate (vtkm :: rendering :: View &view ,
2 vtkm :: Id mouseStartX ,
3 vtkm :: Id mouseStartY ,
4 vtkm :: Id mouseEndX ,
5 vtkm :: Id mouseEndY )
6 {
7 vtkm :: Id screenWidth = view. GetCanvas (). GetWidth ();
8 vtkm :: Id screenHeight = view. GetCanvas (). GetHeight ();
9

10 // Convert the mouse position coordinates , given in pixels from 0 to
11 // width /height , to normalized screen coordinates from -1 to 1. Note that y
12 // screen coordinates are usually given from the top down whereas our
13 // geometry transforms are given from bottom up , so you have to reverse the y
14 // coordiantes .
15 vtkm :: Float32 startX = (2.0f* mouseStartX )/ screenWidth - 1.0f;
16 vtkm :: Float32 startY = -((2.0f* mouseStartY )/ screenHeight - 1.0f);
17 vtkm :: Float32 endX = (2.0f* mouseEndX )/ screenWidth - 1.0f;
18 vtkm :: Float32 endY = -((2.0f* mouseEndY )/ screenHeight - 1.0f);
19
20 view. GetCamera (). TrackballRotate (startX , startY , endX , endY );
21 }
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Pan

A camera pan moves the viewpoint left, right, up, or down. A camera pan is performed by calling the Pan
method on Camera. Pan takes two arguments: the amount to pan in x and the amount to pan in y.

The pan is given with respect to the projected space. So a pan of 1 in the x direction moves the camera to focus
on the right edge of the image whereas a pan of −1 in the x direction moves the camera to focus on the left edge
of the image. When using Pan to respond to mouse movements, a natural pan will divide the distance traveled
by the mouse pointer by the width and height of the screen as demonstrated in the following example.

Example 5.14: Pan the view based on mouse movements.
1 void DoMousePan (vtkm :: rendering :: View &view ,
2 vtkm :: Id mouseStartX ,
3 vtkm :: Id mouseStartY ,
4 vtkm :: Id mouseEndX ,
5 vtkm :: Id mouseEndY )
6 {
7 vtkm :: Id screenWidth = view. GetCanvas (). GetWidth ();
8 vtkm :: Id screenHeight = view. GetCanvas (). GetHeight ();
9

10 // Convert the mouse position coordinates , given in pixels from 0 to
11 // width /height , to normalized screen coordinates from -1 to 1. Note that y
12 // screen coordinates are usually given from the top down whereas our
13 // geometry transforms are given from bottom up , so you have to reverse the y
14 // coordiantes .
15 vtkm :: Float32 startX = (2.0f* mouseStartX )/ screenWidth - 1.0f;
16 vtkm :: Float32 startY = -((2.0f* mouseStartY )/ screenHeight - 1.0f);
17 vtkm :: Float32 endX = (2.0f* mouseEndX )/ screenWidth - 1.0f;
18 vtkm :: Float32 endY = -((2.0f* mouseEndY )/ screenHeight - 1.0f);
19
20 view. GetCamera (). Pan(endX -startX , endY - startY );
21 }

Pan operates in image space, not world space. Panning does not change the camera position or orientation. Thus
the look at point will be off center with respect to the image.

Zoom

A camera zoom draws the geometry larger or smaller. A camera zoom is performed by calling the Zoom method
on Camera. Zoom takes a single argument specifying the zoom factor. A positive number draws the geometry
larger (zoom in), and larger zoom factor results in larger geometry. Likewise, a negative number draws the
geometry smaller (zoom out). A zoom factor of 0 has no effect.

When using Zoom to respond to mouse movements, a natural zoom will divide the distance traveled by the mouse
pointer by the width or height of the screen as demonstrated in the following example.

Example 5.15: Zoom the view based on mouse movements.
1 void DoMouseZoom (vtkm :: rendering :: View &view ,
2 vtkm :: Id mouseStartY ,
3 vtkm :: Id mouseEndY )
4 {
5 vtkm :: Id screenHeight = view. GetCanvas (). GetHeight ();
6
7 // Convert the mouse position coordinates , given in pixels from 0 to height ,
8 // to normalized screen coordinates from -1 to 1. Note that y screen
9 // coordinates are usually given from the top down whereas our geometry

10 // transforms are given from bottom up , so you have to reverse the y
11 // coordiantes .
12 vtkm :: Float32 startY = -((2.0f* mouseStartY )/ screenHeight - 1.0f);

40 Chapter 5. Rendering



DRAFT

5.6. Color Tables

13 vtkm :: Float32 endY = -((2.0f* mouseEndY )/ screenHeight - 1.0f);
14
15 view. GetCamera (). Zoom(endY - startY );
16 }

Zoom operates in image space, not world space. Zooming differs from Dolly in that the reported position of the
camera does not change. Instead, the image gets magnified or shrunk.

Reset

Setting a specific camera position and orientation can be frustrating, particularly when the size, shape, and
location of the geometry is not known a priori. Typically this involves querying the data and finding a good
camera orientation.

To make this process simpler, vtkm::rendering::Camera has a convenience method named ResetToBounds that
automatically positions the camera based on the spatial bounds of the geometry. The most expedient method to
find the spatial bounds of the geometry being rendered is to get the vtkm::rendering::Scene object and call
GetSpatialBounds. The Scene object can be retrieved from the vtkm::rendering::View, which, as described
in Section 5.4, is the central object for managing rendering.

Example 5.16: Resetting a Camera to view geometry.
1 void ResetCamera (vtkm :: rendering :: View &view)
2 {
3 vtkm :: Bounds bounds = view. GetScene (). GetSpatialBounds ();
4 view. GetCamera (). ResetToBounds ( bounds );
5 }

The ResetToBounds method operates by placing the look at point in the center of the bounds and then placing
the position of the camera relative to that look at point. The position is such that the view direction is the
same as before the call to ResetToBounds and the distance between the camera position and look at point has
the bounds roughly fill the rendered image. This behavior is a convenient way to update the camera to make
the geometry most visible while still preserving the viewing position. If you want to reset the camera to a new
viewing angle, it is best to set the camera to be pointing in the right direction and then calling ResetToBounds
to adjust the position.

Example 5.17: Resetting a Camera to be axis aligned.
1 view. GetCamera (). SetPosition (vtkm :: make_Vec (0.0 , 0.0 , 0.0));
2 view. GetCamera (). SetLookAt (vtkm :: make_Vec (0.0 , 0.0 , -1.0));
3 view. GetCamera (). SetViewUp (vtkm :: make_Vec (0.0 , 1.0 , 0.0));
4 vtkm :: Bounds bounds = view. GetScene (). GetSpatialBounds ();
5 view. GetCamera (). ResetToBounds ( bounds );

5.6 Color Tables

An important feature of VTK-m’s rendering units is the ability to pseudocolor objects based on scalar data.
This technique maps each scalar to a potentially unique color. This mapping from scalars to colors is defined
by a vtkm::rendering::ColorTable object. A ColorTable can be specified as an optional argument when
constructing a vtkm::rendering::Actor. (Use of Actors is discussed in Section 5.2.)

Example 5.18: Specifying a ColorTable for an Actor.
1 vtkm :: rendering :: Actor actor ( surfaceData . GetCellSet (),
2 surfaceData . GetCoordinateSystem (),
3 surfaceData . GetField (" RandomPointScalars "),
4 vtkm :: rendering :: ColorTable (" thermal "));
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The easiest way to create a ColorTable is to provide the name of one of the many predefined sets of color
provided by VTK-m. A list of all available predefined color tables is provided below.

cool2warm A color table designed to be perceptually even, to work well on shaded 3D
surfaces, and to generally perform well across many uses. This is also the
default color map and will be used if no ColorTable is given to an Actor
or if “default” is specified.

blue A monochromatic blue color map.
orange A monochromatic orange color map.
temperature A very saturated diverging color map.
rainbow There have been many scientific perceptual studies on the effectiveness of

different color maps, and this rainbow color map is by far the most studied.
These perceptual studies uniformly agree that this rainbow color map is
terrible. Never use it.

levels A map of 5 distinct colors.
dense This is similar to the rainbow color map but with an intentional variation in

brightness. This probably makes the map more effective, but not by much.
sharp A map of 11 fairly distinct colos.
thermal A diverging color map of heat-based colors.
IsoL An isoluminant (constant brightness) color map of varying hues. Isolumi-

nant color maps are sometimes recommended for 3D surfaces, but they have
poor perceptual resolution.

CubicYF A modification to the rainbow color map to make it more perceptually
uniform. This corrects some (but not all) of the problems with the rainbow
color map.

CubicL Similar to CubicYF but extends the hues to red at the expense of some
perceptual non-linearity.

LinearL Runs throught the same hues as the rainbow color map but also adjusts the
brightness from minimum (black) to maximum (white) in a perceptually
linear manner. This is sometimes referred to as the Kindlmann color map.

LinLhot Based on the colors for black body radiation, but modified to be perceptu-
ally linear.

PuRd A sequential color map from unsaturated purple to red.
Blues A sequential color map of blue varied by saturation.
BuGn A sequential color map from unsaturated blue to green.
BuPu A sequential color map from unsaturated blue to purple.
GnBu A sequential color map from unsaturated green to blue.
Greens A sequential color map of green varied by saturation.
Greys A sequential color map of grays of different lightness.
Oranges A sequential color map of orange varied by saturation.
OrRd A sequential color map from unsaturated orange to red.
PuBu A sequential color map from unsaturated purple to blue.
PuBuGn A sequential color map from unsaturated purple to blue to green.
PuRd A sequential color map from unsaturated purple to red.
Purples A sequential color map of purple varied by saturation.
RdPu A sequential color map from unsaturated red tu purple.
Reds A sequential color map of red varied by saturation.
YlGnBu A sequential color map from yellow to green to blue.
YlGn A sequential color map from yellow to green.
YlOrBr A sequential color map from yellow to orange to brown.
YlOrRd A sequential color map from yellow to orange to red.
BrBG A diverging color map from brown to greenish blue.
PiYG A diverging color map from pink to yellowish green.
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PRGn A diverging color map from purple to green.
PuOr A diverging color map from orange to purple.
RdBu A diverging color map from red to blue.
RdGy A diverging color map from red to gray.
RdYlBu A diverging color map from red to blue through yellow.
RdYlGn A diverging color map from red to green through yellow.
Spectral A diverging color map incorporating most of the spectral hues.
Dark2 A collection of 8 distinct dark colors.
Paired A collection of 12 distinct colors paired into light and dark versions of 6

different hues.
Pastel1 A collection of 9 distinct pastel (light) colors.
Pastel2 A collection of 8 distinct pastel (light) colors.
Set1 A collection of 9 distinct colors.
Set2 A collection of 8 distinct colors.
Set3 A collection of 12 distinct colors.
Accent A collection of 8 colors.

[There is more functionality to document in ColorTable. In particular, building color tables
by adding control points. However, I am not bothering to document that right now because
(1) I don’t think many people will use it and (2) it is pretty clear from the Doxygen.]

Chapter 5. Rendering 43



DRAFT



DRAFTPart II

Using VTK-m



DRAFT



DRAFT
CHAPTER

SIX

BASIC PROVISIONS

This section describes the core facilities provided by VTK-m. These include macros, types, and classes that
define the environment in which code is run, the core types of data stored, and template introspection. We also
start with a description of package structure used by VTK-m.

6.1 General Approach

VTK-m is designed to provide a pervasive parallelism throughout all its visualization algorithms, meaning that
the algorithm is designed to operate with independent concurrency at the finest possible level throughout. VTK-
m provides this pervasive parallelism by providing a programming construct called a worklet, which operates on
a very fine granularity of data. The worklets are designed as serial components, and VTK-m handles whatever
layers of concurrency are necessary, thereby removing the onus from the visualization algorithm developer.
Worklet operation is then wrapped into filters, which provide a simplified interface to end users.

A worklet is essentially a small functor or kernel designed to operate on a small element of data. (The name
“worklet” means a small amount of work. We mean small in this sense to be the amount of data, not necessarily
the amount of instructions performed.) The worklet is constrained to contain a serial and stateless function.
These constraints form three critical purposes. First, the constraints on the worklets allow VTK-m to schedule
worklet invocations on a great many independent concurrent threads and thereby making the algorithm per-
vasively parallel. Second, the constraints allow VTK-m to provide thread safety. By controlling the memory
access the toolkit can insure that no worklet will have any memory collisions, false sharing, or other parallel pro-
gramming pitfalls. Third, the constraints encourage good programming practices. The worklet model provides
a natural approach to visualization algorithm design that also has good general performance characteristics.

VTK-m allows developers to design algorithms that are run on massive amounts of threads. However, VTK-m
also allows developers to interface to applications, define data, and invoke algorithms that they have written or
are provided otherwise. These two modes represent significantly different operations on the data. The operating
code of an algorithm in a worklet is constrained to access only a small portion of data that is provided by the
framework. Conversely, code that is building the data structures needs to manage the data in its entirety, but
has little reason to perform computations on any particular element.

Consequently, VTK-m is divided into two environments that handle each of these use cases. Each environment
has its own API, and direct interaction between the environments is disallowed. The environments are as follows.

Execution Environment This is the environment in which the computational portion of algorithms are exe-
cuted. The API for this environment provides work for one element with convenient access to information
such as connectivity and neighborhood as needed by typical visualization algorithms. Code for the execu-
tion environment is designed to always execute on a very large number of threads.
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Control Environment This is the environment that is used to interface with applications, interface with
I/O devices, and schedule parallel execution of the algorithms. The associated API is designed for users
that want to use VTK-m to analyze their data using provided or supplied filters. Code for the control
environment is designed to run on a single thread (or one single thread per process in an MPI job).

These dual programming environments are partially a convenience to isolate the application from the execution
of the worklets and are partially a necessity to support GPU languages with host and device environments. The
control and execution environments are logically equivalent to the host and device environments, respectively, in
CUDA and other associated GPU languages.

W
orklet

Control
Environment

Data Model
Array Handle
Invoke

Execution
Environment

Cell Operations
Field Operations

Basic Math
Make CellsAllocate

Transfer
Schedule

Sort
Scan

...

Device
Adapter

Figure 6.1: Diagram of the VTK-m framework.

Figure 6.1 displays the relationship between the control and execution environment. The typical workflow when
using VTK-m is that first the control thread establishes a data set in the control environment and then invokes a
parallel operation on the data using a filter. From there the data is logically divided into its constituent elements,
which are sent to independent invocations of a worklet. The worklet invocations, being independent, are run on
as many concurrent threads as are supported by the device. On completion the results of the worklet invocations
are collected to a single data structure and a handle is returned back to the control environment.

Are you only planning to use filters in VTK-m that already exist? If so, then everything you work with will
be in the control environment. The execution environment is only used when implementing algorithms for
filters.

Did you know?

6.2 Package Structure

VTK-m is organized in a hierarchy of nested packages. VTK-m places definitions in namespaces that correspond
to the package (with the exception that one package may specialize a template defined in a different namespace).

The base package is named vtkm. All classes within VTK-m are placed either directly in the vtkm package or in
a package beneath it. This helps prevent name collisions between VTK-m and any other library.

As described in Section 6.1, the VTK-m API is divided into two distinct environments: the control environment
and the execution environment. The API for these two environments are located in the vtkm::cont and vtkm::-
exec packages, respectively. Items located in the base vtkm namespace are available in both environments.
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Although it is conventional to spell out names in identifiers (see the coding conventions in Chapter A), there is
an exception to abbreviate control and execution to cont and exec, respectively. This is because it is also part of
the coding convention to declare the entire namespace when using an identifier that is part of the corresponding
package. The shorter names make the identifiers easier to read, faster to type, and more feasible to pack lines
in 80 column displays. These abbreviations are also used instead of more common abbreviations (e.g. ctrl for
control) because, as part of actual English words, they are easier to type.

Further functionality in VTK-m is built on top of the base vtkm, vtkm::cont, and vtkm::exec packages.
Support classes for building worklets, described in Chapter 14, are contained in the vtkm::worklet package.
Other facilities in VTK-m are provided in their own packages such as vtkm::io, vtkm::filter, and vtkm::-
rendering. These packages are described in Part I.

VTK-m contains code that uses specialized compiler features, such as those with CUDA, or libraries, such as Intel
Threading Building Blocks, that will not be available on all machines. Code for these features are encapsulated
in their own packages under the vtkm::cont namespace: vtkm::cont::cuda and vtkm::cont::tbb.

VTK-m contains OpenGL interoperability that allows data generated with VTK-m to be efficiently transferred
to OpenGL objects. This feature is encapsulated in the vtkm::opengl package.

Figure 6.2 provides a diagram of the VTK-m package hierarchy.

cuda tbb reader writer

exec cont worklet filter io rendering opengl

vtkm

Figure 6.2: VTK-m package hierarchy.

By convention all classes will be defined in a file with the same name as the class name (with a .h extension)
located in a directory corresponding to the package name. For example, the vtkm::cont::ArrayHandle class is
found in the vtkm/cont/ArrayHandle.h header. There are, however, exceptions to this rule. Some smaller classes
and types are grouped together for convenience. These exceptions will be noted as necessary.

Within each namespace there may also be internal and detail sub-namespaces. The internal namespaces
contain features that are used internally and may change without notice. The detail namespaces contain
features that are used by a particular class but must be declared outside of that class. Users should generally
ignore classes in these namespaces.

6.3 Function and Method Environment Modifiers

Any function or method defined by VTK-m must come with a modifier that determines in which environments
the function may be run. These modifiers are C macros that VTK-m uses to instruct the compiler for which
architectures to compile each method. Most user code outside of VTK-m need not use these macros with the
important exception of any classes passed to VTK-m. This occurs when defining new worklets, array storage,
and device adapters.

VTK-m provides three modifier macros, VTKM CONT, VTKM EXEC, and VTKM EXEC CONT, which are used to declare
functions and methods that can run in the control environment, execution environment, and both environments,
respectively. These macros get defined by including just about any VTK-m header file, but including vtkm/-
Types.h will ensure they are defined.

The modifier macro is placed after the template declaration, if there is one, and before the return type for the
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function. Here is a simple example of a function that will square a value. Since most types you would use this
function on have operators in both the control and execution environments, the function is declared for both
places.

Example 6.1: Usage of an environment modifier macro on a function.
1 template < typename ValueType >
2 VTKM_EXEC_CONT
3 ValueType Square ( const ValueType & inValue )
4 {
5 return inValue * inValue ;
6 }

The primary function of the modifier macros is to inject compiler-specific keywords that specify what architecture
to compile code for. For example, when compiling with CUDA, the control modifiers have host in them
and execution modifiers have device in them.

There is one additional modifier macro that is not used for functions but rather used when declaring a constant
data object that is used in the execution environment. This macro is named VTKM EXEC CONSTANT and is used
to declare a constant lookup table used when executing a worklet. Its primary reason for existing is to add
a constant keyword when compiling with CUDA. This modifier currently has no effect on any other
compiler.

Finally, it is sometimes the case that a function declared as VTKM EXEC CONT has to call a method declared as
VTKM EXEC or VTKM CONT. Generally functions should not call other functions with incompatible control/exe-
cution modifiers, but sometimes a generic VTKM EXEC CONT function calls another function determined by the
template parameters, and the valid environments of this subfunction may be inconsistent. For cases like this, you
can use the VTKM SUPPRESS EXEC WARNINGS to tell the compiler to ignore the inconsistency when resolving the
template. When applied to a templated function or method, VTKM SUPPRESS EXEC WARNINGS is placed before
the template keyword. When applied to a non-templated method in a templated class, VTKM SUPPRESS EXEC -
WARNINGS is placed before the environment modifier macro.

Example 6.2: Suppressing warnings about functions from mixed environments.
1 VTKM_SUPPRESS_EXEC_WARNINGS
2 template < typename Functor >
3 VTKM_EXEC_CONT
4 void OverlyComplicatedForLoop ( Functor &functor , vtkm :: Id numInterations )
5 {
6 for (vtkm :: Id index = 0; index < numInterations ; index ++)
7 {
8 functor ();
9 }

10 }

6.4 Core Data Types

Except in rare circumstances where precision is not a concern, VTK-m does not directly use the core C types
like int, float, and double. Instead, VTK-m provides its own core types, which are declared in vtkm/Types.h.

6.4.1 Single Number Types

To ensure portability across different compilers and architectures, VTK-m provides type aliases for the following
basic types with explicit precision: vtkm::Float32, vtkm::Float64, vtkm::Int8, vtkm::Int16, vtkm::Int32,
vtkm::Int64, vtkm::UInt8, vtkm::UInt16, vtkm::UInt32, and vtkm::UInt64. Under most circumstances
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when using VTK-m (and performing visualization in general) the type of data is determined by the source of the
data or resolved through templates. In the case where a specific type of data is required, these VTK-m–defined
types should be preferred over basic C types like int or float.

Many of the structures in VTK-m require indices to identify elements like points and cells. All indices for arrays
and other lists use the type vtkm::Id. By default this type is a 32-bit wide integer but can be easily changed
by compile options. The CMake configuration option VTKM USE 64BIT IDS can be used to change vtkm::Id
to be 64 bits wide. This configuration can be overridden by defining the C macro VTKM USE 64BIT IDS or
VTKM NO 64BIT IDS to force vtkm::Id to be either 64 or 32 bits. These macros must be defined before any
VTK-m header files are included to take effect.

There is also a secondary index type named vtkm::IdComponent that is used to index components of short
vectors (discussed in Section 6.4.2). This type is an integer that might be a shorter width than vtkm::Id.

There is also the rare circumstance in which an algorithm in VTK-m computes data values for which there is
no indication what the precision should be. For these circumstances, the type vtkm::FloatDefault is provided.
By default this type is a 32-bit wide floating point number but can be easily changed by compile options. The
CMake configuration option VTKM USE DOUBLE PRECISION can be used to change vtkm::FloatDefault to
be 64 bits wide. This configuration can be overridden by defining the C macro VTKM USE DOUBLE PRECISION
or VTKM NO DOUBLE PRECISION to force vtkm::FloatDefault to be either 64 or 32 bits. These macros must
be defined before any VTK-m header files are included to take effect.

For convenience, you can include either vtkm/internal/ConfigureFor32.h or vtkm/internal/ConfigureFor64.h to force
both vtkm::Id and vtkm::FloatDefault to be 32 or 64 bits.

6.4.2 Vector Types

Visualization algorithms also often require operations on short vectors. Arrays indexed in up to three dimensions
are common. Data are often defined in 2-space and 3-space, and transformations are typically done in homoge-
neous coordinates of length 4. To simplify these types of operations, VTK-m provides the vtkm::Vec<T,Size>
templated type, which is essentially a fixed length array of a given type.

The default constructor of vtkm::Vec objects leaves the values uninitialized. All vectors have a constructor
with one argument that is used to initialize all components. All vtkm::Vec objects with a size of 4 or less is
specialized to also have a constructor that allows you to set the individual components. Likewise, there is a
vtkm::make Vec function that builds initialized vector types of up to 4 components. Once created, you can use
the bracket operator to get and set component values with the same syntax as an array.

Example 6.3: Creating vector types.
1 vtkm ::Vec <vtkm :: Float32 ,3> A(1); // A is (1, 1, 1)
2 A[1] = 2; // A is now (1, 2, 1)
3 vtkm ::Vec <vtkm :: Float32 ,3> B(1, 2, 3); // B is (1, 2, 3)
4 vtkm ::Vec <vtkm :: Float32 ,3> C = vtkm :: make_Vec (3, 4, 5); // C is (3, 4, 5)

The types vtkm::Id2 and vtkm::Id3 are type aliases of vtkm::Vec<vtkm::Id,2> and vtkm::Vec<vtkm::Id,2>.
These are used to index arrays of 2 and 3 dimensions, which is common.

Vectors longer than 4 are also supported, but independent component values must be set after construction.
The vtkm::Vec class contains a constant named NUM COMPONENTS to specify how many components are in the
vector. The class also has a GetNumberOfComponents method that also returns the number of components that
are in the vector.

Example 6.4: A Longer Vector.
1 vtkm ::Vec <vtkm :: Float64 , 5> A(2); // A is (2, 2, 2, 2, 2)
2 for (vtkm :: IdComponent index = 1; index < A. NUM_COMPONENTS ; index ++)
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3 {
4 A[ index ] = A[index -1] * 1.5;
5 }
6 // A is now (2, 3, 4.5 , 6.75 , 10.125)

vtkm::Vec supports component-wise arithmetic using the operators for plus (+), minus (-), multiply (*), and
divide (/). It also supports scalar to vector multiplication with the multiply operator. The comparison operators
equal (==) is true if every pair of corresponding components are true and not equal (!=) is true otherwise. A
special vtkm::dot function is overloaded to provide a dot product for every type of vector.

Example 6.5: Vector operations.
1 vtkm ::Vec <vtkm :: Float32 ,3> A(1, 2, 3);
2 vtkm ::Vec <vtkm :: Float32 ,3> B(4, 5, 6.5);
3 vtkm ::Vec <vtkm :: Float32 ,3> C = A + B; // C is (5, 7, 9.5)
4 vtkm ::Vec <vtkm :: Float32 ,3> D = 2.0f * C; // D is (10 , 14, 19)
5 vtkm :: Float32 s = vtkm :: dot(A, B); // s is 33.5
6 bool b1 = (A == B); // b1 is false
7 bool b2 = (A == vtkm :: make_Vec (1, 2, 3)); // b2 is true

These operators, of course, only work if they are also defined for the component type of the vtkm::Vec. For
example, the multiply operator will work fine on objects of type vtkm::Vec<char,3>, but the multiply operator
will not work on objects of type vtkm::Vec<std::string,3> because you cannot multiply objects of type
std::string.

In addition to generalizing vector operations and making arbitrarily long vectors, vtkm::Vec can be repurposed
for creating any sequence of homogeneous objects. Here is a simple example of using vtkm::Vec to hold the
state of a polygon.

Example 6.6: Repurposing a vtkm::Vec.
1 vtkm ::Vec <vtkm ::Vec <vtkm :: Float32 ,2>, 3> equilateralTriangle (
2 vtkm :: make_Vec (0.0 , 0.0) ,
3 vtkm :: make_Vec (1.0 , 0.0) ,
4 vtkm :: make_Vec (0.5 , 0.8660254));

The vtkm::Vec class provides a convenient structure for holding and passing small vectors of data. However,
there are times when using Vec is inconvenient or inappropriate. For example, the size of vtkm::Vec must be
known at compile time, but there may be need for a vector whose size is unknown until compile time. Also, the
data populating a vtkm::Vec might come from a source that makes it inconvenient or less efficient to construct
a vtkm::Vec. For this reason, VTK-m also provides several Vec-like objects that behave much like vtkm::Vec
but are a different class. These Vec-like objects have the same interface as vtkm::Vec except that the NUM -
COMPONENTS constant is not available on those that are sized at run time. Vec-like objects also come with a
CopyInto method that will take their contents and copy them into a standard Vec class. (The standard Vec
class also has a CopyInto method for consistency.)

The first Vec-like object is vtkm::VecC, which exposes a C-type array as a Vec. The constructor for vtkm::VecC
takes a C array and a size of that array. There is also a constant version of VecC named vtkm::VecCConst, which
takes a constant array and cannot be mutated. The vtkm/Types.h header defines both VecC and VecCConst as
well as multiple versions of vtkm::make VecC to easily convert a C array to either a VecC or VecCConst.

The following example demonstrates converting values from a constant table into a vtkm::VecCConst for further
consumption. The table and associated methods define how 8 points come together to form a hexahedron.

Example 6.7: Using vtkm::VecCConst with a constant array.
1 VTKM_EXEC_CONSTANT
2 static const vtkm :: IdComponent HexagonIndexToIJKTable [8][3] = {
3 { 0, 0, 0 },
4 { 1, 0, 0 },
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5 { 1, 1, 0 },
6 { 0, 1, 0 },
7 { 0, 0, 1 },
8 { 1, 0, 1 },
9 { 1, 1, 1 },

10 { 0, 1, 1 }
11 };
12
13 VTKM_EXEC_CONSTANT
14 static const vtkm :: IdComponent HexagonIJKToIndexTable [2][2][2] = {
15 { // i=0
16 { 0, 4 }, // j=0
17 { 3, 7 }, // j=1
18 },
19 { // i=1
20 { 1, 5 }, // j=0
21 { 2, 6 }, // j=1
22 }
23 };
24
25 VTKM_EXEC
26 vtkm :: VecCConst <vtkm :: IdComponent > HexagonIndexToIJK (vtkm :: IdComponent index )
27 {
28 return vtkm :: make_VecC ( HexagonIndexToIJKTable [ index ], 3);
29 }
30
31 VTKM_EXEC
32 vtkm :: IdComponent HexagonIJKToIndex (vtkm :: VecCConst <vtkm :: IdComponent > ijk)
33 {
34 return HexagonIJKToIndexTable [ijk [0]][ ijk [1]][ ijk [2]];
35 }

The vtkm::VecC and vtkm::VecCConst classes only hold a pointer to a buffer that contains the data. They
do not manage the memory holding the data. Thus, if the pointer given to vtkm::VecC or vtkm::VecCConst
becomes invalid, then using the object becomes invalid. Make sure that the scope of the vtkm::VecC or
vtkm::VecCConst does not outlive the scope of the data it points to.

Common Errors

The next Vec-like object is vtkm::VecVariable, which provides a Vec-like object that can be resized at run time
to a maximum value. Unlike VecC, VecVariable holds its own memory, which makes it a bit safer to use. But
also unlike VecC, you must define the maximum size of VecVariable at compile time. Thus, VecVariable is
really only appropriate to use when there is a predetermined limit to the vector size that is fairly small.

The following example uses a vtkm::VecVariable to store the trace of edges within a hexahedron. This example
uses the methods defined in Example 6.7.

Example 6.8: Using vtkm::VecVariable.
1 vtkm :: VecVariable <vtkm :: IdComponent ,4>
2 HexagonShortestPath (vtkm :: IdComponent startPoint , vtkm :: IdComponent endPoint )
3 {
4 vtkm :: VecCConst <vtkm :: IdComponent > startIJK = HexagonIndexToIJK ( startPoint );
5 vtkm :: VecCConst <vtkm :: IdComponent > endIJK = HexagonIndexToIJK ( endPoint );
6
7 vtkm ::Vec <vtkm :: IdComponent ,3> currentIJK ;
8 startIJK . CopyInto ( currentIJK );
9
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10 vtkm :: VecVariable <vtkm :: IdComponent ,4> path;
11 path. Append ( startPoint );
12 for (vtkm :: IdComponent dimension = 0; dimension < 3; dimension ++)
13 {
14 if ( currentIJK [ dimension ] != endIJK [ dimension ])
15 {
16 currentIJK [ dimension ] = endIJK [ dimension ];
17 path. Append ( HexagonIJKToIndex ( currentIJK ));
18 }
19 }
20
21 return path;
22 }

VTK-m provides further examples of Vec-like objects as well. For example, the vtkm::VecFromPortal and
vtkm::VecFromPortalPermute objects allow you to treat a subsection of an arbitrarily large array as a Vec.
These objects work by attaching to array portals, which are described in Section 7.2. Another example of a
Vec-like object is vtkm::VecRectilinearPointCoordinates, which efficiently represents the point coordinates
in an axis-aligned hexahedron. Such shapes are common in structured grids. These and other data sets are
described in Chapter 12.

6.4.3 Pair

VTK-m defines a vtkm::Pair<T1,T2> templated object that behaves just like std::pair from the standard
template library. The difference is that vtkm::Pair will work in both the execution and control environment,
whereas the STL std::pair does not always work in the execution environment.

The VTK-m version of vtkm::Pair supports the same types, fields, and operations as the STL version. VTK-m
also provides a vtkm::make Pair function for convenience.

6.4.4 Range

VTK-m provides a convenience structure named vtkm::Range to help manage a range of values. The Range
struct contains two data members, Min and Max, which represent the ends of the range of numbers. Min and
Max are both of type vtkm::Float64. Min and Max can be directly accessed, but Range also comes with the
following helper functions to make it easier to build and use ranges. Note that all of these functions treat the
minimum and maximum value as inclusive to the range.

IsNonEmpty Returns true if the range covers at least one value.

Contains Takes a single number and returns true if that number is contained within the range.

Length Returns the distance between Min and Max. Empty ranges return a length of 0. Note that if the range
is non-empty and the length is 0, then Min and Max must be equal, and the range contains exactly one
number.

Center Returns the number equidistant to Min and Max. If the range is empty, NaN is returned.

Include Takes either a single number or another range and modifies this range to include the given number or
range. If necessary, the range is grown just enough to encompass the given argument. If the argument is
already in the range, nothing changes.

Union A nondestructive version of Include, which builds a new Range that is the union of this range and the
argument. The + operator is also overloaded to compute the union.
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The following example demonstrates the operation of vtkm::Range.

Example 6.9: Using vtkm::Range.
1 vtkm :: Range range ; // default constructor is empty range
2 bool b1 = range . IsNonEmpty (); // b1 is false
3
4 range . Include (0.5); // range now is [0.5 .. 0.5]
5 bool b2 = range . IsNonEmpty (); // b2 is true
6 bool b3 = range . Contains (0.5); // b3 is true
7 bool b4 = range . Contains (0.6); // b4 is false
8
9 range . Include (2.0); // range is now [0.5 .. 2]

10 bool b5 = range . Contains (0.5); // b3 is true
11 bool b6 = range . Contains (0.6); // b4 is true
12
13 range . Include (vtkm :: Range (-1, 1)); // range is now [-1 .. 2]
14
15 range . Include (vtkm :: Range (3, 4)); // range is now [-1 .. 4]
16
17 vtkm :: Float64 lower = range .Min; // lower is -1
18 vtkm :: Float64 upper = range .Max; // upper is 4
19 vtkm :: Float64 length = range . Length (); // length is 5
20 vtkm :: Float64 center = range . Center (); // center is 1.5

6.4.5 Bounds

VTK-m provides a convenience structure named vtkm::Bounds to help manage an axis-aligned region in 3D
space. Among other things, this structure is often useful for representing a bounding box for geometry. The
Bounds struct contains three data members, X, Y, and Z, which represent the range of the bounds along each re-
spective axis. All three of these members are of type vtkm::Range, which is discussed previously in Section 6.4.4.
X, Y, and Z can be directly accessed, but Bounds also comes with the following helper functions to make it easier
to build and use ranges.

IsNonEmpty Returns true if the bounds cover at least one value.

Contains Takes a vtkm::Vec of size 3 and returns true if those point coordinates are contained within the range.

Center Returns the point at the center of the range as a vtkm::Vec<vtkm::Float64,3>.

Include Takes either a vtkm::Vec of size 3 or another bounds and modifies this bounds to include the given
point or bounds. If necessary, the bounds are grown just enough to encompass the given argument. If the
argument is already in the bounds, nothing changes.

Union A nondestructive version of Include, which builds a new Bounds that is the union of this bounds and
the argument. The + operator is also overloaded to compute the union.

The following example demonstrates the operation of vtkm::Bounds.

Example 6.10: Using vtkm::Bounds.
1 vtkm :: Bounds bounds ; // default constructor makes empty
2 bool b1 = bounds . IsNonEmpty (); // b1 is false
3
4 bounds . Include (vtkm :: make_Vec (0.5 , 2.0 , 0.0)); // bounds contains only
5 // the point [0.5 , 2, 0]
6 bool b2 = bounds . IsNonEmpty (); // b2 is true
7 bool b3 = bounds . Contains (vtkm :: make_Vec (0.5 , 2.0 , 0.0)); // b3 is true
8 bool b4 = bounds . Contains (vtkm :: make_Vec (1, 1, 1)); // b4 is false
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9 bool b5 = bounds . Contains (vtkm :: make_Vec (0, 0, 0)); // b5 is false
10
11 bounds . Include (vtkm :: make_Vec (4, -1, 2)); // bounds is region [0.5 .. 4] in X,
12 // [-1 .. 2] in Y,
13 // and [0 .. 2] in Z
14 bool b6 = bounds . Contains (vtkm :: make_Vec (0.5 , 2.0 , 0.0)); // b6 is true
15 bool b7 = bounds . Contains (vtkm :: make_Vec (1, 1, 1)); // b7 is true
16 bool b8 = bounds . Contains (vtkm :: make_Vec (0, 0, 0)); // b8 is false
17
18 vtkm :: Bounds otherBounds (vtkm :: make_Vec (0, 0, 0), vtkm :: make_Vec (3, 3, 3));
19 // otherBounds is region [0 .. 3] in X, Y, and Z
20 bounds . Include ( otherBounds ); // bounds is now region [0 .. 4] in X,
21 // [-1 .. 3] in Y,
22 // and [0 .. 3] in Z
23
24 vtkm ::Vec <vtkm :: Float64 ,3> lower ( bounds .X.Min , bounds .Y.Min , bounds .Z.Min );
25 // lower is [0, -1, 0]
26 vtkm ::Vec <vtkm :: Float64 ,3> upper ( bounds .X.Max , bounds .Y.Max , bounds .Z.Max );
27 // upper is [4, 3, 3]
28
29 vtkm ::Vec <vtkm :: Float64 ,3> center = bounds . Center (); // center is [2, 1, 1.5]

6.5 Traits

When using templated types, it is often necessary to get information about the type or specialize code based on
general properties of the type. VTK-m uses traits classes to publish and retrieve information about types. A
traits class is simply a templated structure that provides type aliases for tag structures, empty types used for
identification. The traits classes might also contain constant numbers and helpful static functions. See Effective
C++ Third Edition by Scott Mayers for a description of traits classes and their uses.

6.5.1 Type Traits

The vtkm::TypeTraits<T> templated class provides basic information about a core type. These type traits
are available for all the basic C++ types as well as the core VTK-m types described in Section 6.4. vtkm::-
TypeTraits contains the following elements.

NumericTag This type is set to either vtkm::TypeTraitsRealTag or vtkm::TypeTraitsIntegerTag to signal
that the type represents either floating point numbers or integers.

DimensionalityTag This type is set to either vtkm::TypeTraitsScalarTag or vtkm::TypeTraitsVectorTag
to signal that the type represents either a single scalar value or a tuple of values.

ZeroInitialization A static member function that takes no arguments and returns 0 (or the closest equivalent
to it) cast to the type.

The definition of vtkm::TypeTraits for vtkm::Float32 could like something like this.

Example 6.11: Definition of vtkm::TypeTraits<vtkm::Float32>.
1 namespace vtkm {
2
3 template <>
4 struct TypeTraits <vtkm :: Float32 >
5 {
6 using NumericTag = vtkm :: TypeTraitsRealTag ;
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7 using DimensionalityTag = vtkm :: TypeTraitsScalarTag ;
8
9 VTKM_EXEC_CONT

10 static vtkm :: Float32 ZeroInitialization () { return vtkm :: Float32 (0); }
11 };
12
13 }

Here is a simple example of using vtkm::TypeTraits to implement a generic function that behaves like the
remainder operator (%) for all types including floating points and vectors.

Example 6.12: Using TypeTraits for a generic remainder.
1 # include <vtkm/ TypeTraits .h>
2
3 # include <vtkm/Math.h>
4
5 template < typename T>
6 T AnyRemainder ( const T &numerator , const T & denominator );
7
8 namespace detail {
9

10 template < typename T>
11 T AnyRemainderImpl ( const T &numerator ,
12 const T & denominator ,
13 vtkm :: TypeTraitsIntegerTag ,
14 vtkm :: TypeTraitsScalarTag )
15 {
16 return numerator % denominator ;
17 }
18
19 template < typename T>
20 T AnyRemainderImpl ( const T &numerator ,
21 const T & denominator ,
22 vtkm :: TypeTraitsRealTag ,
23 vtkm :: TypeTraitsScalarTag )
24 {
25 // The VTK -m math library contains a Remainder function that operates on
26 // floating point numbers .
27 return vtkm :: Remainder (numerator , denominator );
28 }
29
30 template < typename T, typename NumericTag >
31 T AnyRemainderImpl ( const T &numerator ,
32 const T & denominator ,
33 NumericTag ,
34 vtkm :: TypeTraitsVectorTag )
35 {
36 T result ;
37 for (int componentIndex = 0;
38 componentIndex < T:: NUM_COMPONENTS ;
39 componentIndex ++)
40 {
41 result [ componentIndex ] =
42 AnyRemainder ( numerator [ componentIndex ], denominator [ componentIndex ]);
43 }
44 return result ;
45 }
46
47 } // namespace detail
48
49 template < typename T>
50 T AnyRemainder ( const T &numerator , const T & denominator )
51 {
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52 return detail :: AnyRemainderImpl (
53 numerator ,
54 denominator ,
55 typename vtkm :: TypeTraits <T >:: NumericTag (),
56 typename vtkm :: TypeTraits <T >:: DimensionalityTag ());
57 }

6.5.2 Vector Traits

The templated vtkm::Vec class contains several items for introspection (such as the component type and its
size). However, there are other types behave similarly to Vec objects but have different ways to perform this
introspection. For example, VTK-m contains Vec-like objects that essentially behave the same but might have
different features such as a variable number of components. Also, there may be reason to interchangeably use
basic scalar values, like an integer or floating point number, with vectors.

To provide a consistent interface to access these multiple types that represents vectors, the vtkm::VecTraits<T>
templated class provides information and accessors to vector types. It contains the following elements.

ComponentType This type is set to the type for each component in the vector. For example, a vtkm::Id3 has
ComponentType defined as vtkm::Id.

IsSizeStatic This type is set to either vtkm::VecTraitsTagSizeStatic if the vector has a static number of
components that can be determined at compile time or set to vtkm::VecTraitsTagSizeVariable if the
size of the vector is determined at run time. If IsSizeStatic is set to VecTraitsTagSizeVariable, then
VecTraits will be missing some information that cannot be determined at compile time.

HasMultipleComponents This type is set to either vtkm::VecTraitsTagSingleComponent if the vector length
is size 1 or vtkm::VecTraitsTagMultipleComponents otherwise. This tag can be useful for creating spe-
cialized functions when a vector is really just a scalar. If the vector type is of variable size (that is,
IsSizeStatic is VecTraitsTagSizeVariable), then HasMultipleComponents might be VecTraitsTag-
MultipleComponents even when at run time there is only one component.

NUM COMPONENTS An integer specifying how many components are contained in the vector. NUM COMPONENTS is
not available for vector types of variable size (that is, IsSizeStatic is VecTraitsTagSizeVariable).

GetNumberOfComponents A static method that takes an instance of a vector and returns the number of compo-
nents the vector contains. The result of GetNumberOfComponents is the same value of NUM COMPONENTS
for vector types that have a static size (that is, IsSizeStatic is VecTraitsTagSizeStatic). But unlike
NUM COMPONENTS, GetNumberOfComponents works for vectors of any type.

GetComponent A static method that takes a vector and returns a particular component.

SetComponent A static method that takes a vector and sets a particular component to a given value.

CopyInto A static method that copies the components of a vector to a vtkm::Vec.

The definition of vtkm::VecTraits for vtkm::Id3 could look something like this.

Example 6.13: Definition of vtkm::VecTraits<vtkm::Id3>.
1 namespace vtkm {
2
3 template <>
4 struct VecTraits <vtkm ::Id3 >
5 {
6 using ComponentType = vtkm :: Id;
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7 static const int NUM_COMPONENTS = 3;
8 using IsSizeStatic = vtkm :: VecTraitsTagSizeStatic ;
9 using HasMultipleComponents = vtkm :: VecTraitsTagMultipleComponents ;

10
11 VTKM_EXEC_CONT
12 static vtkm :: IdComponent GetNumberOfComponents ( const vtkm :: Id3 &) {
13 return NUM_COMPONENTS ;
14 }
15
16 VTKM_EXEC_CONT
17 static const vtkm :: Id & GetComponent ( const vtkm :: Id3 &vector , int component ) {
18 return vector [ component ];
19 }
20 VTKM_EXEC_CONT
21 static vtkm :: Id & GetComponent (vtkm :: Id3 &vector , int component ) {
22 return vector [ component ];
23 }
24
25 VTKM_EXEC_CONT
26 static void SetComponent (vtkm :: Id3 &vector , int component , vtkm :: Id value ) {
27 vector [ component ] = value ;
28 }
29
30 template <vtkm :: IdComponent DestSize >
31 VTKM_EXEC_CONT
32 static void
33 CopyInto ( const vtkm :: Id3 &src , vtkm ::Vec <vtkm ::Id ,DestSize > &dest)
34 {
35 for (vtkm :: IdComponent index = 0;
36 ( index < NUM_COMPONENTS ) && ( index < DestSize );
37 index ++)
38 {
39 dest[ index ] = src[ index ];
40 }
41 }
42 };
43
44 } // namespace vtkm

The real power of vector traits is that they simplify creating generic operations on any type that can look like
a vector. This includes operations on scalar values as if they were vectors of size one. The following code uses
vector traits to simplify the implementation of less functors that define an ordering that can be used for sorting
and other operations.

Example 6.14: Using VecTraits for less functors.
1 # include <vtkm/ VecTraits .h>
2
3 // This functor provides a total ordering of vectors . Every compared vector
4 // will be either less , greater , or equal ( assuming all the vector components
5 // also have a total ordering ).
6 template < typename T>
7 struct LessTotalOrder
8 {
9 VTKM_EXEC_CONT

10 bool operator ()( const T &left , const T & right )
11 {
12 for (int index = 0; index < vtkm :: VecTraits <T >:: NUM_COMPONENTS ; index ++)
13 {
14 using ComponentType = typename vtkm :: VecTraits <T >:: ComponentType ;
15 const ComponentType & leftValue =
16 vtkm :: VecTraits <T >:: GetComponent (left , index );
17 const ComponentType & rightValue =
18 vtkm :: VecTraits <T >:: GetComponent (right , index );
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19 if ( leftValue < rightValue ) { return true; }
20 if ( rightValue < leftValue ) { return false ; }
21 }
22 // If we are here , the vectors are equal (or at least equivalent ).
23 return false ;
24 }
25 };
26
27 // This functor provides a partial ordering of vectors . It returns true if and
28 // only if all components satisfy the less operation . It is possible for
29 // vectors to be neither less , greater , nor equal , but the transitive closure
30 // is still valid .
31 template < typename T>
32 struct LessPartialOrder
33 {
34 VTKM_EXEC_CONT
35 bool operator ()( const T &left , const T & right )
36 {
37 for (int index = 0; index < vtkm :: VecTraits <T >:: NUM_COMPONENTS ; index ++)
38 {
39 using ComponentType = typename vtkm :: VecTraits <T >:: ComponentType ;
40 const ComponentType & leftValue =
41 vtkm :: VecTraits <T >:: GetComponent (left , index );
42 const ComponentType & rightValue =
43 vtkm :: VecTraits <T >:: GetComponent (right , index );
44 if (!( leftValue < rightValue )) { return false ; }
45 }
46 // If we are here , all components satisfy less than relation .
47 return true;
48 }
49 };

6.6 List Tags

VTK-m internally uses template metaprogramming, which utilizes C++ templates to run source-generating
programs, to customize code to various data and compute platforms. One basic structure often uses with
template metaprogramming is a list of class names (also sometimes called a tuple or vector, although both of
those names have different meanings in VTK-m).

Many VTK-m users only need predefined lists, such as the type lists specified in Section 6.6.2. Those users
can skip most of the details of this section. However, it is sometimes useful to modify lists, create new lists, or
operate on lists, and these usages are documented here.

VTK-m uses a tag-based mechanism for defining lists, which differs significantly from lists in many other template
metaprogramming libraries such as with boost::mpl::vector or boost::vector. Rather than enumerating all
list entries as template arguments, the list is referenced by a single tag class with a descriptive name. The intention
is to make fully resolved types shorter and more readable. (Anyone experienced with template programming
knows how insanely long and unreadable types can get in compiler errors and warnings.)

6.6.1 Building List Tags

List tags are constructed in VTK-m by defining a struct that publicly inherits from another list tags. The base
list tags are defined in the vtkm/ListTag.h header.

The most basic list is defined with vtkm::ListTagEmpty. This tag represents an empty list.
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vtkm::ListTagBase<T, ...> represents a list of the types given as template parameters. vtkm::ListTagBase
supports a variable number of parameters with the maximum specified by VTKM MAX BASE LIST.

Finally, lists can be combined together with vtkm::ListTagJoin<ListTag1,ListTag2>, which concatinates two
lists together.

The following example demonstrates how to build list tags using these base lists classes. Note first that all the
list tags are defined as struct rather than class. Although these are roughly synonymous in C++, struct
inheritance is by default public, and public inheritance is important for the list tags to work. Note second that
these tags are created by inheritance rather than using a type alias. Although a type alias defined with using
will work, it will lead to much uglier type names defined by the compiler.

Example 6.15: Creating list tags.
1 # include <vtkm/ ListTag .h>
2
3 // Placeholder classes representing things that might be in a template
4 // metaprogram list.
5 class Foo;
6 class Bar;
7 class Baz;
8 class Qux;
9 class Xyzzy ;

10
11 // The names of the following tags are indicative of the lists they contain .
12
13 struct FooList : vtkm :: ListTagBase <Foo > { };
14
15 struct FooBarList : vtkm :: ListTagBase <Foo ,Bar > { };
16
17 struct BazQuxXyzzyList : vtkm :: ListTagBase <Baz ,Qux ,Xyzzy > { };
18
19 struct QuxBazBarFooList : vtkm :: ListTagBase <Qux ,Baz ,Bar ,Foo > { };
20
21 struct FooBarBazQuxXyzzyList
22 : vtkm :: ListTagJoin < FooBarList , BazQuxXyzzyList > { };

6.6.2 Type Lists

One of the major use cases for template metaprogramming lists in VTK-m is to identify a set of potential data
types for arrays. The vtkm/TypeListTag.h header contains predefined lists for known VTK-m types. Although
technically all these lists are of C++ types, the types we refer to here are those data types stored in data arrays.
The following lists are provided.

vtkm::TypeListTagId Contains the single item vtkm::Id.

vtkm::TypeListTagId2 Contains the single item vtkm::Id2.

vtkm::TypeListTagId3 Contains the single item vtkm::Id3.

vtkm::TypeListTagIndex A list of all types used to index arrays. Contains vtkm::Id, vtkm::Id2, and vtkm::-
Id3.

vtkm::TypeListTagFieldScalar A list containing types used for scalar fields. Specifically, it contains floating
point numbers of different widths (i.e. vtkm::Float32 and vtkm::Float64).

vtkm::TypeListTagFieldVec2 A list containing types for values of fields with 2 dimensional vectors. All these
vectors use floating point numbers.
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vtkm::TypeListTagFieldVec3 A list containing types for values of fields with 3 dimensional vectors. All these
vectors use floating point numbers.

vtkm::TypeListTagFieldVec3 A list containing types for values of fields with 3 dimensional vectors. All these
vectors use floating point numbers.

vtkm::TypeListTagField A list containing all the types generally used for fields. It is the combination of
vtkm::TypeListTagFieldScalar, vtkm::TypeListTagFieldVec2, vtkm::TypeListTagFieldVec3, and
vtkm::TypeListTagFieldVec4.

vtkm::TypeListTagScalarAll A list of all scalar types. It contains signed and unsigned integers of widths from
8 to 64 bits. It also contains floats of 32 and 64 bit widths.

vtkm::TypeListTagVecCommon A list of the most common vector types. It contains all vtkm::Vec class of size
2 through 4 containing components of unsigned bytes, signed 32-bit integers, signed 64-bit integers, 32-bit
floats, or 64-bit floats.

vtkm::TypeListTagVecAll A list of all vtkm::Vec classes with standard integers or floating points as compo-
nents and lengths between 2 and 4.

vtkm::TypeListTagAll A list of all types included in vtkm/Types.h with vtkm::Vecs with up to 4 components.

vtkm::TypeListTagCommon A list containing only the most used types in visualization. This includes signed
integers and floats that are 32 or 64 bit. It also includes 3 dimensional vectors of floats. This is the default
list used when resolving the type in dynamic arrays (described in Chapter 11).

If these lists are not sufficient, it is possible to build new type lists using the existing type lists and the list bases
from Section 6.6.1 as demonstrated in the following example.

Example 6.16: Defining new type lists.
1 # define VTKM_DEFAULT_TYPE_LIST_TAG MyCommonTypes
2
3 # include <vtkm/ ListTag .h>
4 # include <vtkm/ TypeListTag .h>
5
6 // A list of 2D vector types .
7 struct Vec2List
8 : vtkm :: ListTagBase <vtkm ::Id2 ,
9 vtkm ::Vec <vtkm :: Float32 ,2>,

10 vtkm ::Vec <vtkm :: Float64 ,2> > { };
11
12 // An application that uses 2D geometry might commonly encounter this list of
13 // types .
14 struct MyCommonTypes : vtkm :: ListTagJoin <Vec2List ,vtkm :: TypeListTagCommon > { };

The vtkm/TypeListTag.h header also defines a macro named VTKM DEFAULT TYPE LIST TAG that defines a de-
fault list of types to use in classes like vtkm::cont::DynamicArrayHandle (Chapter 11). This list can be
overridden by defining the VTKM DEFAULT TYPE LIST TAG macro before any VTK-m headers are included. If
included after a VTK-m header, the list is not likely to take effect. Do not ignore compiler warnings about the
macro being redefined, which you will not get if defined correctly. Example 6.16 also contains an example of
overriding the VTKM DEFAULT TYPE LIST TAG macro.

6.6.3 Operating on Lists

VTK-m template metaprogramming lists are typically just passed to VTK-m methods that internally operate
on the lists. Although not typically used outside of the VTK-m library, these operations are also available.
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The vtkm/ListTag.h header comes with a vtkm::ListForEach function that takes a functor object and a list tag.
It then calls the functor object with the default object of each type in the list. This is most typically used with
C++ run-time type information to convert a run-time polymorphic object to a statically typed (and possibly
inlined) call.

The following example shows a rudimentary version of coverting a dynamically-typed array to a statically-typed
array similar to what is done in VTK-m classes like vtkm::cont::DynamicArrayHandle (which is documented
in Chapter 11).

Example 6.17: Converting dynamic types to static types with ListForEach.
1 struct MyArrayBase {
2 // A virtual destructor makes sure C++ RTTI will be generated . It also helps
3 // ensure subclass destructors are called .
4 virtual ˜ MyArrayBase () { }
5 };
6
7 template < typename T>
8 struct MyArrayImpl : public MyArrayBase {
9 std :: vector <T> Array ;

10 };
11
12 template < typename T>
13 void PrefixSum (std :: vector <T> & array )
14 {
15 T sum( typename vtkm :: VecTraits <T >:: ComponentType (0));
16 for ( typename std :: vector <T >:: iterator iter = array . begin ();
17 iter != array .end ();
18 iter ++)
19 {
20 sum = sum + *iter;
21 *iter = sum;
22 }
23 }
24
25 struct PrefixSumFunctor {
26 MyArrayBase * ArrayPointer ;
27
28 PrefixSumFunctor ( MyArrayBase * arrayPointer ) : ArrayPointer ( arrayPointer ) { }
29
30 template < typename T>
31 void operator ()(T) {
32 using ConcreteArrayType = MyArrayImpl <T >;
33 ConcreteArrayType * concreteArray =
34 dynamic_cast < ConcreteArrayType *>(this -> ArrayPointer );
35 if ( concreteArray != NULL)
36 {
37 PrefixSum ( concreteArray -> Array );
38 }
39 }
40 };
41
42 void DoPrefixSum ( MyArrayBase * array )
43 {
44 PrefixSumFunctor functor = PrefixSumFunctor ( array );
45 vtkm :: ListForEach (functor , vtkm :: TypeListTagCommon ());
46 }
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6.7 Error Handling

VTK-m uses exceptions to report errors. All exceptions thrown by VTK-m will be a subclass of vtkm::cont::-
Error. For simple error reporting, it is possible to simply catch a vtkm::cont::Error and report the error
message string reported by the GetMessage method.

Example 6.18: Simple error reporting.
1 int main(int argc , char ** argv)
2 {
3 try
4 {
5 // Do something cool with VTK -m
6 // ...
7 }
8 catch (vtkm :: cont :: Error error )
9 {

10 std :: cout << error . GetMessage () << std :: endl;
11 return 1;
12 }
13 return 0;
14 }

There are several subclasses to vtkm::cont::Error. The specific subclass gives an indication of the type of
error that occured when the exception was thrown. Catching one of these subclasses may help a program better
recover from errors.

vtkm::cont::ErrorBadAllocation Thrown when there is a problem accessing or manipulating memory. Often
this is thrown when an allocation fails because there is insufficient memory, but other memory access errors
can cause this to be thrown as well.

vtkm::cont::ErrorBadType Thrown when VTK-m attempts to perform an operation on an object that is of
an incompatible type.

vtkm::cont::ErrorBadValue Thrown when a VTK-m function or method encounters an invalid value that
inhibits progress.

vtkm::cont::ErrorExecution Throw when an error is signaled in the execution environment for example when
a worklet is being executed.

vtkm::cont::ErrorInternal Thrown when VTK-m detects an internal state that should never be reached.
This error usually indicates a bug in VTK-m or, at best, VTK-m failed to detect an invalid input it should
have.

vtkm::io::ErrorIO Thrown by a reader or writer when a file error is encountered.

In addition to the aforementioned error signaling, the vtkm/Assert.h header file defines a macro named VTKM -
ASSERT. This macro behaves the same as the POSIX assert macro. It takes a single argument that is a condition
that is expected to be true. If it is not true, the program is halted and a message is printed. Asserts are useful
debugging tools to ensure that software is behaving and being used as expected.

Example 6.19: Using VTKM ASSERT.
1 template < typename T>
2 VTKM_CONT
3 T GetArrayValue (vtkm :: cont :: ArrayHandle <T> arrayHandle , vtkm :: Id index )
4 {
5 VTKM_ASSERT ( index >= 0);
6 VTKM_ASSERT ( index < arrayHandle . GetNumberOfValues ());
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Like the POSIX assert, if the NDEBUG macro is defined, then VTKM ASSERT will become an empty expres-
sion. Typically NDEBUG is defined with a compiler flag (like -DNDEBUG) for release builds to better optimize
the code. CMake will automatically add this flag for release builds.

Did you know?

A helpful warning provided by many compilers alerts you of unused variables. (This warning is commonly
enabled on VTK-m regression test nightly builds.) If a function argument is used only in a VTKM ASSERT,
then it will be required for debug builds and be unused in release builds. To get around this problem, add
a statement to the function of the form (void)variableName ;. This statement will have no effect on the
code generated but will suppress the warning for release builds.

Common Errors

Because VTK-m makes heavy use of C++ templates, it is possible that these templates could be used with
inappropriate types in the arguments. Using an unexpected type in a template can lead to very confusing errors,
so it is better to catch such problems as early as possible. The VTKM STATIC ASSERT macro, defined in vtkm/-
StaticAssert.h makes this possible. This macro takes a constant expression that can be evaluated at compile time
and verifies that the result is true.

In the following example, VTKM STATIC ASSERT and its sister macro VTKM STATIC ASSERT MSG, which allows
you to give a descriptive message for the failure, are used to implement checks on a templated function that is
designed to work on any scalar type that is represented by 32 or more bits.

Example 6.20: Using VTKM STATIC ASSERT.
1 template < typename T>
2 VTKM_EXEC_CONT
3 void MyMathFunction (T & value )
4 {
5 VTKM_STATIC_ASSERT (
6 (std :: is_same < typename vtkm :: TypeTraits <T >:: DimensionalityTag ,
7 vtkm :: TypeTraitsScalarTag >:: value ));
8
9 VTKM_STATIC_ASSERT_MSG (

10 sizeof (T) >= 4, " MyMathFunction needs types with at least 32 bits .");

In addition to the several trait template classes provided by VTK-m to introspect C++ types, the C++
standard type traits header file contains several helpful templates for general queries on types. Example 6.20
demonstrates the use of one such template: std::is same.

Did you know?
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Many templates used to introspect types resolve to the tags std::true type and std::false type rather
than the constant values true and false that VTKM STATIC ASSERT expects. The std::true type and
std::false type tags can be converted to the Boolean literal by adding ::value to the end of them.
Failing to do so will cause VTKM STATIC ASSERT to behave incorrectly. Example 6.20 demonstrates getting
the Boolean literal from the result of std::is same.

Common Errors

6.8 VTK-m Version

As the VTK-m code evolves, changes to the interface and behavior will inevitably happen. Consequently, code
that links into VTK-m might need a specific version of VTK-m or changes its behavior based on what version of
VTK-m it is using. To facilitate this, VTK-m software is managed with a versioning system and advertises its
version in multiple ways. As with many software products, VTK-m has three version numbers: major, minor, and
patch. The major version represents significant changes in the VTK-m implementation and interface. Changes
in the major version include backward incompatible changes. The minor version represents added functionality.
Generally, changes in the minor version to not introduce changes to the API (although the early 1.X versions of
VTK-m violate this). The patch version represents fixes provided after a release occurs. Patch versions represent
minimal change and do not add features.

If you are writing a software package that is managed by CMake and load VTK-m with the find package
command as described in Section 2.4, then you can query the VTK-m version directly in the CMake config-
uration. When you load VTK-m with find package, CMake sets the variables VTKm VERSION MAJOR,
VTKm VERSION MINOR, and VTKm VERSION PATCH to the major, minor, and patch versions, respectively.
Additionally, VTKm VERSION is set to the “major.minor” version number and VTKm VERSION FULL is set
to the “major.minor.patch” version number. If the current version of VTK-m is actually a development version
that is in between releases of VTK-m, then and abbreviated SHA of the git commit is also included as part of
VTKm VERSION FULL.

If you have a specific version of VTK-m required for your software, you can also use the version option to
the find package CMake command. The find package command takes an optional version argument
that causes the command to fail if the wrong version of the package is found.

Did you know?

It is also possible to query the VTK-m version directly in your code through preprocessor macros. The vtkm/-
Version.h header file defines the following preprocessor macros to identify the VTK-m version. VTKM VERSION -
MAJOR, VTKM VERSION MINOR, and VTKM VERSION PATCH are set to integer numbers representing the major,
minor, and patch versions, respectively. Additionally, VTKM VERSION is set to the “major.minor” version number
as a string and VTKM VERSION FULL is set to the “major.minor.patch” version number (also as a string). If the
current version of VTK-m is actually a development version that is in between releases of VTK-m, then and
abbreviated SHA of the git commit is also included as part of VTKM VERSION FULL.
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Note that the CMake variables all begin with VTKm (lowercase “m”) whereas the preprocessor macros begin
with VTKM (all uppercase). This follows the respective conventions of CMake variables and preprocessor
macros.

Common Errors

Note that vtkm/Version.h does not include any other VTK-m header files. This gives your code a chance to load,
query, and react to the VTK-m version before loading any VTK-m code proper.
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SEVEN

ARRAY HANDLES

An array handle, implemented with the vtkm::cont::ArrayHandle class, manages an array of data that can
be accessed or manipulated by VTK-m algorithms. It is typical to construct an array handle in the control
environment to pass data to an algorithm running in the execution environment. It is also typical for an
algorithm running in the execution environment to allocate and populate an array handle, which can then be
read back in the control environment. It is also possible for an array handle to manage data created by one
VTK-m algorithm and passed to another, remaining in the execution environment the whole time and never
copied to the control environment.

The array handle may have up to two copies of the array, one for the control environment and one for
the execution environment. However, depending on the device and how the array is being used, the array
handle will only have one copy when possible. Copies between the environments are implicit and lazy. They
are copied only when an operation needs data in an environment where the data is not.

Did you know?

vtkm::cont::ArrayHandle behaves like a shared smart pointer in that when the C++ object is copied, each
copy holds a reference to the same array. These copies are reference counted so that when all copies of the
vtkm::cont::ArrayHandle are destroyed, any allocated memory is released.

7.1 Creating Array Handles

vtkm::cont::ArrayHandle is a templated class with two template parameters. The first template parameter
is the only one required and specifies the base type of the entries in the array. The second template parameter
specifies the storage used when storing data in the control environment. Storage objects are discussed later in
Chapter 10, and for now we will use the default value.

Example 7.1: Declaration of the vtkm::cont::ArrayHandle templated class.
1 template <
2 typename T,
3 typename StorageTag = VTKM_DEFAULT_STORAGE_TAG >
4 class ArrayHandle ;

There are multiple ways to create and populate an array handle. The default vtkm::cont::ArrayHandle con-
structor will create an empty array with nothing allocated in either the control or execution environment. This
is convenient for creating arrays used as the output for algorithms.
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Example 7.2: Creating an ArrayHandle for output data.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > outputArray ;

Constructing an ArrayHandle that points to a provided C array or std::vector is straightforward with the
vtkm::cont::make ArrayHandle functions. These functions will make an array handle that points to the array
data that you provide.

Example 7.3: Creating an ArrayHandle that points to a provided C array.
1 vtkm :: Float32 dataBuffer [50];
2 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
3
4 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray =
5 vtkm :: cont :: make_ArrayHandle ( dataBuffer , 50);

Example 7.4: Creating an ArrayHandle that points to a provided std::vector.
1 std :: vector <vtkm :: Float32 > dataBuffer ;
2 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
3
4 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray =
5 vtkm :: cont :: make_ArrayHandle ( dataBuffer );

Be aware that vtkm::cont::make ArrayHandle makes a shallow pointer copy. This means that if you change or
delete the data provided, the internal state of ArrayHandle becomes invalid and undefined behavior can ensue.
The most common manifestation of this error happens when a std::vector goes out of scope. This subtle
interaction will cause the vtkm::cont::ArrayHandle to point to an unallocated portion of the memory heap.
For example, if the code in Example 7.4 where to be placed within a callable function or method, it could cause
the vtkm::cont::ArrayHandle to become invalid.

Because ArrayHandle does not manage data provided by make ArrayHandle, you should only use these as
temporary objects. Example 7.5 demonstrates a method of copying one of these temporary arrays into safe
managed memory, and Section 7.3 describes how to put data directly into an ArrayHandle object.

Common Errors

Example 7.5: Invalidating an ArrayHandle by letting the source std::vector leave scope.
1 VTKM_CONT
2 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > BadDataLoad ()
3 {
4 std :: vector <vtkm :: Float32 > dataBuffer ;
5 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
6
7 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray =
8 vtkm :: cont :: make_ArrayHandle ( dataBuffer );
9

10 return inputArray ;
11 // THIS IS WRONG ! At this point dataBuffer goes out of scope and deletes its
12 // memory . However , inputArray has a pointer to that memory , which becomes an
13 // invalid pointer in the returned object . Bad things will happen when the
14 // ArrayHandle is used.
15 }
16
17 VTKM_CONT
18 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > SafeDataLoad ()
19 {
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20 std :: vector <vtkm :: Float32 > dataBuffer ;
21 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
22
23 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > tmpArray =
24 vtkm :: cont :: make_ArrayHandle ( dataBuffer );
25
26 // This copies the data from one ArrayHandle to another (in the execution
27 // environment ). Although it is an extraneous copy , it is usually pretty fast
28 // on a parallel device . Another option is to make sure that the buffer in
29 // the std :: vector never goes out of scope before all the ArrayHandle
30 // references , but this extra step allows the ArrayHandle to manage its own
31 // memory and ensure everything is valid .
32 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray ;
33 vtkm :: cont :: DeviceAdapterAlgorithm < VTKM_DEFAULT_DEVICE_ADAPTER_TAG >:: Copy(
34 tmpArray , inputArray );
35
36 return inputArray ;
37 // This is safe.
38 }

7.2 Array Portals

An array handle defines auxiliary structures called array portals that provide direct access into its data. An
array portal is a simple object that is somewhat functionally equivalent to an STL-type iterator, but with a
much simpler interface. Array portals can be read-only (const) or read-write and they can be accessible from
either the control environment or the execution environment. All these variants have similar interfaces although
some features that are not applicable can be left out.

An array portal object contains each of the following:

ValueType The type for each item in the array.

GetNumberOfValues A method that returns the number of entries in the array.

Get A method that returns the value at a given index.

Set A method that changes the value at a given index. This method does not need to exist for read-only (const)
array portals.

The following code example defines an array portal for a simple C array of scalar values. This definition has no
practical value (it is covered by the more general vtkm::cont::internal::ArrayPortalFromIterators), but
demonstrates the function of each component.

Example 7.6: A simple array portal implementation.
1 template < typename T>
2 class SimpleScalarArrayPortal
3 {
4 public :
5 using ValueType = T;
6
7 // There is no specification for creating array portals , but they generally
8 // need a constructor like this to be practical .
9 VTKM_EXEC_CONT

10 SimpleScalarArrayPortal ( ValueType *array , vtkm :: Id numberOfValues )
11 : Array ( array ), NumberOfValues ( numberOfValues ) { }
12
13 VTKM_EXEC_CONT
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14 SimpleScalarArrayPortal () : Array (NULL), NumberOfValues (0) { }
15
16 VTKM_EXEC_CONT
17 vtkm :: Id GetNumberOfValues () const { return this -> NumberOfValues ; }
18
19 VTKM_EXEC_CONT
20 ValueType Get(vtkm :: Id index ) const { return this -> Array [ index ]; }
21
22 VTKM_EXEC_CONT
23 void Set(vtkm :: Id index , ValueType value ) const {
24 this -> Array [ index ] = value ;
25 }
26
27 private :
28 ValueType * Array ;
29 vtkm :: Id NumberOfValues ;
30 };

Although array portals are simple to implement and use, and array portals’ functionality is similar to iterators,
there exists a great deal of code already based on STL iterators and it is often convienient to interface with an
array through an iterator rather than an array portal. The vtkm::cont::ArrayPortalToIterators class can
be used to convert an array portal to an STL-compatible iterator. The class is templated on the array portal
type and has a constructor that accepts an instance of the array portal. It contains the following features.

IteratorType The type of an STL-compatible random-access iterator that can provide the same access as the
array portal.

GetBegin A method that returns an STL-compatible iterator of type IteratorType that points to the beginning
of the array.

GetEnd A method that returns an STL-compatible iterator of type IteratorType that points to the end of the
array.

Example 7.7: Using ArrayPortalToIterators.
1 template < typename PortalType >
2 VTKM_CONT
3 std :: vector < typename PortalType :: ValueType >
4 CopyArrayPortalToVector ( const PortalType & portal )
5 {
6 using ValueType = typename PortalType :: ValueType ;
7 std :: vector <ValueType > result ( portal . GetNumberOfValues ());
8
9 vtkm :: cont :: ArrayPortalToIterators < PortalType > iterators ( portal );

10
11 std :: copy( iterators . GetBegin (), iterators . GetEnd (), result . begin ());
12
13 return result ;
14 }

As a convenience, vtkm/cont/ArrayPortalToIterators.h also defines a pair of functions named ArrayPortalToI-
teratorBegin and ArrayPortalToIteratorEnd that each take an array portal as an argument and return a
begin and end iterator, respectively.

Example 7.8: Using ArrayPortalToIteratorBegin and ArrayPortalToIteratorEnd.
1 std :: vector <vtkm :: Float32 > myContainer ( portal . GetNumberOfValues ());
2
3 std :: copy(vtkm :: cont :: ArrayPortalToIteratorBegin ( portal ),
4 vtkm :: cont :: ArrayPortalToIteratorEnd ( portal ),
5 myContainer . begin ());
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ArrayHandle contains two internal type definitions for array portal types that are capable of interfacing with the
underlying data in the control environment. These are PortalControl and PortalConstControl, which define
read-write and read-only (const) array portals, respectively.

ArrayHandle also contains similar type definitions for array portals in the execution environment. Because these
types are dependent on the device adapter used for execution, these type definitions are embedded in a tem-
plated class named ExecutionTypes. Within ExecutionTypes are the type definitions Portal and PortalConst
defining the read-write and read-only (const) array portals, respectively, for the execution environment for the
given device adapter tag.

Because vtkm::cont::ArrayHandle is control environment object, it provides the methods GetPortalControl
and GetPortalConstControl to get the associated array portal objects. These methods also have the side effect
of refreshing the control environment copy of the data, so this can be a way of synchronizing the data. Be
aware that when an ArrayHandle is created with a pointer or std::vector, it is put in a read-only mode,
and GetPortalControl can fail (although GetPortalConstControl will still work). Also be aware that calling
GetPortalControl will invalidate any copy in the execution environment, meaning that any subsequent use will
cause the data to be copied back again.

Example 7.9: Using portals from an ArrayHandle.
1 template < typename T>
2 void SortCheckArrayHandle (vtkm :: cont :: ArrayHandle <T> arrayHandle )
3 {
4 using PortalType = typename vtkm :: cont :: ArrayHandle <T >:: PortalControl ;
5 using PortalConstType = typename vtkm :: cont :: ArrayHandle <T >:: PortalConstControl ;
6
7 PortalType readwritePortal = arrayHandle . GetPortalControl ();
8 // This is actually pretty dumb. Sorting would be generally faster in
9 // parallel in the execution environment using the device adapter algorithms .

10 std :: sort(vtkm :: cont :: ArrayPortalToIteratorBegin ( readwritePortal ),
11 vtkm :: cont :: ArrayPortalToIteratorEnd ( readwritePortal ));
12
13 PortalConstType readPortal = arrayHandle . GetPortalConstControl ();
14 for (vtkm :: Id index = 1; index < readPortal . GetNumberOfValues (); index ++)
15 {
16 if ( readPortal .Get(index -1) > readPortal .Get( index ))
17 {
18 std :: cout << " Sorting is wrong !" << std :: endl;
19 break ;
20 }
21 }
22 }

Most operations on arrays in VTK-m should really be done in the execution environment. Keep in mind
that whenever doing an operation using a control array portal, that operation will likely be slow for large
arrays. However, some operations, like performing file I/O, make sense in the control environment.

Did you know?

7.3 Allocating and Populating Array Handles

vtkm::cont::ArrayHandle is capable of allocating its own memory. The most straightforward way to allocate
memory is to call the Allocate method. The Allocate method takes a single argument, which is the number
of elements to make the array.
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Example 7.10: Allocating an ArrayHandle.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > arrayHandle ;
2
3 const vtkm :: Id ARRAY_SIZE = 50;
4 arrayHandle . Allocate ( ARRAY_SIZE );

The ability to allocate memory is a key difference between ArrayHandle and many other common forms
of smart pointers. When one ArrayHandle allocates new memory, all other ArrayHandles pointing to
the same managed memory get the newly allocated memory. This can be particularly surprising when the
originally managed memory is empty. For example, older versions of std::vector initialized all its values
by setting them to the same object. When a vector of ArrayHandles was created and one entry was
allocated, all entries changed to the same allocation.

Common Errors

Once an ArrayHandle is allocated, it can be populated by using the portal returned from GetPortalControl,
as described in Section 7.2. This is roughly the method used by the readers in the I/O package (Chapter 3).

Example 7.11: Populating a newly allocated ArrayHandle.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > arrayHandle ;
2
3 const vtkm :: Id ARRAY_SIZE = 50;
4 arrayHandle . Allocate ( ARRAY_SIZE );
5
6 using PortalType = vtkm :: cont :: ArrayHandle <vtkm :: Float32 >:: PortalControl ;
7 PortalType portal = arrayHandle . GetPortalControl ();
8
9 for (vtkm :: Id index = 0; index < ARRAY_SIZE ; index ++)

10 {
11 portal .Set(index , GetValueForArray ( index ));
12 }

7.4 Interface to Execution Environment

One of the main functions of the array handle is to allow an array to be defined in the control environment and
then be used in the execution environment. When using an ArrayHandle with filters or worklets, this transition
is handled automatically. However, it is also possible to invoke the transfer for use in your own scheduled
algorithms.

The ArrayHandle class manages the transition from control to execution with a set of three methods that
allocate, transfer, and ready the data in one operation. These methods all start with the prefix Prepare and are
meant to be called before some operation happens in the execution environment. The methods are as follows.

PrepareForInput Copies data from the control to the execution environment, if necessary, and readies the data
for read-only access.

PrepareForInPlace Copies the data from the control to the execution environment, if necessary, and readies
the data for both reading and writing.

PrepareForOutput Allocates space (the size of which is given as a parameter) in the execution environment, if
necessary, and readies the space for writing.
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The PrepareForInput and PrepareForInPlace methods each take a single argument that is the device adapter
tag where execution will take place (see Section 8.1 for more information on device adapter tags). Prepare-
ForOutput takes two arguments: the size of the space to allocate and the device adapter tag. Each of these meth-
ods returns an array portal that can be used in the execution environment. PrepareForInput returns an object
of type ArrayHandle::ExecutionTypes<DeviceAdapterTag>::PortalConst whereas PrepareForInPlace and
PrepareForOutput each return an object of type ArrayHandle::ExecutionTypes<DeviceAdapterTag>::Por-
tal.

Although these Prepare methods are called in the control environment, the returned array portal can only
be used in the execution environment. Thus, the portal must be passed to an invocation of the execution
environment. Typically this is done with a call to Schedule in vtkm::cont::DeviceAdapterAlgorithm. This
and other device adapter algorithms are described in detail in Section 8.2, but here is a quick example of using
these execution array portals in a simple functor.

Example 7.12: Using an execution array portal from an ArrayHandle.
1 template < typename T, typename Device >
2 struct DoubleFunctor : public vtkm :: exec :: FunctorBase
3 {
4 using InputPortalType = typename vtkm :: cont :: ArrayHandle <T >::
5 template ExecutionTypes <Device >:: PortalConst ;
6 using OutputPortalType = typename vtkm :: cont :: ArrayHandle <T >::
7 template ExecutionTypes <Device >:: Portal ;
8
9 VTKM_CONT

10 DoubleFunctor ( InputPortalType inputPortal , OutputPortalType outputPortal )
11 : InputPortal ( inputPortal ), OutputPortal ( outputPortal ) { }
12
13 VTKM_EXEC
14 void operator ()( vtkm :: Id index ) const {
15 this -> OutputPortal .Set(index , 2* this -> InputPortal .Get( index ));
16 }
17
18 InputPortalType InputPortal ;
19 OutputPortalType OutputPortal ;
20 };
21
22 template < typename T, typename Device >
23 void DoubleArray (vtkm :: cont :: ArrayHandle <T> inputArray ,
24 vtkm :: cont :: ArrayHandle <T> outputArray ,
25 Device )
26 {
27 vtkm :: Id numValues = inputArray . GetNumberOfValues ();
28
29 DoubleFunctor <T, Device > functor (
30 inputArray . PrepareForInput ( Device ()) ,
31 outputArray . PrepareForOutput (numValues , Device ()));
32
33 vtkm :: cont :: DeviceAdapterAlgorithm <Device >:: Schedule (functor , numValues );
34 }

It should be noted that the array handle will expect any use of the execution array portal to finish before the next
call to any ArrayHandle method. Since these Prepare methods are typically used in the process of scheduling
an algorithm in the execution environment, this is seldom an issue.
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There are many operations on ArrayHandle that can invalidate the array portals, so do not keep them
around indefinitely. It is generally better to keep a reference to the ArrayHandle and use one of the
Prepare each time the data are accessed in the execution environment.

Common Errors
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As multiple vendors vie to provide accelerator-type processors, a great variance in the computer architecture
exists. Likewise, there exist multiple compiler environments and libraries for these devices such as CUDA,
OpenMP, and various threading libraries. These compiler technologies also vary from system to system.

To make porting among these systems at all feasible, we require a base language support, and the language we
use is C++. The majority of the code in VTK-m is constrained to the standard C++ language constructs to
minimize the specialization from one system to the next.

Each device and device technology requires some level of code specialization, and that specialization is encapsu-
lated in a unit called a device adapter. Thus, porting VTK-m to a new architecture can be done by adding only
a device adapter.

The device adapter is shown diagrammatically as the connection between the control and execution environments
in Figure 6.1 on page 48. The functionality of the device adapter comprises two main parts: a collection of parallel
algorithms run in the execution environment and a module to transfer data between the control and execution
environments.

This chapter describes how tags are used to specify which devices to use for operations within VTK-m. The
chapter also outlines the features provided by a device adapter that allow you to directly control a device. Finally,
we document how to create a new device adapter to port or specialize VTK-m for a different device or system.

8.1 Device Adapter Tag

A device adapter is identified by a device adapter tag. This tag, which is simply an empty struct type, is used as
the template parameter for several classes in the VTK-m control environment and causes these classes to direct
their work to a particular device.

There are two ways to select a device adapter. The first is to make a global selection of a default device adapter.
The second is to specify a specific device adapter as a template parameter.

8.1.1 Default Device Adapter

A default device adapter tag is specified in vtkm/cont/DeviceAdapter.h. If no other information is given, VTK-m
attempts to choose a default device adapter that is a best fit for the system it is compiled on. VTK-m currently
select the default device adapter with the following sequence of conditions.

• If the source code is being compiled by CUDA, the CUDA device is used.
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• If the compiler does not support CUDA and VTK-m was configured to use Intel Threading Building Blocks,
then that device is used.

• If no parallel device adapters are found, then VTK-m falls back to a serial device.

You can also set the default device adapter specifically by setting the VTKM DEVICE ADAPTER macro. This macro
must be set before including any VTK-m files. You can set VTKM DEVICE ADAPTER to any one of the following.

VTKM DEVICE ADAPTER SERIAL Performs all computation on the same single thread as the control environment.
This device is useful for debugging. This device is always available.

VTKM DEVICE ADAPTER CUDA Uses a CUDA capable GPU device. For this device to work, VTK-m must be
configured to use CUDA and the code must be compiled by the CUDA nvcc compiler.

VTKM DEVICE ADAPTER TBB Uses the Intel Threading Building Blocks library to run algorithms on multiple
threads. For this device to work, VTK-m must be configured to use TBB and the executable must be
linked to the TBB library.

These macros provide a useful mechanism for quickly reconfiguring code to run on different devices. The following
example shows a typical block of code at the top of a source file that could be used for quick reconfigurations.

Example 8.1: Macros to port VTK-m code among different devices
1 // Uncomment one (and only one) of the following to reconfigure the VTK -m
2 // code to use a particular device . Comment them all to automatically pick a
3 // device .
4 # define VTKM_DEVICE_ADAPTER VTKM_DEVICE_ADAPTER_SERIAL
5 //# define VTKM_DEVICE_ADAPTER VTKM_DEVICE_ADAPTER_CUDA
6 //# define VTKM_DEVICE_ADAPTER VTKM_DEVICE_ADAPTER_OPENMP
7 //# define VTKM_DEVICE_ADAPTER VTKM_DEVICE_ADAPTER_TBB
8
9 # include <vtkm/cont/ DeviceAdapter .h>

Filters do not actually use the default device adapter tag. They have a more sophisticated device selection
mechanism that determines the devices available at runtime and will attempt running on multiple devices.

Did you know?

The default device adapter can always be overridden by specifying a device adapter tag, as described in the next
section. There is actually one more internal default device adapter named VTKM DEVICE ADAPTER ERROR that
will cause a compile error if any component attempts to use the default device adapter. This feature is most
often used in testing code to check when device adapters should be specified.

8.1.2 Specifying Device Adapter Tags

In addition to setting a global default device adapter, it is possible to explicitly set which device adapter to use
in any feature provided by VTK-m. This is done by providing a device adapter tag as a template argument to
VTK-m templated objects. The following device adapter tags are available in VTK-m.

vtkm::cont::DeviceAdapterTagSerial Performs all computation on the same single thread as the control
environment. This device is useful for debugging. This device is always available. This tag is defined in
vtkm/cont/DeviceAdapterSerial.h.
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vtkm::cont::DeviceAdapterTagCuda Uses a CUDA capable GPU device. For this device to work, VTK-m
must be configured to use CUDA and the code must be compiled by the CUDA nvcc compiler. This tag is
defined in vtkm/cont/cuda/DeviceAdapterCuda.h.

vtkm::cont::DeviceAdapterTagTBB Uses the Intel Threading Building Blocks library to run algorithms on
multiple threads. For this device to work, VTK-m must be configured to use TBB and the executable must
be linked to the TBB library. This tag is defined in vtkm/cont/tbb/DeviceAdapterTBB.h.

The following example uses the tag for the Intel Threading Building blocks device adapter to prepare an output
array for that device. In this case, the device adapter tag is passed as a parameter for the PrepareForOutput
method of vtkm::cont::ArrayHandle.

Example 8.2: Specifying a device using a device adapter tag.
1 arrayHandle . PrepareForOutput (50 , vtkm :: cont :: DeviceAdapterTagTBB ());

When structuring your code to always specify a particular device adapter, consider setting the default device
adapter (with the VTKM DEVICE ADAPTER macro) to VTKM DEVICE ADAPTER ERROR. This will cause the compiler
to produce an error if any object is instantiated with the default device adapter, which checks to make sure the
code properly specifies every device adapter parameter.

VTK-m also defines a macro named VTKM DEFAULT DEVICE ADAPTER TAG, which can be used in place of an
explicit device adapter tag to use the default tag. This macro is used to create new templates that have template
parameters for device adapters that can use the default. The following example defines a functor to be used with
the Schedule operation (to be described later) that is templated on the device it uses.

Example 8.3: Specifying a default device for template parameters.
1 template < typename Device = VTKM_DEFAULT_DEVICE_ADAPTER_TAG >
2 struct SetPortalFunctor : vtkm :: exec :: FunctorBase
3 {
4 VTKM_IS_DEVICE_ADAPTER_TAG ( Device );
5
6 using ExecPortalType =
7 typename vtkm :: cont :: ArrayHandle <vtkm ::Id >:: ExecutionTypes <Device >:: Portal ;
8 ExecPortalType Portal ;
9

10 VTKM_CONT
11 SetPortalFunctor (vtkm :: cont :: ArrayHandle <vtkm ::Id > array , vtkm :: Id size)
12 : Portal ( array . PrepareForOutput (size , Device ()))
13 { }
14
15 VTKM_EXEC
16 void operator ()( vtkm :: Id index ) const
17 {
18 using ValueType = typename ExecPortalType :: ValueType ;
19 this -> Portal .Set(index , TestValue (index , ValueType ()));
20 }
21 };

A device adapter tag is a class just like every other type in C++. Thus it is possible to accidently use a
type that is not a device adapter tag when one is expected. This leads to unexpected errors in strange parts
of the code. To help identify these errors, it is good practice to use the VTKM IS DEVICE ADAPTER TAG
macro to verify the type is a valid device adapter tag. Example 8.3 uses this macro on line 4.

Common Errors
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8.2 Device Adapter Algorithms

VTK-m comes with the templated class vtkm::cont::DeviceAdapterAlgorithm that provides a set of algo-
rithms that can be invoked in the control environment and are run on the execution environment. The template
has a single argument that specifies the device adapter tag.

Example 8.4: Prototype for vtkm::cont::DeviceAdapterAlgorithm.
1 namespace vtkm {
2 namespace cont {
3
4 template < typename DeviceAdapterTag >
5 struct DeviceAdapterAlgorithm ;
6
7 }
8 } // namespace vtkm :: cont

DeviceAdapterAlgorithm contains no state. It only has a set of static methods that implement its algorithms.
The following methods are available.

Many of the following device adapter algorithms take input and output ArrayHandles, and these functions
will handle their own memory management. This means that it is unnecessary to allocate output arrays.
For example, it is unnecessary to call ArrayHandle::Allocate() for the output array passed to the Copy
method.

Did you know?

Copy Copies data from an input array to an output array. The copy takes place in the execution environment.

LowerBounds The LowerBounds method takes three arguments. The first argument is an ArrayHandle of sorted
values. The second argument is another ArrayHandle of items to find in the first array. LowerBounds find
the index of the first item that is greater than or equal to the target value, much like the std::lower bound
STL algorithm. The results are returned in an ArrayHandle given in the third argument.
There are two specializations of LowerBounds. The first takes an additional comparison function that
defines the less-than operation. The second takes only two parameters. The first is an ArrayHandle of
sorted vtkm::Ids and the second is an ArrayHandle of vtkm::Ids to find in the first list. The results are
written back out to the second array. This second specialization is useful for inverting index maps.

Reduce The Reduce method takes an input array, initial value, and a binary function and computes a “total” of
applying the binary function to all entries in the array. The provided binary function must be associative
(but it need not be commutative). There is a specialization of Reduce that does not take a binary function
and computes the sum.

ReduceByKey The ReduceByKey method works similarly to the Reduce method except that it takes an additional
array of keys, which must be the same length as the values being reduced. The arrays are partitioned into
segments that have identical adjacent keys, and a separate reduction is performed on each partition. The
unique keys and reduced values are returned in separate arrays.

ScanInclusive The ScanInclusive method takes an input and an output ArrayHandle and performs a running
sum on the input array. The first value in the output is the same as the first value in the input. The second
value in the output is the sum of the first two values in the input. The third value in the output is the sum
of the first three values of the input, and so on. ScanInclusive returns the sum of all values in the input.
There are two forms of ScanInclusive: one performs the sum using addition whereas the other accepts a
custom binary function to use as the sum operator.

80 Chapter 8. Device Adapters



DRAFT

8.2. Device Adapter Algorithms

ScanExclusive The ScanExclusive method takes an input and an output ArrayHandle and performs a running
sum on the input array. The first value in the output is always 0. The second value in the output is the
same as the first value in the input. The third value in the output is the sum of the first two values in
the input. The fourth value in the output is the sum of the first three values of the input, and so on.
ScanExclusive returns the sum of all values in the input. There are two forms of ScanExclusive: one
performs the sum using addition whereas the other accepts a custom binary function to use as the sum
operator and a custom initial value to use in the running sum.

Schedule The Schedule method takes a functor as its first argument and invokes it a number of times specified
by the second argument. It should be assumed that each invocation of the functor occurs on a separate
thread although in practice there could be some thread sharing.
There are two versions of the Schedule method. The first version takes a vtkm::Id and invokes the functor
that number of times. The second version takes a vtkm::Id3 and invokes the functor once for every entry
in a 3D array of the given dimensions.
The functor is expected to be an object with a const overloaded parentheses operator. The operator
takes as a parameter the index of the invocation, which is either a vtkm::Id or a vtkm::Id3 depending on
what version of Schedule is being used. The functor must also subclass vtkm::exec::FunctorBase, which
provides the error handling facilities for the execution environment. FunctorBase contains a public method
named RaiseError that takes a message and will cause a vtkm::cont::ErrorExecution exception to be
thrown in the control environment.

Sort The Sort method provides an unstable sort of an array. There are two forms of the Sort method. The
first takes an ArrayHandle and sorts the values in place. The second takes an additional argument that is
a functor that provides the comparison operation for the sort.

SortByKey The SortByKey method works similarly to the Sort method except that it takes two ArrayHandles:
an array of keys and a corresponding array of values. The sort orders the array of keys in ascending values
and also reorders the values so they remain paired with the same key. Like Sort, SortByKey has a version
that sorts by the default less-than operator and a version that accepts a custom comparison functor.

StreamCompact The StreamCompact method selectively removes values from an array. The first argument is
an ArrayHandle to be compacted and the second argument is an ArrayHandle of equal size with flags
indicating whether the corresponding input value is to be copied to the output. The third argument is an
output ArrayHandle whose length is set to the number of true flags in the stencil and the passed values
are put in order to the output array.
There is also a second form of StreamCompact that only has the stencil and output as arguments. In this
version, the output gets the corresponding index of where the input should be taken from.

Synchronize The Synchronize method waits for any asynchronous operations running on the device to complete
and then returns.

Unique The Unique method removes all duplicate values in an ArrayHandle. The method will only find dupli-
cates if they are adjacent to each other in the array. The easiest way to ensure that duplicate values are
adjacent is to sort the array first.
There are two versions of Unique. The first uses the equals operator to compare entries. The second
accepts a binary functor to perform the comparisons.

UpperBounds The UpperBounds method takes three arguments. The first argument is an ArrayHandle of sorted
values. The second argument is another ArrayHandle of items to find in the first array. UpperBounds find
the index of the first item that is greater than to the target value, much like the std::upper bound STL
algorithm. The results are returned in an ArrayHandle given in the third argument.
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There are two specializations of UpperBounds. The first takes an additional comparison function that
defines the less-than operation. The second takes only two parameters. The first is an ArrayHandle of
sorted vtkm::Ids and the second is an ArrayHandle of vtkm::Ids to find in the first list. The results are
written back out to the second array. This second specialization is useful for inverting index maps.
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It is often the case that you need to measure the time it takes for an operation to happen. This could be for
performing measurements for algorithm study or it could be to dynamically adjust scheduling.

Performing timing in a multi-threaded environment can be tricky because operations happen asynchronously.
In the VTK-m control environment timing is simplified because the control environment operates on a single
thread. However, operations invoked in the execution environment may run asynchronously to operations in the
control environment.

To ensure that accurate timings can be made, VTK-m provides a vtkm::cont::Timer class that is templated on
the device adapter to provide an accurate measurement of operations that happen on the device. If not template
parameter is provided, the default device adapter is used.

The timing starts when the Timer is constructed. The time elapsed can be retrieved with a call to the GetE-
lapsedTime method. This method will block until all operations in the execution environment complete so as
to return an accurate time. The timer can be restarted with a call to the Reset method.

Example 9.1: Using vtkm::cont::Timer.
1 vtkm :: filter :: PointElevation elevationFilter ;
2
3 vtkm :: cont :: Timer <> timer ;
4
5 vtkm :: filter :: Result result =
6 elevationFilter . Execute (dataSet , dataSet . GetCoordinateSystem ());
7
8 // This code makes sure data is pulled back to the host in a host/ device
9 // architecture .

10 vtkm :: cont :: ArrayHandle <vtkm :: Float64 > outArray ;
11 result . FieldAs ( outArray );
12 outArray . GetPortalConstControl ();
13
14 vtkm :: Float64 elapsedTime = timer . GetElapsedTime ();
15
16 std :: cout << "Time to run: " << elapsedTime << std :: endl;

Make sure the Timer being used is match to the device adapter used for the computation. This will ensure
that the parallel computation is synchronized.

Common Errors
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Some device require data to be copied between the host CPU and the device. In this case you might want
to measure the time to copy data back to the host. This can be done by “touching” the data on the host by
getting a control portal.

Common Errors
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Chapter 7 introduces the vtkm::cont::ArrayHandle class. In it, we learned how an ArrayHandle manages the
memory allocation of an array, provides access to the data via array portals, and supervises the movement of
data between the control and execution environments.

In addition to these data management features, ArrayHandle also provides a configurable storage mechanism
that allows you, through efficient template configuration, to redefine how data are stored and retrieved. The
storage object provides an encapsulated interface around the data so that any necessary strides, offsets, or other
access patterns may be handled internally. The relationship between array handles and their storage object is
shown in Figure 10.1.

Array Handle

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Basic
Storage x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Permutation
Storage x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

2 9 3 0 2 1 9 7 2 6Array Handle

x2 x9 x3 x0 x2 x1 x9 x7 x2 x6

Array Handle

x0 y0 z0 x1 y1 z1 x2 y2 z2

Composite Vector
Storage y0 y1 y2

x0 x1 x2

z0 z1 z2

Array Handle

0 1 2 3 4 5 6 7 8 9

Index
Storage

Figure 10.1: Array handles, storage objects, and the underlying data source.

One interesting consequence of using a generic storage object to manage data within an array handle is that
the storage can be defined functionally rather than point to data stored in physical memory. Thus, implicit
array handles are easily created by adapting to functional “storage.” For example, the point coordinates of a
uniform rectilinear grid are implicit based on the topological position of the point. Thus, the point coordinates
for uniform rectilinear grids can be implemented as an implicit array with the same interface as explicit arrays
(where unstructured grid points would be stored). In this chapter we explore the many ways you can manipulate
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the ArrayHandle storage.

VTK-m comes with many “fancy” array handles that can change the data in other arrays without modifying
the memory or can generate data on the fly to behave like an array without actually using any memory.
These fancy array handles are documented later in this chapter, and they can be very handy when developing
with VTK-m.

Did you know?

10.1 Basic Storage

As previously discussed in Chapter 7, vtkm::cont::ArrayHandle takes two template arguments.

Example 10.1: Declaration of the vtkm::cont::ArrayHandle templated class (again).
1 template <
2 typename T,
3 typename StorageTag = VTKM_DEFAULT_STORAGE_TAG >
4 class ArrayHandle ;

The first argument is the only one required and has been demonstrated multiple times before. The second (op-
tional) argument specifies something called a storage, which provides the interface between the generic vtkm::-
cont::ArrayHandle class and a specific storage mechanism in the control environment.

In this and the following sections we describe this storage mechanism. A default storage is specified in much the
same way as a default device adapter is defined (as described in Section 8.1.1. It is done by setting the VTKM -
STORAGE macro. This macro must be set before including any VTK-m header files. Currently the only practical
storage provided by VTK-m is the basic storage, which simply allocates a continuous section of memory of the
given base type. This storage can be explicitly specified by setting VTKM STORAGE to VTKM STORAGE BASIC
although the basic storage will also be used as the default if no other storage is specified (which is typical).

The default storage can always be overridden by specifying an array storage tag. The tag for the basic storage
is located in the vtkm/cont/StorageBasic.h header file and is named vtkm::cont::StorageTagBasic. Here is an
example of specifying the storage type when declaring an array handle.

Example 10.2: Specifying the storage type for an ArrayHandle.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 ,vtkm :: cont :: StorageTagBasic > arrayHandle ;

VTK-m also defines a macro named VTKM DEFAULT STORAGE TAG that can be used in place of an explicit storage
tag to use the default tag. This macro is used to create new templates that have template parameters for storage
that can use the default.

10.2 Provided Fancy Arrays

The generic array handle and storage templating in VTK-m allows for any type of operations to retrieve a
particular value. Typically this is used to convert an index to some location or locations in memory. However,
it is also possible to do many other operations. Arrays can be augmented on the fly by mutating their indices or
values. Or values could be computed directly from the index so that no storage is required for the array at all.
This modified behavior for arrays is called “fancy” arrays.
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VTK-m provides many of the fancy arrays, which we explore in this section. Later Section 10.3 describes many
different ways in which new fancy arrays can be implemented.

10.2.1 Constant Arrays

A constant array is a fancy array handle that has the same value in all of its entries. The constant array provides
this array without actually using any memory.

Specifying a constant array in VTK-m is straightforward. VTK-m has a class named vtkm::cont::ArrayHan-
dleConstant. ArrayHandleConstant is a templated class with a single template argument that is the type of
value for each element in the array. The constructor for ArrayHandleConstant takes the value to provide by
the array and the number of values the array should present. The following example is a simple demonstration
of the constant array handle.

Example 10.3: Using ArrayHandleConstant.
1 // Create an array of 50 entries , all containing the number 3. This could be
2 // used , for example , to represent the sizes of all the polygons in a set
3 // where we know all the polygons are triangles .
4 vtkm :: cont :: ArrayHandleConstant <vtkm ::Id > constantArray (3, 50);

The vtkm/cont/ArrayHandleConstant.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleConstant that takes a value and a size for the array. This function can sometimes be used
to avoid having to declare the full array type.

Example 10.4: Using make ArrayHandleConstant.
1 // Create an array of 50 entries , all containing the number 3.
2 vtkm :: cont :: make_ArrayHandleConstant (3, 50)

10.2.2 Counting Arrays

A counting array is a fancy array handle that provides a sequence of numbers. These fancy arrays can represent
the data without actually using any memory.

VTK-m provides two versions of a counting array. The first version is an index array that provides a specialized
but common form of a counting array called an index array. An index array has values of type vtkm::Id that
start at 0 and count up by 1 (i.e. 0,1,2,3, . . .). The index array mirrors the array’s index.

Specifying an index array in VTK-m is done with a class named vtkm::cont::ArrayHandleIndex. The construc-
tor for ArrayHandleIndex takes the size of the array to create. The following example is a simple demonstration
of the index array handle.

Example 10.5: Using ArrayHandleIndex.
1 // Create an array containing [0, 1, 2, 3, ... , 49].
2 vtkm :: cont :: ArrayHandleIndex indexArray (50);

The vtkm::cont::ArrayHandleCounting class provides a more general form of counting. ArrayHandleCounting
is a templated class with a single template argument that is the type of value for each element in the array.
The constructor for ArrayHandleCounting takes three arguments: the start value (used at index 0), the step
from one value to the next, and the length of the array. The following example is a simple demonstration of the
counting array handle.

Example 10.6: Using ArrayHandleCounting.
1 // Create an array containing [ -1.0 , -0.9, -0.8, ... , 0.9 , 1.0]
2 vtkm :: cont :: ArrayHandleCounting <vtkm :: Float32 > sampleArray ( -1.0f, 0.1f, 21);
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In addition to being simpler to declare, ArrayHandleIndex is slightly faster than ArrayHandleCounting.
Thus, when applicable, you should prefer using ArrayHandleIndex.

Did you know?

The vtkm/cont/ArrayHandleCounting.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleCounting that also takes the start value, step, and length as arguments. This function can
sometimes be used to avoid having to declare the full array type.

Example 10.7: Using make ArrayHandleCounting.
1 // Create an array of 50 entries , all containing the number 3.
2 vtkm :: cont :: make_ArrayHandleCounting ( -1.0f, 0.1f, 21)

There are no fundamental limits on how ArrayHandleCounting counts. For example, it is possible to count
backwards.

Example 10.8: Counting backwards with ArrayHandleCounting.
1 // Create an array containing [49 , 48, 47, 46, ... , 0].
2 vtkm :: cont :: ArrayHandleCounting <vtkm ::Id > backwardIndexArray (49 , -1, 50);

It is also possible to use ArrayHandleCounting to make sequences of vtkm::Vec values with piece-wise counting
in each of the components.

Example 10.9: Using ArrayHandleCounting with vtkm::Vec objects.
1 // Create an array containg [(0 , -3 ,75) , (1 ,2 ,25) , (3 ,7 , -25)]
2 vtkm :: cont :: make_ArrayHandleCounting (vtkm :: make_Vec (0, -3, 75) ,
3 vtkm :: make_Vec (1, 5, -50),
4 3)

10.2.3 Cast Arrays

A cast array is a fancy array that changes the type of the elements in an array. The cast array provides this
re-typed array without actually copying or generating any data. Instead, casts are performed as the array is
accessed.

VTK-m has a class named vtkm::cont::ArrayHandleCast to perform this implicit casting. ArrayHandleCast
is a templated class with two template arguments. The first argument is the type to cast values to. The second
argument is the type of the original ArrayHandle. The constructor to ArrayHandleCast takes the ArrayHandle
to modify by casting.

Example 10.10: Using ArrayHandleCast.
1 template < typename T>
2 VTKM_CONT
3 void Foo( const std :: vector <T> & inputData )
4 {
5 vtkm :: cont :: ArrayHandle <T> originalArray =
6 vtkm :: cont :: make_ArrayHandle ( inputData );
7
8 vtkm :: cont :: ArrayHandleCast <vtkm :: Float64 , vtkm :: cont :: ArrayHandle <T> >
9 castArray ( originalArray );

The vtkm/cont/ArrayHandleCast.h header also contains the templated convenience function vtkm::cont::make -
ArrayHandleCast that constructs the cast array. The first argument is the original ArrayHandle original array
to cast. The optional second argument is of the type to cast to (or you can optionally specify the cast-to type
as a template argument.
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Example 10.11: Using make ArrayHandleCast.
1 vtkm :: cont :: make_ArrayHandleCast <vtkm :: Float64 >( originalArray )

10.2.4 Discard Arrays

It is sometimes the case where you will want to run an operation in VTK-m that fills values in two (or more)
arrays, but you only want the values that are stored in one of the arrays. It is possible to allocate space for both
arrays and then throw away the values that you do not want, but that is a waste of memory. It is also possible
to rewrite the functionality to output only what you want, but that is a poor use of developer time.

To solve this problem easily, VTK-m provides vtkm::cont::ArrayHandleDiscard. This array behaves similar
to a regular ArrayHandle in that it can be “allocated” and has size, but any values that are written to it are
immediately discarded. ArrayHandleDiscard takes up no memory.

Example 10.12: Using ArrayHandleDiscard.
1 template < typename InputArrayType ,
2 typename OutputArrayType1 ,
3 typename OutputArrayType2 >
4 VTKM_CONT
5 void DoFoo ( InputArrayType input ,
6 OutputArrayType1 output1 ,
7 OutputArrayType2 output2 );
8
9 template < typename InputArrayType >

10 VTKM_CONT
11 inline
12 vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > DoBar ( InputArrayType input )
13 {
14 VTKM_IS_ARRAY_HANDLE ( InputArrayType );
15
16 vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > keepOutput ;
17
18 vtkm :: cont :: ArrayHandleDiscard <vtkm :: FloatDefault > discardOutput ;
19
20 DoFoo (input , keepOutput , discardOutput );
21
22 return keepOutput ;
23 }

10.2.5 Permuted Arrays

A permutation array is a fancy array handle that reorders the elements in an array. Elements in the array can
be skipped over or replicated. The permutation array provides this reordered array without actually coping any
data. Instead, indices are adjusted as the array is accessed.

Specifying a permutation array in VTK-m is straightforward. VTK-m has a class named vtkm::cont::Array-
HandlePermutation that takes two arrays: an array of values and an array of indices that maps an index in the
permutation to an index of the original values. The index array is specified first. The following example is a
simple demonstration of the permutation array handle.

Example 10.13: Using ArrayHandlePermutation.
1 using IdArrayType = vtkm :: cont :: ArrayHandle <vtkm ::Id >;
2 using IdPortalType = IdArrayType :: PortalControl ;
3
4 using ValueArrayType = vtkm :: cont :: ArrayHandle <vtkm :: Float64 >;
5 using ValuePortalType = ValueArrayType :: PortalControl ;
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6
7 // Create array with values [0.0 , 0.1 , 0.2 , 0.3]
8 ValueArrayType valueArray ;
9 valueArray . Allocate (4);

10 ValuePortalType valuePortal = valueArray . GetPortalControl ();
11 valuePortal .Set (0, 0.0);
12 valuePortal .Set (1, 0.1);
13 valuePortal .Set (2, 0.2);
14 valuePortal .Set (3, 0.3);
15
16 // Use ArrayHandlePermutation to make an array = [0.3 , 0.0 , 0.1].
17 IdArrayType idArray1 ;
18 idArray1 . Allocate (3);
19 IdPortalType idPortal1 = idArray1 . GetPortalControl ();
20 idPortal1 .Set (0, 3);
21 idPortal1 .Set (1, 0);
22 idPortal1 .Set (2, 1);
23 vtkm :: cont :: ArrayHandlePermutation < IdArrayType , ValueArrayType >
24 permutedArray1 (idArray1 , valueArray );
25
26 // Use ArrayHandlePermutation to make an array = [0.1 , 0.2 , 0.2 , 0.3 , 0.0]
27 IdArrayType idArray2 ;
28 idArray2 . Allocate (5);
29 IdPortalType idPortal2 = idArray2 . GetPortalControl ();
30 idPortal2 .Set (0, 1);
31 idPortal2 .Set (1, 2);
32 idPortal2 .Set (2, 2);
33 idPortal2 .Set (3, 3);
34 idPortal2 .Set (4, 0);
35 vtkm :: cont :: ArrayHandlePermutation < IdArrayType , ValueArrayType >
36 permutedArray2 (idArray2 , valueArray );

The vtkm/cont/ArrayHandlePermutation.h header also contains the templated convenience function vtkm::-
cont::make ArrayHandlePermutation that takes instances of the index and value array handles and returns a
permutation array. This function can sometimes be used to avoid having to declare the full array type.

Example 10.14: Using make ArrayHandlePermutation.
1 vtkm :: cont :: make_ArrayHandlePermutation (idArray , valueArray )

When using an ArrayHandlePermutation, take care that all the provided indices in the index array point
to valid locations in the values array. Bad indices can cause reading from or writing to invalid memory
locations, which can be difficult to debug.

Common Errors

You can write to a ArrayHandlePermutation by, for example, using it as an output array. Writes to
the ArrayHandlePermutation will go to the respective location in the source array. However, ArrayHan-
dlePermutation cannot be resized.

Did you know?

90 Chapter 10. Fancy Array Storage



DRAFT

10.2. Provided Fancy Arrays

10.2.6 Zipped Arrays

A zip array is a fancy array handle that combines two arrays of the same size to pair up the corresponding values.
Each element in the zipped array is a vtkm::Pair containing the values of the two respective arrays. These pairs
are not stored in their own memory space. Rather, the pairs are generated as the array is used. Writing a pair
to the zipped array writes the values in the two source arrays.

Specifying a zipped array in VTK-m is straightforward. VTK-m has a class named vtkm::cont::ArrayHan-
dleZip that takes the two arrays providing values for the first and second entries in the pairs. The following
example is a simple demonstration of creating a zip array handle.

Example 10.15: Using ArrayHandleZip.
1 using ArrayType1 = vtkm :: cont :: ArrayHandle <vtkm ::Id >;
2 using PortalType1 = ArrayType1 :: PortalControl ;
3
4 using ArrayType2 = vtkm :: cont :: ArrayHandle <vtkm :: Float64 >;
5 using PortalType2 = ArrayType2 :: PortalControl ;
6
7 // Create an array of vtkm :: Id with values [3, 0, 1]
8 ArrayType1 array1 ;
9 array1 . Allocate (3);

10 PortalType1 portal1 = array1 . GetPortalControl ();
11 portal1 .Set (0, 3);
12 portal1 .Set (1, 0);
13 portal1 .Set (2, 1);
14
15 // Create a second array of vtkm :: Float32 with values [0.0 , 0.1 , 0.2]
16 ArrayType2 array2 ;
17 array2 . Allocate (3);
18 PortalType2 portal2 = array2 . GetPortalControl ();
19 portal2 .Set (0, 0.0);
20 portal2 .Set (1, 0.1);
21 portal2 .Set (2, 0.2);
22
23 // Zip the two arrays together to create an array of
24 // vtkm :: Pair <vtkm ::Id , vtkm :: Float64 > with values [(3 ,0.0) , (0 ,0.1) , (1 ,0.2)]
25 vtkm :: cont :: ArrayHandleZip < ArrayType1 , ArrayType2 > zipArray (array1 , array2 );

The vtkm/cont/ArrayHandleZip.h header also contains the templated convenience function vtkm::cont::make -
ArrayHandleZip that takes instances of the two array handles and returns a zip array. This function can
sometimes be used to avoid having to declare the full array type.

Example 10.16: Using make ArrayHandleZip.
1 vtkm :: cont :: make_ArrayHandleZip (array1 , array2 )

10.2.7 Coordinate System Arrays

Many of the data structures we use in VTK-m are described in a 3D coordinate system. Although, as we will
see in Chapter 12, we can use any ArrayHandle to store point coordinates, including a raw array of 3D vectors,
there are some common patterns for point coordinates that we can use specialized arrays to better represent the
data.

There are two fancy array handles that each handle a special form of coordinate system. The first such array
handle is vtkm::cont::ArrayHandleUniformPointCoordinates, which represents a uniform sampling of space.
The constructor for ArrayHandleUniformPointCoordinates takes three arguments. The first argument is a
vtkm::Id3 that specifies the number of samples in the x, y, and z directions. The second argument, which is
optional, specifies the origin (the location of the first point at the lower left corner). If not specified, the origin
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is set to [0,0,0]. The third argument, which is also optional, specifies the distance between samples in the x, y,
and z directions. If not specified, the spacing is set to 1 in each direction.

Example 10.17: Using ArrayHandleUniformPointCoordinates.
1 // Create a set of point coordinates for a uniform grid in the space between
2 // -5 and 5 in the x direction and -3 and 3 in the y and z directions . The
3 // uniform sampling is spaced in 0.08 unit increments in the x direction (for
4 // 126 samples ), 0.08 unit increments in the y direction (for 76 samples ) and
5 // 0.24 unit increments in the z direction (for 26 samples ). That makes
6 // 248 ,976 values in the array total .
7 vtkm :: cont :: ArrayHandleUniformPointCoordinates uniformCoordinates (
8 vtkm :: Id3 (126 , 76, 26) ,
9 vtkm :: make_Vec <vtkm :: FloatDefault >( -5.0f, -3.0f, -3.0f),

10 vtkm :: make_Vec <vtkm :: FloatDefault >(0.08f, 0.08f, 0.24f)
11 );

The second fancy array handle for special coordinate systems is vtkm::cont::ArrayHandleCartesianProduct,
which represents a rectilinear sampling of space where the samples are axis aligned but have variable spacing.
Sets of coordinates of this type are most efficiently represented by having a separate array for each component
of the axis, and then for each [i, j,k] index of the array take the value for each component from each array using
the respective index. This is equivalent to performing a Cartesian product on the arrays.

ArrayHandleCartesianProduct is a templated class. It has three template parameters, which are the types of
the arrays used for the x, y, and z axes. The constructor for ArrayHandleCartesianProduct takes the three
arrays.

Example 10.18: Using a ArrayHandleCartesianProduct.
1 using AxisArrayType = vtkm :: cont :: ArrayHandle <vtkm :: Float32 >;
2 using AxisPortalType = AxisArrayType :: PortalControl ;
3
4 // Create array for x axis coordinates with values [0.0 , 1.1 , 5.0]
5 AxisArrayType xAxisArray ;
6 xAxisArray . Allocate (3);
7 AxisPortalType xAxisPortal = xAxisArray . GetPortalControl ();
8 xAxisPortal .Set (0, 0.0f);
9 xAxisPortal .Set (1, 1.1f);

10 xAxisPortal .Set (2, 5.0f);
11
12 // Create array for y axis coordinates with values [0.0 , 2.0]
13 AxisArrayType yAxisArray ;
14 yAxisArray . Allocate (2);
15 AxisPortalType yAxisPortal = yAxisArray . GetPortalControl ();
16 yAxisPortal .Set (0, 0.0f);
17 yAxisPortal .Set (1, 2.0f);
18
19 // Create array for z axis coordinates with values [0.0 , 0.5]
20 AxisArrayType zAxisArray ;
21 zAxisArray . Allocate (2);
22 AxisPortalType zAxisPortal = zAxisArray . GetPortalControl ();
23 zAxisPortal .Set (0, 0.0f);
24 zAxisPortal .Set (1, 0.5f);
25
26 // Create point coordinates for a " rectilinear grid" with axis - aligned points
27 // with variable spacing by taking the Cartesian product of the three
28 // previously defined arrays . This generates the following 3x2x2 = 12 values :
29 //
30 // [0.0 , 0.0 , 0.0] , [1.1 , 0.0 , 0.0] , [5.0 , 0.0 , 0.0] ,
31 // [0.0 , 2.0 , 0.0] , [1.1 , 2.0 , 0.0] , [5.0 , 2.0 , 0.0] ,
32 // [0.0 , 0.0 , 0.5] , [1.1 , 0.0 , 0.5] , [5.0 , 0.0 , 0.5] ,
33 // [0.0 , 2.0 , 0.5] , [1.1 , 2.0 , 0.5] , [5.0 , 2.0 , 0.5]
34 vtkm :: cont :: ArrayHandleCartesianProduct <
35 AxisArrayType , AxisArrayType , AxisArrayType > rectilinearCoordinates (

92 Chapter 10. Fancy Array Storage



DRAFT

10.2. Provided Fancy Arrays

36 xAxisArray , yAxisArray , zAxisArray );

The vtkm/cont/ArrayHandleCartesianProduct.h/header also contains the templated convenience function vtkm::-
cont::make ArrayHandleCartesianProduct that takes the three axis arrays and returns an array of the Carte-
sian product. This function can sometimes be used to avoid having to declare the full array type.

Example 10.19: Using make ArrayHandleCartesianProduct.
1 vtkm :: cont :: make_ArrayHandleCartesianProduct ( xAxisArray , yAxisArray , zAxisArray )

These specialized arrays for coordinate systems greatly reduce the code duplication in VTK-m. Most sci-
entific visualization systems need separate implementations of algorithms for uniform, rectilinear, and un-
structured grids. But in VTK-m an algorithm can be written once and then applied to all these different
grid structures by using these specialized array handles and letting the compiler’s templates optimize the
code.

Did you know?

10.2.8 Composite Vector Arrays

A composite vector array is a fancy array handle that combines two to four arrays of the same size and value
type and combines their corresponding values to form a vtkm::Vec. A composite vector array is similar in
nature to a zipped array (described in Section 10.2.6) except that values are combined into vtkm::Vecs instead
of vtkm::Pairs. The created vtkm::Vecs are not stored in their own memory space. Rather, the Vecs are
generated as the array is used. Writing Vecs to the composite vector array writes values into the components of
the source arrays.

A composite vector array can be created using the vtkm::cont::ArrayHandleCompositeVector class. This
class has a single template argument that is a “signature” for the arrays to be combined. These signatures can
be tricky to prototype, so vtkm/cont/ArrayHandleCompositeVector.h/header also contains a helper struct named
vtkm::cont::ArrayHandleCompositeVectorType to define the type. ArrayHandleCompositeVectorType takes
a variable number of ArrayHandle types that compose the vector. ArrayHandleCompositeVectorType has an
internal type named type that is the appropriately defined ArrayHandleCompositeVector.

The constructor for ArrayHandleCompositeVector takes instances of the array handles to combine along with
the component from each array to use. If the array handles being combined contain scalar data, then the
appropriate component to use is 0.

Example 10.20: Using ArrayHandleCompositeVector.
1 // Create an array with [0, 1, 2, 3, 4]
2 using ArrayType1 = vtkm :: cont :: ArrayHandleIndex ;
3 ArrayType1 array1 (5);
4
5 // Create an array with [3, 1, 4, 1, 5]
6 using ArrayType2 = vtkm :: cont :: ArrayHandle <vtkm ::Id >;
7 ArrayType2 array2 ;
8 array2 . Allocate (5);
9 ArrayType2 :: PortalControl arrayPortal2 = array2 . GetPortalControl ();

10 arrayPortal2 .Set (0, 3);
11 arrayPortal2 .Set (1, 1);
12 arrayPortal2 .Set (2, 4);
13 arrayPortal2 .Set (3, 1);
14 arrayPortal2 .Set (4, 5);
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15
16 // Create an array with [2, 7, 1, 8, 2]
17 using ArrayType3 = vtkm :: cont :: ArrayHandle <vtkm ::Id >;
18 ArrayType3 array3 ;
19 array3 . Allocate (5);
20 ArrayType2 :: PortalControl arrayPortal3 = array3 . GetPortalControl ();
21 arrayPortal3 .Set (0, 2);
22 arrayPortal3 .Set (1, 7);
23 arrayPortal3 .Set (2, 1);
24 arrayPortal3 .Set (3, 8);
25 arrayPortal3 .Set (4, 2);
26
27 // Create an array with [0, 0, 0, 0]
28 using ArrayType4 = vtkm :: cont :: ArrayHandleConstant <vtkm ::Id >;
29 ArrayType4 array4 (0, 5);
30
31 // Use ArrayhandleCompositeVector to create the array
32 // [(0 ,3 ,2 ,0) , (1 ,1 ,7 ,0) , (2 ,4 ,1 ,0) , (3 ,1 ,8 ,0) , (4 ,5 ,2 ,0)].
33 using CompositeArrayType = vtkm :: cont :: ArrayHandleCompositeVectorType <
34 ArrayType1 , ArrayType2 , ArrayType3 , ArrayType4 >:: type;
35 CompositeArrayType compositeArray (array1 , 0,
36 array2 , 0,
37 array3 , 0,
38 array4 , 0);

The vtkm/cont/ArrayHandleCompositeVector.h header also contains the templated convenience function vtkm::-
cont::make ArrayHandleCompositeVector which takes two to four array handles and returns an ArrayHan-
dleCompositeVector. This function can sometimes be used to avoid having to declare the full array type.

Example 10.21: Using make ArrayHandleCompositeVector.
1 vtkm :: cont :: make_ArrayHandleCompositeVector (array1 , 0,
2 array2 , 0,
3 array3 , 0,
4 array4 , 0)

ArrayHandleCompositeVector is often used to combine scalar arrays into vector arrays, but it can also be used
to pull components out of other vector arrays. The following example uses this feature to convert an array of
2D x,y coordinates and an array of elevations to 3D x,y,z coordinates.

Example 10.22: Combining vector components with ArrayHandleCompositeVector.
1 template < typename CoordinateArrayType , typename ElevationArrayType >
2 VTKM_CONT
3 typename vtkm :: cont :: ArrayHandleCompositeVectorType <
4 CoordinateArrayType , CoordinateArrayType , ElevationArrayType >:: type
5 ElevateCoordianteArray ( const CoordinateArrayType & coordinateArray ,
6 const ElevationArrayType & elevationArray )
7 {
8 VTKM_IS_ARRAY_HANDLE ( CoordinateArrayType );
9 VTKM_IS_ARRAY_HANDLE ( ElevationArrayType );

10
11 return vtkm :: cont :: make_ArrayHandleCompositeVector ( coordinateArray , 0,
12 coordinateArray , 1,
13 elevationArray , 0);
14 }

10.2.9 Extract Component Arrays

Component extraction allows access to a single component of an ArrayHandle with a vtkm::Vec ValueType.
vtkm::cont::ArrayHandleExtractComponent allows one component of a vector array to be extracted without
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creating a copy of the data. ArrayHandleExtractComponent can also be combined with ArrayHandleCompos-
iteVector (described in Section 10.2.8) to arbitrarily stitch several components from multiple arrays together.

As a simple example, consider an ArrayHandle containing 3D coordinates for a collection of points and a filter
that only operates on the points’ elevations (Z, in this example). We can easily create the elevation array
on-the-fly without allocating a new array as in the following example.

Example 10.23: Extracting components of Vecs in an array with ArrayHandleExtractComponent.
1 using ValueArrayType = vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: Float64 ,3>>;
2
3 // Create array with values [ (0.0 , 0.1 , 0.2) , (1.0 , 1.1 , 1.2) , (2.0 , 2.1 , 2.2) ]
4 ValueArrayType valueArray ;
5 valueArray . Allocate (3);
6 auto valuePortal = valueArray . GetPortalControl ();
7 valuePortal .Set (0, vtkm :: make_Vec (0.0 , 0.1 , 0.2));
8 valuePortal .Set (1, vtkm :: make_Vec (1.0 , 1.1 , 1.2));
9 valuePortal .Set (2, vtkm :: make_Vec (2.0 , 2.1 , 2.2));

10
11 // Use ArrayHandleExtractComponent to make an array = [1.3 , 2.3 , 3.3].
12 vtkm :: cont :: ArrayHandleExtractComponent < ValueArrayType , 2>
13 extractedComponentArray ( valueArray );

The vtkm/cont/ArrayHandleExtractComponent.h header also contains the templated convenience function
vtkm::cont::make ArrayHandleExtractComponent that takes an ArrayHandle of Vecs and returns an ap-
propriately typed ArrayHandleExtractComponent containing the values for a specified component. The index
of the component to extract is provided as a template argument to make ArrayHandleExtractComponent, which
is required. The use of make ArrayHandleExtractComponent can be used to avoid having to declare the full
array type.

Example 10.24: Using make ArrayHandleExtractComponent.
1 vtkm :: cont :: make_ArrayHandleExtractComponent <2 >( valueArray )

10.2.10 Swizzle Arrays

It is often useful to reorder or remove specific components from an ArrayHandle with a vtkm::Vec ValueType.
vtkm::cont::ArrayHandleSwizzle provides an easy way to accomplish this.

The template parameters of ArrayHandleSwizzle specify a “component map,” which defines the swizzle operation.
This map consists of the components from the input ArrayHandle, which will be exposed in the ArrayHandleSwiz-
zle. For instance, vtkm::cont::ArrayHandleSwizzle<Some3DArrayType, 0, 2, 1> will allow access to a 3D
array, but with the Y and Z components exchanged. This rearrangement does not create a copy, and occurs
on-the-fly as data are accessed through the ArrayHandleSwizzle’s portal. This fancy array handle can also be
used to eliminate unnecessary components from an ArrayHandle’s data, as shown below.

Example 10.25: Swizzling components of Vecs in an array with ArrayHandleSwizzle.
1 using ValueArrayType = vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: Float64 ,4>>;
2
3 // Create array with values
4 // [ (0.0 , 0.1 , 0.2 , 0.3) , (1.0 , 1.1 , 1.2 , 1.3) , (2.0 , 2.1 , 2.2 , 2.3) ]
5 ValueArrayType valueArray ;
6 valueArray . Allocate (3);
7 auto valuePortal = valueArray . GetPortalControl ();
8 valuePortal .Set (0, vtkm :: make_Vec (0.0 , 0.1 , 0.2 , 0.3));
9 valuePortal .Set (1, vtkm :: make_Vec (1.0 , 1.1 , 1.2 , 1.3));

10 valuePortal .Set (2, vtkm :: make_Vec (2.0 , 2.1 , 2.2 , 2.3));
11
12 // Use ArrayHandleSwizzle to make an array of Vec -3 with x,y,z swizzled to z,x,w
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13 // [ (0.2 , 0.0 , 0.3) , (1.2 , 1.0 , 1.3) , (2.2 , 2.0 , 2.3) ]
14 vtkm :: cont :: ArrayHandleSwizzle < ValueArrayType , 2, 0, 3> swizzledArray ( valueArray );

The vtkm/cont/ArrayHandleSwizzle.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleSwizzle that takes an ArrayHandle of Vecs and returns an appropriately typed ArrayHan-
dleSwizzle containing swizzled vectors. The indices of the swizzled components are provided as a template
argument to make ArrayHandleSwizzle, which are required. The use of make ArrayHandleSwizzle can be
used to avoid having to declare the full array type.

Example 10.26: Using make ArrayHandleSwizzle.
1 vtkm :: cont :: make_ArrayHandleSwizzle <2, 0, 3>( valueArray )

10.2.11 Grouped Vector Arrays

A grouped vector array is a fancy array handle that groups consecutive values of an array together to form
a vtkm::Vec. The source array must be of a length that is divisible by the requested Vec size. The created
vtkm::Vecs are not stored in their own memory space. Rather, the Vecs are generated as the array is used.
Writing Vecs to the grouped vector array writes values into the the source array.

A grouped vector array is created using the vtkm::cont::ArrayHandleGroupVec class. This templated class
has two template arguments. The first argument is the type of array being grouped and the second argument is
an integer specifying the size of the Vecs to create (the number of values to group together).

Example 10.27: Using ArrayHandleGroupVec.
1 // Create an array containing [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
2 using ArrayType = vtkm :: cont :: ArrayHandleIndex ;
3 ArrayType sourceArray (12);
4
5 // Create an array containing [(0 ,1) , (2 ,3) , (4 ,5) , (6 ,7) , (8 ,9) , (10 ,11)]
6 vtkm :: cont :: ArrayHandleGroupVec <ArrayType ,2> vec2Array ( sourceArray );
7
8 // Create an array containing [(0 ,1 ,2) , (3 ,4 ,5) , (6 ,7 ,8) , (9 ,10 ,11)]
9 vtkm :: cont :: ArrayHandleGroupVec <ArrayType ,3> vec3Array ( sourceArray );

The vtkm/cont/ArrayHandleGroupVec.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleGroupVec that takes an instance of the array to group into Vecs. You must specify the size
of the Vecs as a template parameter when using vtkm::cont::make ArrayHandleGroupVec.

Example 10.28: Using make ArrayHandleGroupVec.
1 // Create an array containing [(0 ,1 ,2 ,3) , (4 ,5 ,6 ,7) , (8 ,9 ,10 ,11)]
2 vtkm :: cont :: make_ArrayHandleGroupVec <4 >( sourceArray )

ArrayHandleGroupVec is handy when you need to build an array of vectors that are all of the same length, but
what about when you need an array of vectors of different lengths? One common use case for this is if you are
defining a collection of polygons of different sizes (triangles, quadrilaterals, pentagons, and so on). We would like
to define an array such that the data for each polygon were stored in its own Vec (or, rather, Vec-like) object.
vtkm::cont::ArrayHandleGroupVecVariable does just that.

ArrayHandleGroupVecVariable takes two arrays. The first array, identified as the “source” array, is a flat
representation of the values (much like the array used with ArrayHandleGroupVec). The second array, iden-
tified as the “offsets” array, provides for each vector the index into the source array where the start of the
vector is. The offsets array must be monotonically increasing. The first and second template parameters to
ArrayHandleGroupVecVariable are the types for the source and offset arrays, respectively.
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It is often the case that you will start with a group of vector lengths rather than offsets into the source array.
If this is the case, then the vtkm::cont::ConvertNumComponentsToOffsets helper function can convert an
array of vector lengths to an array of offsets. The first argument to this function is always the array of vector
lengths. The second argument, which is optional, is a reference to a ArrayHandle into which the offsets should
be stored. If this offset array is not specified, an ArrayHandle will be returned from the function instead. The
third argument, which is also optional, is a reference to a vtkm::Id into which the expected size of the source
array is put. Having the size of the source array is often helpful, as it can be used to allocate data for the source
array or check the source array’s size. It is also OK to give the expected size reference but not the offset array
reference.

Example 10.29: Using ArrayHandleGroupVecVariable.
1 // Create an array of counts containing [4, 2, 3, 3]
2 vtkm :: IdComponent countBuffer [4] = { 4, 2, 3, 3 };
3 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > countArray =
4 vtkm :: cont :: make_ArrayHandle ( countBuffer , 4);
5
6 // Convert the count array to an offset array [0, 4, 6, 9]
7 // Returns the number of total components : 12
8 vtkm :: Id sourceArraySize ;
9 using OffsetArrayType = vtkm :: cont :: ArrayHandle <vtkm ::Id >;

10 OffsetArrayType offsetArray =
11 vtkm :: cont :: ConvertNumComponentsToOffsets ( countArray , sourceArraySize );
12
13 // Create an array containing [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
14 using SourceArrayType = vtkm :: cont :: ArrayHandleIndex ;
15 SourceArrayType sourceArray ( sourceArraySize );
16
17 // Create an array containing [(0 ,1 ,2 ,3) , (4 ,5) , (6 ,7 ,8) , (9 ,10 ,11)]
18 vtkm :: cont :: ArrayHandleGroupVecVariable < SourceArrayType , OffsetArrayType >
19 vecVariableArray ( sourceArray , offsetArray );

The vtkm/cont/ArrayHandleGroupVecVariable.h header also contains the templated convenience function vtkm::-
cont::make ArrayHandleGroupVecVariable that takes an instance of the source array to group into Vec-like
objects and the offset array.

Example 10.30: Using MakeArrayHandleGroupVecVariable.
1 // Create an array containing [(0 ,1 ,2 ,3) , (4 ,5) , (6 ,7 ,8) , (9 ,10 ,11)]
2 vtkm :: cont :: make_ArrayHandleGroupVecVariable ( sourceArray , offsetArray )

You can write to ArrayHandleGroupVec and ArrayHandleGroupVecVariable by, for example, using it as
an output array. Writes to these arrays will go to the respective location in the source array. ArrayHandle-
GroupVec can also be allocated and resized (which in turn causes the source array to be allocated). However,
ArrayHandleGroupVecVariable cannot be resized and the source array must be pre-allocated. You can use
the source array size value returned from ConvertNumComponentsToOffsets to allocate source arrays.

Did you know?

Keep in mind that the values stored in a ArrayHandleGroupVecVariable are not actually vtkm::Vec
objects. Rather, they are “Vec-like” objects, which has some subtle but important ramifications. First, the
type will not match the vtkm::Vec template, and there is no automatic conversion to vtkm::Vec objects.

Common Errors
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Thus, many functions that accept vtkm::Vec objects as parameters will not accept the Vec-like object.
Second, the size of Vec-like objects are not known until runtime. See Sections 6.4.2 and 6.5.2 for more
information on the difference between vtkm::Vec and Vec-like objects.

10.3 Implementing Fancy Arrays

Although the behavior of fancy arrays might seem complicated, they are actually straightforward to implement.
VTK-m provides several mechanisms to implement fancy arrays.

10.3.1 Implicit Array Handles

The generic array handle and storage templating in VTK-m allows for any type of operations to retrieve a
particular value. Typically this is used to convert an index to some location or locations in memory. However,
it is also possible to compute a value directly from an index rather than look up some value in memory. Such
an array is completely functional and requires no storage in memory at all. Such a functional array is called
an implicit array handle. Implicit arrays are an example of fancy array handles, which are array handles that
behave like regular arrays but do special processing under the covers to provide values.

Specifying a functional or implicit array in VTK-m is straightforward. VTK-m has a special class named
vtkm::cont::ArrayHandleImplicit that makes an implicit array containing values generated by a user-specified
functor. A functor is simply a C++ class or struct that contains an overloaded parenthesis operator so that it
can be used syntactically like a function.

To demonstrate the use of ArrayHandleImplicit, let us say we want an array of even numbers. The array has
the values [0,2,4,6, . . .] (double the index) up to some given size. Although we could easily create this array in
memory, we can save space and possibly time by computing these values on demand.

VTK-m already comes with an implicit array handle named vtkm::cont::ArrayHandleCounting that can
make implicit even numbers as well as other more general counts. So in practice you would not have to
create a special implicit array, but we are doing so here for demonstrative purposes.

Did you know?

The first step to using ArrayHandleImplicit is to declare a functor. The functor’s parenthesis operator should
accept a single argument of type vtkm::Id and return a value appropriate for that index. The parenthesis
operator should also be declared const because it is not allowed to change the class’ state.

Example 10.31: Functor that doubles an index.
1 struct DoubleIndexFunctor
2 {
3 VTKM_EXEC_CONT
4 vtkm :: Id operator ()( vtkm :: Id index ) const
5 {
6 return 2* index ;
7 }
8 };

Once the functor is defined, an implicit array can be declared using the templated vtkm::cont::ArrayHan-
dleImplicit class. The single template argument is the functor’s type.
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Example 10.32: Declaring a ArrayHandleImplicit.
1 vtkm :: cont :: ArrayHandleImplicit < DoubleIndexFunctor >
2 implicitArray ( DoubleIndexFunctor (), 50);

For convenience, vtkm/cont/ArrayHandleImplicit.h also declares the vtkm::cont::make ArrayHandleImplicit
function. This function takes a functor and the size of the array and returns the implicit array.

Example 10.33: Using make ArrayHandleImplicit.
1 vtkm :: cont :: make_ArrayHandleImplicit ( DoubleIndexFunctor (), 50);

If the implicit array you are creating tends to be generally useful and is something you use multiple times, it
might be worthwhile to make a convenience subclass of vtkm::cont::ArrayHandleImplicit for your array.

Example 10.34: Custom implicit array handle for even numbers.
1 # include <vtkm/cont/ ArrayHandleImplicit .h>
2
3 class ArrayHandleDoubleIndex
4 : public vtkm :: cont :: ArrayHandleImplicit < DoubleIndexFunctor >
5 {
6 public :
7 VTKM_ARRAY_HANDLE_SUBCLASS_NT (
8 ArrayHandleDoubleIndex ,
9 (vtkm :: cont :: ArrayHandleImplicit < DoubleIndexFunctor >));

10
11 VTKM_CONT
12 ArrayHandleDoubleIndex (vtkm :: Id numberOfValues )
13 : Superclass ( DoubleIndexFunctor (), numberOfValues ) { }
14 };

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. Both of these macros define the types Superclass, ValueType, and StorageTag as well as a
set of constructors and operators expected of all ArrayHandle classes. The difference between these two macros
is that VTKM ARRAY HANDLE SUBCLASS is used in templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT
is used in non-templated classes.

The ArrayHandle subclass in Example 10.34 is not templated, so it uses the VTKM ARRAY HANDLE SUBCLASS NT
macro. (The other macro is described in Section 10.3.2 on page 101). This macro takes two parameters. The first
parameter is the name of the subclass where the macro is defined and the second parameter is the immediate
superclass including the full template specification. The second parameter of the macro must be enclosed in
parentheses so that the C pre-processor correctly handles commas in the template specification.

10.3.2 Transformed Arrays

Another type of fancy array handle is the transformed array. A transformed array takes another array and
applies a function to all of the elements to produce a new array. A transformed array behaves much like a map
operation except that a map operation writes its values to a new memory location whereas the transformed array
handle produces its values on demand so that no additional storage is required.

Specifying a transformed array in VTK-m is straightforward. VTK-m has a special class named vtkm::cont::-
ArrayHandleTransform that takes an array handle and a functor and provides an interface to a new array
comprising values of the first array applied to the functor.

To demonstrate the use of ArrayHandleTransform, let us say that we want to scale and bias all of the values in
a target array. That is, each value in the target array is going to be multiplied by a given scale and then offset
by adding a bias value. (The scale and bias are uniform across all entries.) We could, of course, easily create a
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worklet to apply this scale and bias to each entry in the target array and save the result in a new array, but we
can save space and possibly time by computing these values on demand.

The first step to using ArrayHandleTransform is to declare a functor. The functor’s parenthesis operator should
accept a single argument of the type of the target array and return the transformed value. For more generally
applicable transform functors, it is often useful to make the parenthesis operator a template. The parenthesis
operator should also be declared const because it is not allowed to change the class’ state.

Example 10.35: Functor to scale and bias a value.
1 template < typename T>
2 struct ScaleBiasFunctor
3 {
4 VTKM_EXEC_CONT
5 ScaleBiasFunctor (T scale = T(1) , T bias = T(0))
6 : Scale ( scale ), Bias(bias) { }
7
8 VTKM_EXEC_CONT
9 T operator ()(T x) const

10 {
11 return this -> Scale *x + this ->Bias;
12 }
13
14 T Scale ;
15 T Bias;
16 };

Once the functor is defined, a transformed array can be declared using the templated vtkm::cont::ArrayHan-
dleTransform class. The first template argument is the type of array being transformed. The second template
argument is the type of functor used for the transformation. The third template argument, which is optional, is
the type for an inverse functor that provides the inverse operation of the functor in the second argument. This
inverse functor is used for writing values into the array. For arrays that will only be read from, there is no need
to supply this inverse functor.

That said, it is generally easier to use the vtkm::cont::make ArrayHandleTransform convenience function.
This function takes an array and a functor (and optionally an inverse functor) and returns a transformed array.

Example 10.36: Using make ArrayHandleTransform.
1 vtkm :: cont :: make_ArrayHandleTransform (
2 array , ScaleBiasFunctor <vtkm :: Float32 >(2 ,3))

If the transformed array you are creating tends to be generally useful and is something you use multiple times,
it might be worthwhile to make a convenience subclass of vtkm::cont::ArrayHandleTransform or convenience
make ArrayHandle* function for your array.

Example 10.37: Custom transform array handle for scale and bias.
1 # include <vtkm/cont/ ArrayHandleTransform .h>
2
3 template < typename ArrayHandleType >
4 class ArrayHandleScaleBias
5 : public vtkm :: cont :: ArrayHandleTransform <
6 ArrayHandleType ,
7 ScaleBiasFunctor < typename ArrayHandleType :: ValueType > >
8 {
9 public :

10 VTKM_ARRAY_HANDLE_SUBCLASS (
11 ArrayHandleScaleBias ,
12 ( ArrayHandleScaleBias < ArrayHandleType >),
13 (vtkm :: cont :: ArrayHandleTransform <
14 ArrayHandleType ,
15 ScaleBiasFunctor < typename ArrayHandleType :: ValueType > >)
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16 );
17
18 VTKM_CONT
19 ArrayHandleScaleBias ( const ArrayHandleType &array ,
20 ValueType scale ,
21 ValueType bias)
22 : Superclass (array , ScaleBiasFunctor <ValueType >( scale , bias )) { }
23 };
24
25 template < typename ArrayHandleType >
26 VTKM_CONT
27 ArrayHandleScaleBias < ArrayHandleType >
28 make_ArrayHandleScaleBias ( const ArrayHandleType &array ,
29 typename ArrayHandleType :: ValueType scale ,
30 typename ArrayHandleType :: ValueType bias)
31 {
32 return ArrayHandleScaleBias < ArrayHandleType >( array , scale , bias );
33 }

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. Both of these macros define the types Superclass, ValueType, and StorageTag as well as a
set of constructors and operators expected of all ArrayHandle classes. The difference between these two macros
is that VTKM ARRAY HANDLE SUBCLASS is used in templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT
is used in non-templated classes.

The ArrayHandle subclass in Example 10.37 is templated, so it uses the VTKM ARRAY HANDLE SUBCLASS macro.
(The other macro is described in Section 10.4 on page 112). This macro takes three parameters. The first
parameter is the name of the subclass where the macro is defined, the second parameter is the type of the
subclass including the full template specification, and the third parameter is the immediate superclass including
the full template specification. The second and third parameters of the macro must be enclosed in parentheses
so that the C pre-processor correctly handles commas in the template specification.

10.3.3 Derived Storage

A derived storage is a type of fancy array that takes one or more other arrays and changes their behavior in
some way. A transformed array (Section 10.3.2) is a specific type of derived array with a simple mapping. In
this section we will demonstrate the steps required to create a more general derived storage. When applicable,
it is much easier to create a derived array as a transformed array or using the other fancy arrays than to create
your own derived storage. However, if these pre-existing fancy arrays do not work work, for example if your
derivation uses multiple arrays or requires general lookups, you can do so by creating your own derived storage.
For the purposes of the example in this section, let us say we want 2 array handles to behave as one array with
the contents concatenated together. We could of course actually copy the data, but we can also do it in place.

The first step to creating a derived storage is to build an array portal that will take portals from arrays being
derived. The portal must work in both the control and execution environment (or have a separate version for
control and execution).

Example 10.38: Derived array portal for concatenated arrays.
1 # include <vtkm/cont/ ArrayHandle .h>
2 # include <vtkm/cont/ ArrayPortal .h>
3
4 template < typename P1 , typename P2 >
5 class ArrayPortalConcatenate
6 {
7 public :
8 using PortalType1 = P1;

Chapter 10. Fancy Array Storage 101



DRAFT

10.3. Implementing Fancy Arrays

9 using PortalType2 = P2;
10 using ValueType = typename PortalType1 :: ValueType ;
11
12 VTKM_SUPPRESS_EXEC_WARNINGS
13 VTKM_EXEC_CONT
14 ArrayPortalConcatenate () : Portal1 (), Portal2 () { }
15
16 VTKM_SUPPRESS_EXEC_WARNINGS
17 VTKM_EXEC_CONT
18 ArrayPortalConcatenate ( const PortalType1 &portal1 , const PortalType2 portal2 )
19 : Portal1 ( portal1 ), Portal2 ( portal2 ) { }
20
21 /// Copy constructor for any other ArrayPortalConcatenate with a portal type
22 /// that can be copied to this portal type. This allows us to do any type
23 /// casting that the portals do (like the non - const to const cast ).
24 VTKM_SUPPRESS_EXEC_WARNINGS
25 template < typename OtherP1 , typename OtherP2 >
26 VTKM_EXEC_CONT
27 ArrayPortalConcatenate ( const ArrayPortalConcatenate <OtherP1 ,OtherP2 > &src)
28 : Portal1 (src. GetPortal1 ()) , Portal2 (src. GetPortal2 ()) { }
29
30 VTKM_SUPPRESS_EXEC_WARNINGS
31 VTKM_EXEC_CONT
32 vtkm :: Id GetNumberOfValues () const {
33 return
34 this -> Portal1 . GetNumberOfValues () + this -> Portal2 . GetNumberOfValues ();
35 }
36
37 VTKM_SUPPRESS_EXEC_WARNINGS
38 VTKM_EXEC_CONT
39 ValueType Get(vtkm :: Id index ) const {
40 if ( index < this -> Portal1 . GetNumberOfValues ())
41 {
42 return this -> Portal1 .Get( index );
43 }
44 else
45 {
46 return this -> Portal2 .Get( index - this -> Portal1 . GetNumberOfValues ());
47 }
48 }
49
50 VTKM_SUPPRESS_EXEC_WARNINGS
51 VTKM_EXEC_CONT
52 void Set(vtkm :: Id index , const ValueType & value ) const {
53 if ( index < this -> Portal1 . GetNumberOfValues ())
54 {
55 this -> Portal1 .Set(index , value );
56 }
57 else
58 {
59 this -> Portal2 .Set( index - this -> Portal1 . GetNumberOfValues (), value );
60 }
61 }
62
63 VTKM_EXEC_CONT
64 const PortalType1 & GetPortal1 () const { return this -> Portal1 ; }
65 VTKM_EXEC_CONT
66 const PortalType2 & GetPortal2 () const { return this -> Portal2 ; }
67
68 private :
69 PortalType1 Portal1 ;
70 PortalType2 Portal2 ;
71 };
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Like in an adapter storage, the next step in creating a derived storage is to define a tag for the adapter. We
shall call ours StorageTagConcatenate and it will be templated on the two array handle types that we are
deriving. Then, we need to create a specialization of the templated vtkm::cont::internal::Storage class.
The implementation for a Storage for a derived storage is usually trivial compared to an adapter storage
because the majority of the work is deferred to the derived arrays.

Example 10.39: Storage for derived container of concatenated arrays.
1 template < typename ArrayHandleType1 , typename ArrayHandleType2 >
2 struct StorageTagConcatenate { };
3
4 namespace vtkm {
5 namespace cont {
6 namespace internal {
7
8 template < typename ArrayHandleType1 , typename ArrayHandleType2 >
9 class Storage <

10 typename ArrayHandleType1 :: ValueType ,
11 StorageTagConcatenate < ArrayHandleType1 , ArrayHandleType2 > >
12 {
13 public :
14 using ValueType = typename ArrayHandleType1 :: ValueType ;
15
16 using PortalType = ArrayPortalConcatenate <
17 typename ArrayHandleType1 :: PortalControl ,
18 typename ArrayHandleType2 :: PortalControl >;
19 using PortalConstType = ArrayPortalConcatenate <
20 typename ArrayHandleType1 :: PortalConstControl ,
21 typename ArrayHandleType2 :: PortalConstControl >;
22
23 VTKM_CONT
24 Storage () : Valid ( false ) { }
25
26 VTKM_CONT
27 Storage ( const ArrayHandleType1 array1 , const ArrayHandleType2 array2 )
28 : Array1 ( array1 ), Array2 ( array2 ), Valid (true) { }
29
30 VTKM_CONT
31 PortalType GetPortal () {
32 VTKM_ASSERT (this -> Valid );
33 return PortalType (this -> Array1 . GetPortalControl (),
34 this -> Array2 . GetPortalControl ());
35 }
36
37 VTKM_CONT
38 PortalConstType GetPortalConst () const {
39 VTKM_ASSERT (this -> Valid );
40 return PortalConstType (this -> Array1 . GetPortalConstControl (),
41 this -> Array2 . GetPortalConstControl ());
42 }
43
44 VTKM_CONT
45 vtkm :: Id GetNumberOfValues () const {
46 VTKM_ASSERT (this -> Valid );
47 return this -> Array1 . GetNumberOfValues () + this -> Array2 . GetNumberOfValues ();
48 }
49
50 VTKM_CONT
51 void Allocate (vtkm :: Id numberOfValues ) {
52 VTKM_ASSERT (this -> Valid );
53 // This implementation of allocate , which allocates the same amount in both
54 // arrays , is arbitrary . It could , for example , leave the size of Array1
55 // alone and change the size of Array2 . Or , probably most likely , it could
56 // simply throw an error and state that this operation is invalid .
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57 vtkm :: Id half = numberOfValues /2;
58 this -> Array1 . Allocate ( numberOfValues -half );
59 this -> Array2 . Allocate (half );
60 }
61
62 VTKM_CONT
63 void Shrink (vtkm :: Id numberOfValues ) {
64 VTKM_ASSERT (this -> Valid );
65 if ( numberOfValues < this -> Array1 . GetNumberOfValues ())
66 {
67 this -> Array1 . Shrink ( numberOfValues );
68 this -> Array2 . Shrink (0);
69 }
70 else
71 {
72 this -> Array2 . Shrink ( numberOfValues - this -> Array1 . GetNumberOfValues ());
73 }
74 }
75
76 VTKM_CONT
77 void ReleaseResources () {
78 VTKM_ASSERT (this -> Valid );
79 this -> Array1 . ReleaseResources ();
80 this -> Array2 . ReleaseResources ();
81 }
82
83 // Requried for later use in ArrayTransfer class .
84 VTKM_CONT
85 const ArrayHandleType1 & GetArray1 () const {
86 VTKM_ASSERT (this -> Valid );
87 return this -> Array1 ;
88 }
89 VTKM_CONT
90 const ArrayHandleType2 & GetArray2 () const {
91 VTKM_ASSERT (this -> Valid );
92 return this -> Array2 ;
93 }
94
95 private :
96 ArrayHandleType1 Array1 ;
97 ArrayHandleType2 Array2 ;
98 bool Valid ;
99 };

100
101 }
102 }
103 } // namespace vtkm :: cont :: internal

One of the responsibilities of an array handle is to copy data between the control and execution environments.
The default behavior is to request the device adapter to copy data items from one environment to another.
This might involve transferring data between a host and device. For an array of data resting in memory, this is
necessary. However, implicit storage (described in the previous section) overrides this behavior to pass nothing
but the functional array portal. Likewise, it is undesirable to do a raw transfer of data with derived storage. The
underlying arrays being derived may be used in other contexts, and it would be good to share the data wherever
possible. It is also sometimes more efficient to copy data independently from the arrays being derived than from
the derived storage itself.

The mechanism that controls how a particular storage gets transferred to and from the execution environment
is encapsulated in the templated vtkm::cont::internal::ArrayTransfer class. By creating a specialization
of vtkm::cont::internal::ArrayTransfer, we can modify the transfer behavior to instead transfer the arrays
being derived and use the respective copies in the control and execution environments.
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vtkm::cont::internal::ArrayTransfer has three template arguments: the base type of the array, the storage
tag, and the device adapter tag.

Example 10.40: Prototype for vtkm::cont::internal::ArrayTransfer.
1 namespace vtkm {
2 namespace cont {
3 namespace internal {
4
5 template < typename T, typename StorageTag , typename DeviceAdapterTag >
6 class ArrayTransfer ;
7
8 }
9 }

10 } // namespace vtkm :: cont :: internal

All vtkm::cont::internal::ArrayTransfer implementations must have a constructor method that accepts a
pointer to a vtkm::cont::internal::Storage object templated to the same base type and storage tag as the
ArrayTransfer object. Assuming that an ArrayHandle is templated using the parameters in Example 10.40,
the prototype for the constructor must be equivalent to the following.

Example 10.41: Prototype for ArrayTransfer constructor.
1 ArrayTransfer (vtkm :: cont :: internal :: Storage <T, StorageTag > * storage );

Typically the constructor either saves the Storage pointer or other relevant objects from the Storage for later
use in the methods.

In addition to this non-default constructor, the vtkm::cont::internal::ArrayTransfer specialization must
define the following items.

ValueType The type for each item in the array. This is the same type as the first template argument.

PortalControl The type of an array portal that is used to access the underlying data in the control environment.

PortalConstControl A read-only (const) version of PortalControl.

PortalExecution The type of an array portal that is used to access the underlying data in the execution
environment.

PortalConstExecution A read-only (const) version of PortalExecution.

GetNumberOfValues A method that returns the number of values currently allocated in the execution environ-
ment. The results may be undefined if none of the load or allocate methods have yet been called.

PrepareForInput A method responsible for transferring data from the control to the execution for input. Pre-
pareForInput has one Boolean argument that controls whether this transfer should actually take place.
When true, data from the Storage object given in the constructor should be transferred to the execution
environment; otherwise the data should not be copied. An ArrayTransfer for a derived array typically
ignores this parameter since the arrays being derived manages this transfer already. Regardless of the
Boolean flag, a PortalConstExecution is returned.

PrepareForInPlace A method that behaves just like PrepareForInput except that the data in the execution
environment is used for both reading and writing so the method returns a PortalExecution. If the array
is considered read-only, which is common for derived arrays, then this method should throw a vtkm::-
cont::ErrorControlBadValue.
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PrepareForOutput A method that takes a size (in a vtkm::Id) and allocates an array in the execution environ-
ment of the specified size. The initial memory can be uninitialized. The method returns a PortalExecution
for the allocated data. If the array is considered read-only, which is common for derived arrays, then this
method should throw a vtkm::cont::ErrorControlBadValue.

RetrieveOutputData This method takes an array storage pointer (which is the same as that passed to the
constructor, but provided for convenience), allocates memory in the control environment, and copies data
from the execution environment into it. If the derived array is considered read-only and both Prepare-
ForInPlace and PrepareForOutput throw exceptions, then this method should never be called. If it is,
then that is probably a bug in ArrayHandle, and it is OK to throw vtkm::cont::ErrorControlInternal.

Shrink A method that adjusts the size of the array in the execution environment to something that is a smaller
size. All the data up to the new length must remain valid. Typically, no memory is actually reallocated.
Instead, a different end is marked. If the derived array is considered read-only, then this method should
throw a vtkm::cont::ErrorControlBadValue.

ReleaseResources A method that frees any resources (typically memory) in the execution environment.

Continuing our example derived storage that concatenates two arrays started in Examples 10.38 and 10.39, the
following provides an ArrayTransfer appropriate for the derived storage.

Example 10.42: ArrayTransfer for derived storage of concatenated arrays.
1 namespace vtkm {
2 namespace cont {
3 namespace internal {
4
5 template < typename ArrayHandleType1 ,
6 typename ArrayHandleType2 ,
7 typename Device >
8 class ArrayTransfer <
9 typename ArrayHandleType1 :: ValueType ,

10 StorageTagConcatenate < ArrayHandleType1 , ArrayHandleType2 >,
11 Device >
12 {
13 public :
14 using ValueType = typename ArrayHandleType1 :: ValueType ;
15
16 private :
17 using StorageTag = StorageTagConcatenate < ArrayHandleType1 , ArrayHandleType2 >;
18 using StorageType = vtkm :: cont :: internal :: Storage <ValueType , StorageTag >;
19
20 public :
21 using PortalControl = typename StorageType :: PortalType ;
22 using PortalConstControl = typename StorageType :: PortalConstType ;
23
24 using PortalExecution = ArrayPortalConcatenate <
25 typename ArrayHandleType1 :: template ExecutionTypes <Device >:: Portal ,
26 typename ArrayHandleType2 :: template ExecutionTypes <Device >:: Portal >;
27 using PortalConstExecution = ArrayPortalConcatenate <
28 typename ArrayHandleType1 :: template ExecutionTypes <Device >:: PortalConst ,
29 typename ArrayHandleType2 :: template ExecutionTypes <Device >:: PortalConst >;
30
31 VTKM_CONT
32 ArrayTransfer ( StorageType * storage )
33 : Array1 (storage -> GetArray1 ()) , Array2 (storage -> GetArray2 ())
34 { }
35
36 VTKM_CONT
37 vtkm :: Id GetNumberOfValues () const {
38 return this -> Array1 . GetNumberOfValues () + this -> Array2 . GetNumberOfValues ();
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39 }
40
41 VTKM_CONT
42 PortalConstExecution PrepareForInput (bool vtkmNotUsed ( updateData )) {
43 return PortalConstExecution (this -> Array1 . PrepareForInput ( Device ()) ,
44 this -> Array2 . PrepareForInput ( Device ()));
45 }
46
47 VTKM_CONT
48 PortalExecution PrepareForInPlace (bool vtkmNotUsed ( updateData )) {
49 return PortalExecution (this -> Array1 . PrepareForInPlace ( Device ()) ,
50 this -> Array2 . PrepareForInPlace ( Device ()));
51 }
52
53 VTKM_CONT
54 PortalExecution PrepareForOutput (vtkm :: Id numberOfValues )
55 {
56 // This implementation of allocate , which allocates the same amount in both
57 // arrays , is arbitrary . It could , for example , leave the size of Array1
58 // alone and change the size of Array2 . Or , probably most likely , it could
59 // simply throw an error and state that this operation is invalid .
60 vtkm :: Id half = numberOfValues /2;
61 return PortalExecution (
62 this -> Array1 . PrepareForOutput ( numberOfValues -half , Device ()) ,
63 this -> Array2 . PrepareForOutput (half , Device ()));
64 }
65
66 VTKM_CONT
67 void RetrieveOutputData ( StorageType * vtkmNotUsed ( storage )) const {
68 // Implementation of this method should be unnecessary . The internal
69 // array handles should automatically retrieve the output data as
70 // necessary .
71 }
72
73 VTKM_CONT
74 void Shrink (vtkm :: Id numberOfValues ) {
75 if ( numberOfValues < this -> Array1 . GetNumberOfValues ())
76 {
77 this -> Array1 . Shrink ( numberOfValues );
78 this -> Array2 . Shrink (0);
79 }
80 else
81 {
82 this -> Array2 . Shrink ( numberOfValues - this -> Array1 . GetNumberOfValues ());
83 }
84 }
85
86 VTKM_CONT
87 void ReleaseResources () {
88 this -> Array1 . ReleaseResourcesExecution ();
89 this -> Array2 . ReleaseResourcesExecution ();
90 }
91
92 private :
93 ArrayHandleType1 Array1 ;
94 ArrayHandleType2 Array2 ;
95 };
96
97 }
98 }
99 } // namespace vtkm :: cont :: internal

The final step to make a derived storage is to create a mechanism to construct an ArrayHandle with a storage
derived from the desired arrays. This can be done by creating a trivial subclass of vtkm::cont::ArrayHandle
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that simply constructs the array handle to the state of an existing storage. It uses a protected constructor of
vtkm::cont::ArrayHandle that accepts a constructed storage.

Example 10.43: ArrayHandle for derived storage of concatenated arrays.
1 template < typename ArrayHandleType1 , typename ArrayHandleType2 >
2 class ArrayHandleConcatenate
3 : public vtkm :: cont :: ArrayHandle <
4 typename ArrayHandleType1 :: ValueType ,
5 StorageTagConcatenate < ArrayHandleType1 , ArrayHandleType2 > >
6 {
7 public :
8 VTKM_ARRAY_HANDLE_SUBCLASS (
9 ArrayHandleConcatenate ,

10 ( ArrayHandleConcatenate < ArrayHandleType1 , ArrayHandleType2 >),
11 (vtkm :: cont :: ArrayHandle <
12 typename ArrayHandleType1 :: ValueType ,
13 StorageTagConcatenate < ArrayHandleType1 , ArrayHandleType2 > >));
14
15 private :
16 using StorageType = vtkm :: cont :: internal :: Storage <ValueType , StorageTag >;
17
18 public :
19 VTKM_CONT
20 ArrayHandleConcatenate ( const ArrayHandleType1 &array1 ,
21 const ArrayHandleType2 & array2 )
22 : Superclass ( StorageType (array1 , array2 )) { }
23 };

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. Both of these macros define the types Superclass, ValueType, and StorageTag as well as a
set of constructors and operators expected of all ArrayHandle classes. The difference between these two macros
is that VTKM ARRAY HANDLE SUBCLASS is used in templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT
is used in non-templated classes.

The ArrayHandle subclass in Example 10.43 is templated, so it uses the VTKM ARRAY HANDLE SUBCLASS macro.
(The other macro is described in Section 10.4 on page 112). This macro takes three parameters. The first
parameter is the name of the subclass where the macro is defined, the second parameter is the type of the
subclass including the full template specification, and the third parameter is the immediate superclass including
the full template specification. The second and third parameters of the macro must be enclosed in parentheses
so that the C pre-processor correctly handles commas in the template specification.

vtkm::cont::ArrayHandleCompositeVector is an example of a derived array handle provided by VTK-m. It
references some fixed number of other arrays, pulls a specified component out of each, and produces a new
component that is a tuple of these retrieved components.

10.4 Adapting Data Structures

The intention of the storage parameter for vtkm::cont::ArrayHandle is to implement the strategy design
pattern to enable VTK-m to interface directly with the data of any third party code source. VTK-m is designed
to work with data originating in other libraries or applications. By creating a new type of storage, VTK-m can
be entirely adapted to new kinds of data structures.
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Keep in mind that memory layout used can have an effect on the running time of algorithms in VTK-m.
Different data layouts and memory access can change cache performance and introduce memory affinity
problems. The example code given in this section will likely have poorer cache performance than the basic
storage provided by VTK-m. However, that might be an acceptable penalty to avoid data copies.

Common Errors

In this section we demonstrate the steps required to adapt the array handle to a data structure provided by a
third party. For the purposes of the example, let us say that some fictitious library named “foo” has a simple
structure named FooFields that holds the field values for a particular part of a mesh, and then maintain the
field values for all locations in a mesh in a std::deque object.

Example 10.44: Fictitious field storage used in custom array storage examples.
1 # include <deque >
2
3 struct FooFields {
4 float Pressure ;
5 float Temperature ;
6 float Velocity [3];
7 // And so on ...
8 };
9

10 using FooFieldsDeque = std :: deque <FooFields >;

VTK-m expects separate arrays for each of the fields rather than a single array containing a structure holding
all of the fields. However, rather than copy each field to its own array, we can create a storage for each field that
points directly to the data in a FooFieldsDeque object.

The first step in creating an adapter storage is to create a control environment array portal to the data. This is
described in more detail in Section 7.2 and is generally straightforward for simple containers like this. Here is
an example implementation for our FooFieldsDeque container.

Example 10.45: Array portal to adapt a third-party container to VTK-m.
1 # include <vtkm/cont/ internal / IteratorFromArrayPortal .h>
2 # include <vtkm/ Assert .h>
3
4 // DequeType expected to be either FooFieldsDeque or const FooFieldsDeque
5 template < typename DequeType >
6 class ArrayPortalFooPressure
7 {
8 public :
9 using ValueType = float ;

10
11 VTKM_CONT
12 ArrayPortalFooPressure () : Container (NULL) { }
13
14 VTKM_CONT
15 ArrayPortalFooPressure ( DequeType * container ) : Container ( container ) { }
16
17 // Required to copy compatible types of ArrayPortalFooPressure . Really needed
18 // to copy from non - const to const versions of array portals .
19 template < typename OtherDequeType >
20 VTKM_CONT
21 ArrayPortalFooPressure ( const ArrayPortalFooPressure < OtherDequeType > & other )
22 : Container ( other . GetContainer ()) { }
23
24 VTKM_CONT
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25 vtkm :: Id GetNumberOfValues () const {
26 return static_cast <vtkm ::Id >( this ->Container ->size ());
27 }
28
29 VTKM_CONT
30 ValueType Get(vtkm :: Id index ) const {
31 VTKM_ASSERT ( index >= 0);
32 VTKM_ASSERT ( index < this -> GetNumberOfValues ());
33 return (* this -> Container )[ index ]. Pressure ;
34 }
35
36 VTKM_CONT
37 void Set(vtkm :: Id index , ValueType value ) const {
38 VTKM_ASSERT ( index >= 0);
39 VTKM_ASSERT ( index < this -> GetNumberOfValues ());
40 (* this -> Container )[ index ]. Pressure = value ;
41 }
42
43 // Here for the copy constructor .
44 VTKM_CONT
45 DequeType * GetContainer () const { return this -> Container ; }
46
47 private :
48 DequeType * Container ;
49 };

The next step in creating an adapter storage is to define a tag for the adapter. We shall call ours Storage-
TagFooPressure. Then, we need to create a specialization of the templated vtkm::cont::internal::Storage
class. The ArrayHandle will instantiate an object using the array container tag we give it, and we define our
own specialization so that it runs our interface into the code.

vtkm::cont::internal::Storage has two template arguments: the base type of the array and the storage tag.

Example 10.46: Prototype for vtkm::cont::internal::Storage.
1 namespace vtkm {
2 namespace cont {
3 namespace internal {
4
5 template < typename T, class StorageTag >
6 class Storage ;
7
8 }
9 }

10 } // namespace vtkm :: cont :: internal

The vtkm::cont::internal::Storage must define the following items.

ValueType The type of each item in the array. This is the same type as the first template argument.

PortalType The type of an array portal that can be used to access the underlying data. This array portal needs
to work only in the control environment.

PortalConstType A read-only (const) version of PortalType.

GetPortal A method that returns an array portal of type PortalType that can be used to access the data
manged in this storage.

GetPortalConst Same as GetPortal except it returns a read-only (const) array portal.

GetNumberOfValues A method that returns the number of values the storage is currently allocated for.
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Allocate A method that allocates the array to a given size. An values stored in the previous allocation may be
destroyed.

Shrink A method like Allocate with two differences. First, the size of the allocation must be smaller than the
existing allocation when the method is called. Second, any values currently stored in the array will be valid
after the array is resized. This constrained form of allocation allows the array to be resized and values
valid without ever having to copy data.

ReleaseResources A method that instructs the storage to free all of its memory.

The following provides an example implementation of our adapter to a FooFieldsDeque. It relies on the Array-
PortalFooPressure provided in Example 10.45.

Example 10.47: Storage to adapt a third-party container to VTK-m.
1 // Includes or definition for ArrayPortalFooPressure
2
3 struct StorageTagFooPressure { };
4
5 namespace vtkm {
6 namespace cont {
7 namespace internal {
8
9 template <>

10 class Storage <float , StorageTagFooPressure >
11 {
12 public :
13 using ValueType = float ;
14
15 using PortalType = ArrayPortalFooPressure < FooFieldsDeque >;
16 using PortalConstType = ArrayPortalFooPressure < const FooFieldsDeque >;
17
18 VTKM_CONT
19 Storage () : Container (NULL) { }
20
21 VTKM_CONT
22 Storage ( FooFieldsDeque * container ) : Container ( container ) { }
23
24 VTKM_CONT
25 PortalType GetPortal () { return PortalType (this -> Container ); }
26
27 VTKM_CONT
28 PortalConstType GetPortalConst () const {
29 return PortalConstType (this -> Container );
30 }
31
32 VTKM_CONT
33 vtkm :: Id GetNumberOfValues () const {
34 return static_cast <vtkm ::Id >( this ->Container ->size ());
35 }
36
37 VTKM_CONT
38 void Allocate (vtkm :: Id numberOfValues ) {
39 this ->Container -> resize ( numberOfValues );
40 }
41
42 VTKM_CONT
43 void Shrink (vtkm :: Id numberOfValues ) {
44 this ->Container -> resize ( numberOfValues );
45 }
46
47 VTKM_CONT
48 void ReleaseResources () { this ->Container -> clear (); }
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49
50 private :
51 FooFieldsDeque * Container ;
52 };
53
54 }
55 }
56 } // namespace vtkm :: cont :: internal

The final step to make a storage adapter is to make a mechanism to construct an ArrayHandle that points to
a particular storage. This can be done by creating a trivial subclass of vtkm::cont::ArrayHandle that simply
constructs the array handle to the state of an existing container.

Example 10.48: Array handle to adapt a third-party container to VTK-m.
1 class ArrayHandleFooPressure
2 : public vtkm :: cont :: ArrayHandle <float , StorageTagFooPressure >
3 {
4 private :
5 using StorageType = vtkm :: cont :: internal :: Storage <float , StorageTagFooPressure >;
6
7 public :
8 VTKM_ARRAY_HANDLE_SUBCLASS_NT (
9 ArrayHandleFooPressure ,

10 (vtkm :: cont :: ArrayHandle <float , StorageTagFooPressure >));
11
12 VTKM_CONT
13 ArrayHandleFooPressure ( FooFieldsDeque * container )
14 : Superclass ( StorageType ( container )) { }
15 };

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. Both of these macros define the types Superclass, ValueType, and StorageTag as well as a
set of constructors and operators expected of all ArrayHandle classes. The difference between these two macros
is that VTKM ARRAY HANDLE SUBCLASS is used in templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT
is used in non-templated classes.

The ArrayHandle subclass in Example 10.48 is not templated, so it uses the VTKM ARRAY HANDLE SUBCLASS NT
macro. (The other macro is described in Section 10.3.2 on page 101). This macro takes two parameters. The first
parameter is the name of the subclass where the macro is defined and the second parameter is the immediate
superclass including the full template specification. The second parameter of the macro must be enclosed in
parentheses so that the C pre-processor correctly handles commas in the template specification.

With this new version of ArrayHandle, VTK-m can now read to and write from the FooFieldsDeque structure
directly. Note, however, that when writing to an array handle, it is necessary to call GetPortalControl or
GetPortalConstControl to flush data from the execution environment to the control environment. [Should
probably make this easier.]

Example 10.49: Using an ArrayHandle with custom container.
1 VTKM_CONT
2 void GetElevationAirPressure (vtkm :: cont :: DataSet grid , FooFieldsDeque * fields )
3 {
4 // Make an array handle that points to the pressure values in the fields .
5 ArrayHandleFooPressure pressureHandle ( fields );
6
7 // Use the elevation worklet to estimate atmospheric pressure based on the
8 // height of the point coordinates . Atmospheric pressure is 101325 Pa at
9 // sea level and drops about 12 Pa per meter .

10 vtkm :: worklet :: PointElevation elevation ;
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11 elevation . SetLowPoint (vtkm :: make_Vec (0.0 , 0.0 , 0.0));
12 elevation . SetHighPoint (vtkm :: make_Vec (0.0 , 0.0 , 2000.0));
13 elevation . SetRange (101325.0 , 77325.0);
14
15 vtkm :: worklet :: DispatcherMapField <vtkm :: worklet :: PointElevation >
16 dispatcher ( elevation );
17 dispatcher . Invoke (grid. GetCoordinateSystem (). GetData (), pressureHandle );
18
19 // Make sure the values are flushed back to the control environment .
20 pressureHandle . GetPortalConstControl ();
21
22 // Now the pressure field is in the fields container .
23 }

Most of the code in VTK-m will create ArrayHandles using the default storage, which is set to the basic storage
if not otherwise specified. If you wish to replace the default storage used, then set the VTKM STORAGE macro to
VTKM STORAGE UNDEFINED and set the VTKM DEFAULT STORAGE TAG to your tag class. These definitions have
to happen before including any VTK-m header files. You will also have to declare the tag class (or at least a
prototype of it) before including VTK-m header files.

Example 10.50: Redefining the default array handle storage.
1 # define VTKM_STORAGE VTKM_STORAGE_UNDEFINED
2 # define VTKM_DEFAULT_STORAGE_TAG StorageTagFooPressure
3
4 struct StorageTagFooPressure ;

ArrayHandles are often stored in dynamic objects like dynamic arrays (Chapter 11) or data sets (Chap-
ter 12). When this happens, the array’s type information, including the storage used, is lost. VTK-m will
have to guess the storage, and if you do not tell VTK-m to try your custom storage, you will get a runtime
error when the array is used. The most common ways of doing this are to change the default storage tag
(described here), adding the storage tag to the default storage list (Section 11.3) or specifying the storage
tag in the policy when executing filters (Chapter 13).

Common Errors
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ELEVEN

DYNAMIC ARRAY HANDLES

The ArrayHandle class uses templating to make very efficient and type-safe access to data. However, it is some-
times inconvenient or impossible to specify the element type and storage at run-time. The DynamicArrayHandle
class provides a mechanism to manage arrays of data with unspecified types.

vtkm::cont::DynamicArrayHandle holds a reference to an array. Unlike ArrayHandle, DynamicArrayHandle
is not templated. Instead, it uses C++ run-type type information to store the array without type and cast it
when appropriate.

A DynamicArrayHandle can be established by constructing it with or assigning it to an ArrayHandle. The
following example demonstrates how a DynamicArrayHandle might be used to load an array whose type is not
known until run-time.

Example 11.1: Creating a DynamicArrayHandle.
1 VTKM_CONT
2 vtkm :: cont :: DynamicArrayHandle
3 LoadDynamicArray ( const void *buffer , vtkm :: Id length , std :: string type)
4 {
5 vtkm :: cont :: DynamicArrayHandle handle ;
6 if (type == " float ")
7 {
8 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > concreteArray =
9 vtkm :: cont :: make_ArrayHandle (

10 reinterpret_cast < const vtkm :: Float32 *>( buffer ), length );
11 handle = concreteArray ;
12 } else if (type == "int ") {
13 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > concreteArray =
14 vtkm :: cont :: make_ArrayHandle (
15 reinterpret_cast < const vtkm :: Int32 *>( buffer ), length );
16 handle = concreteArray ;
17 }
18 return handle ;
19 }

11.1 Querying and Casting

Data pointed to by a DynamicArrayHandle is not directly accessible. However, there are a few generic queries
you can make without directly knowing the data type. The GetNumberOfValues method returns the length of
the array with respect to its base data type. It is also common in VTK-m to use data types, such as vtkm::Vec,
with multiple components per value. The GetNumberOfComponents method returns the number of components
in a vector-like type (or 1 for scalars).
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Example 11.2: Non type-specific queries on DynamicArrayHandle.
1 std :: vector <vtkm :: Float32 > scalarBuffer (10);
2 vtkm :: cont :: DynamicArrayHandle scalarDynamicHandle (
3 vtkm :: cont :: make_ArrayHandle ( scalarBuffer ));
4
5 // This returns 10.
6 vtkm :: Id scalarArraySize = scalarDynamicHandle . GetNumberOfValues ();
7
8 // This returns 1.
9 vtkm :: IdComponent scalarComponents =

10 scalarDynamicHandle . GetNumberOfComponents ();
11
12 std :: vector <vtkm ::Vec <vtkm :: Float32 ,3> > vectorBuffer (20);
13 vtkm :: cont :: DynamicArrayHandle vectorDynamicHandle (
14 vtkm :: cont :: make_ArrayHandle ( vectorBuffer ));
15
16 // This returns 20.
17 vtkm :: Id vectorArraySize = vectorDynamicHandle . GetNumberOfValues ();
18
19 // This returns 3.
20 vtkm :: IdComponent vectorComponents =
21 vectorDynamicHandle . GetNumberOfComponents ();

It is also often desirable to create a new array based on the underlying type of a DynamicArrayHandle. For
example, when a filter creates a field, it is common to make this output field the same type as the input. To
satisfy this use case, DynamicArrayHandle has a method named NewInstance that creates a new empty array
with the same underlying type as the original array.

Example 11.3: Using DynamicArrayHandle::NewInstance().
1 std :: vector <vtkm :: Float32 > scalarBuffer (10);
2 vtkm :: cont :: DynamicArrayHandle dynamicHandle (
3 vtkm :: cont :: make_ArrayHandle ( scalarBuffer ));
4
5 // This creates a new empty array of type Float32 .
6 vtkm :: cont :: DynamicArrayHandle newDynamicArray = dynamicHandle . NewInstance ();

Before the data with a DynamicArrayHandle can be accessed, the type and storage of the array must be estab-
lished. This is usually done internally within VTK-m when a worklet or filter? is invoked. However, it is also
possible to query the types and cast to a concrete ArrayHandle.

You can query the component type and storage type using the IsType, IsSameType, and IsTypeAndStorage
methods. IsType takes an example array handle type and returns whether the underlying array matches the
given static array type. IsSameType behaves the same as IsType but accepts an instance of an ArrayHandle
object to automatically resolve the template parameters. IsTypeAndStorage takes an example component type
and an example storage type as arguments and returns whether the underlying array matches both types.

Example 11.4: Querying the component and storage types of a DynamicArrayHandle.
1 std :: vector <vtkm :: Float32 > scalarBuffer (10);
2 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > concreteHandle =
3 vtkm :: cont :: make_ArrayHandle ( scalarBuffer );
4 vtkm :: cont :: DynamicArrayHandle dynamicHandle ( concreteHandle );
5
6 // This returns true
7 bool isFloat32Array = dynamicHandle . IsSameType ( concreteHandle );
8
9 // This returns false

10 bool isIdArray =
11 dynamicHandle .IsType <vtkm :: cont :: ArrayHandle <vtkm ::Id > >();
12
13 // This returns true
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14 bool isFloat32 =
15 dynamicHandle . IsTypeAndStorage <vtkm :: Float32 , VTKM_DEFAULT_STORAGE_TAG >();
16
17 // This returns false
18 bool isId =
19 dynamicHandle . IsTypeAndStorage <vtkm ::Id , VTKM_DEFAULT_STORAGE_TAG >();
20
21 // This returns false
22 bool isErrorStorage = dynamicHandle . IsTypeAndStorage <
23 vtkm :: Float32 ,
24 vtkm :: cont :: ArrayHandleCounting <vtkm :: Float32 >:: StorageTag >();

Once the type of the DynamicArrayHandle is known, it can be cast to a concrete ArrayHandle, which has
access to the data as described in Chapter 7. The easiest way to do this is to use the CopyTo method. This
templated method takes a reference to an ArrayHandle as an argument and sets that array handle to point
to the array in DynamicArrayHandle. If the given types are incorrect, then CopyTo throws a vtkm::cont::-
ErrorControlBadValue exception.

Example 11.5: Casting a DynamicArrayHandle to a concrete ArrayHandle.
1 dynamicHandle . CopyTo ( concreteHandle );

Remember that ArrayHandle and DynamicArrayHandle represent pointers to the data, so this “copy” is a
shallow copy. There is still only one copy of the data, and if you change the data in one array handle that
change is reflected in the other.

Common Errors

11.2 Casting to Unknown Types

Using CopyTo is fine as long as the correct types are known, but often times they are not. For this use case
DynamicArrayHandle has a method named CastAndCall that attempts to cast the array to some set of types.

The CastAndCall method accepts a functor to run on the appropriately cast array. The functor must have an
overloaded const parentheses operator that accepts an ArrayHandle of the appropriate type.

Example 11.6: Operating on DynamicArrayHandle with CastAndCall.
1 struct PrintArrayContentsFunctor
2 {
3 template < typename T, typename Storage >
4 VTKM_CONT
5 void operator ()( const vtkm :: cont :: ArrayHandle <T,Storage > & array ) const
6 {
7 this -> PrintArrayPortal ( array . GetPortalConstControl ());
8 }
9

10 private :
11 template < typename PortalType >
12 VTKM_CONT
13 void PrintArrayPortal ( const PortalType & portal ) const
14 {
15 for (vtkm :: Id index = 0; index < portal . GetNumberOfValues (); index ++)
16 {
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17 // All ArrayPortal objects have ValueType for the type of each value .
18 using ValueType = typename PortalType :: ValueType ;
19
20 ValueType value = portal .Get( index );
21
22 vtkm :: IdComponent numComponents =
23 vtkm :: VecTraits <ValueType >:: GetNumberOfComponents ( value );
24 for (vtkm :: IdComponent componentIndex = 0;
25 componentIndex < numComponents ;
26 componentIndex ++)
27 {
28 std :: cout << " "
29 << vtkm :: VecTraits <ValueType >:: GetComponent (value ,
30 componentIndex );
31 }
32 std :: cout << std :: endl;
33 }
34 }
35 };
36
37 template < typename DynamicArrayType >
38 void PrintArrayContents ( const DynamicArrayType & array )
39 {
40 array . CastAndCall ( PrintArrayContentsFunctor ());
41 }

It is possible to store any form of ArrayHandle in a DynamicArrayHandle, but it is not possible for
CastAndCall to check every possible form of ArrayHandle. If CastAndCall cannot determine the Array-
Handle type, then an ErrorControlBadValue is thrown. The following section describes how to specify the
forms of ArrayHandle to try.

Common Errors

11.3 Specifying Cast Lists

The CastAndCall method can only check a finite number of types. The default form of CastAndCall uses a
default set of common types. These default lists can be overridden using the VTK-m list tags facility, which is
discussed at length in Section 6.6. There are separate lists for value types and for storage types.

Common type lists for value are defined in vtkm/TypeListTag.h and are documented in Section 6.6.2. This header
also defines VTKM DEFAULT TYPE LIST TAG, which defines the default list of value types tried in CastAndCall.

Common storage lists are defined in vtkm/cont/StorageListTag.h. There is only one common storage distributed
with VTK-m: StorageBasic. A list tag containing this type is defined as vtkm::cont::StorageListTagBasic.

As with other lists, it is possible to create new storage type lists using the existing type lists and the list bases
from Section 6.6.1.

The vtkm/cont/StorageListTag.h header also defines a macro named VTKM DEFAULT STORAGE LIST TAG that
defines a default list of types to use in classes like DynamicArrayHandle. This list can be overridden by defining
the VTKM DEFAULT STORAGE LIST TAG macro before any VTK-m headers are included. If included after a VTK-
m header, the list is not likely to take effect. Do not ignore compiler warnings about the macro being redefined,
which you will not get if defined correctly.
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There is a form of CastAndCall that accepts tags for the list of component types and storage types. This can
be used when the specific lists are known at the time of the call. However, when creating generic operations like
the PrintArrayContents function in Example 11.6, passing these tags is inconvenient at best.

To address this use case, DynamicArrayHandle has a pair of methods named ResetTypeList and ResetStor-
ageList. These methods return a new object with that behaves just like a DynamicArrayHandle with identical
state except that the cast and call functionality uses the specified component type or storage type instead of the
default. (Note that PrintArrayContents in Example 11.6 is templated on the type of DynamicArrayHandle.
This is to accommodate using the objects from the Reset*List methods, which have the same behavior but
different type names.)

So the default component type list contains a subset of the basic VTK-m types. If you wanted to accommodate
more types, you could use ResetTypeList.

Example 11.7: Trying all component types in a DynamicArrayHandle.
1 PrintArrayContents ( dynamicArray . ResetTypeList (vtkm :: TypeListTagAll ()));

Likewise, if you happen to know a particular type of the dynamic array, that can be specified to reduce the
amount of object code created by templates in the compiler.

Example 11.8: Specifying a single component type in a DynamicArrayHandle.
1 PrintArrayContents ( dynamicArray . ResetTypeList (vtkm :: TypeListTagId ()));

Storage type lists can be changed similarly.

Example 11.9: Specifying different storage types in a DynamicArrayHandle.
1 struct MyIdStorageList :
2 vtkm :: ListTagBase <
3 vtkm :: cont :: StorageTagBasic ,
4 vtkm :: cont :: ArrayHandleIndex :: StorageTag >
5 { };
6
7 void PrintIds (vtkm :: cont :: DynamicArrayHandle array )
8 {
9 PrintArrayContents ( array . ResetStorageList ( MyIdStorageList ()));

10 }

The ResetTypeList and ResetStorageList do not change the object they are called on. Rather, they
return a new object with different type information. Calling these methods has no effect unless you do
something with the returned value.

Common Errors

Both the component type list and the storage type list can be modified by chaining these reset calls.

Example 11.10: Specifying both component and storage types in a DynamicArrayHandle.
1 PrintArrayContents ( dynamicArray .
2 ResetTypeList (vtkm :: TypeListTagId ()).
3 ResetStorageList ( MyIdStorageList ()));

The ResetTypeList and ResetStorageList work by returning a vtkm::cont::DynamicArrayHandleBase ob-
ject. DynamicArrayHandleBase specifies the value and storage tag lists as template arguments and otherwise
behaves just like DynamicArrayHandle.
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I lied earlier when I said at the beginning of this chapter that DynamicArrayHandle is a class that is not
templated. This symbol is really just a type alias of DynamicArrayHandleBase. Because the DynamicAr-
rayHandle fully specifies the template arguments, it behaves like a class, but if you get a compiler error it
will show up as DynamicArrayHandleBase.

Did you know?

Most code does not need to worry about working directly with DynamicArrayHandleBase. However, it is
sometimes useful to declare it in templated functions that accept dynamic array handles so that works with
every type list. The function in Example 11.6 did this by making the dynamic array handle class itself the
template argument. This will work, but it is prone to error because the template will resolve to any type of
argument. When passing objects that are not dynamic array handles will result in strange and hard to diagnose
errors. Instead, we can define the same function using DyamicArrayHandleBase so that the template will only
match dynamic array handle types.

Example 11.11: Using DynamicArrayHandleBase to accept generic dynamic array handles.
1 template < typename TypeList , typename StorageList >
2 void PrintArrayContents (
3 const vtkm :: cont :: DynamicArrayHandleBase <TypeList , StorageList > & array )
4 {
5 array . CastAndCall ( PrintArrayContentsFunctor ());
6 }

120 Chapter 11. Dynamic Array Handles



DRAFT
CHAPTER

TWELVE

DATA SETS

A data set, implemented with the vtkm::cont::DataSet class, contains and manages the geometric data struc-
tures that VTK-m operates on. A data set comprises the following 3 data structures.

Cell Set A cell set describes topological connections. A cell set defines some number of points in space and how
they connect to form cells, filled regions of space. A data set must have at least one cell set, but can have
more than one cell set defined. This makes it possible to define groups of cells with different properties.
For example, a simulation might model some subset of elements as boundary that contain properties the
other elements do not. Another example is the representation of a molecule that requires atoms and bonds,
each having very different properties associated with them.

Field A field describes numerical data associated with the topological elements in a cell set. The field is
represented as an array, and each entry in the field array corresponds to a topological element (point, edge,
face, or cell). Together the cell set topology and discrete data values in the field provide an interpolated
function throughout the volume of space covered by the data set. A cell set can have any number of fields.

Coordinate System A coordinate system is a special field that describes the physical location of the points
in a data set. Although it is most common for a data set to contain a single coordinate system, VTK-m
supports data sets with no coordinate system such as abstract data structures like graphs that might not
have positions in a space. DataSet also supports multiple coordinate systems for data that have multiple
representations for position. For example, geospatial data could simultaneously have coordinate systems
defined by 3D position, latitude-longitude, and any number of 2D projections.

12.1 Building Data Sets

Before we go into detail on the cell sets, fields, and coordinate systems that make up a data set in VTK-m, let
us first discuss how to build a data set. One simple way to build a data set is to load data from a file using the
vtkm::io module. Reading files is discussed in detail in Chapter 3.

This section describes building data sets of different types using a set of classes named DataSetBuilder*, which
provide a convenience layer on top of vtkm::cont::DataSet to make it easier to create data sets.

12.1.1 Creating Uniform Grids

Uniform grids are meshes that have a regular array structure with points uniformly spaced parallel to the axes.
Uniform grids are also sometimes called regular grids or images.



DRAFT

12.1. Building Data Sets

The vtkm::cont::DataSetBuilderUniform class can be used to easily create 2- or 3-dimensional uniform grids.
DataSetBuilderUniform has several versions of a method named Create that takes the number of points in
each dimension, the origin, and the spacing. The origin is the location of the first point of the data (in the lower
left corner), and the spacing is the distance between points in the x, y, and z directions. The Create methods
also take an optional name for the coordinate system and an optional name for the cell set.

The following example creates a vtkm::cont::DataSet containing a uniform grid of 101×101×26 points.

Example 12.1: Creating a uniform grid.
1 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
2
3 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create (vtkm :: Id3 (101 , 101 , 26));

If not specified, the origin will be at the coordinates (0,0,0) and the spacing will be 1 in each direction. Thus,
in the previous example the width, height, and depth of the mesh in physical space will be 100, 100, and 25,
respectively, and the mesh will be centered at (50,50,12.5). Let us say we actually want a mesh of the same
dimensions, but we want the z direction to be stretched out so that the mesh will be the same size in each
direction, and we want the mesh centered at the origin.

Example 12.2: Creating a uniform grid with custom origin and spacing.
1 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
2
3 vtkm :: cont :: DataSet dataSet =
4 dataSetBuilder . Create (
5 vtkm :: Id3 (101 , 101 , 26) ,
6 vtkm ::Vec <vtkm :: FloatDefault ,3 >( -50.0 , -50.0 , -50.0) ,
7 vtkm ::Vec <vtkm :: FloatDefault ,3 >(1.0 , 1.0 , 4.0));

12.1.2 Creating Rectilinear Grids

A rectilinear grid is similar to a uniform grid except that a rectilinear grid can adjust the spacing between
adjacent grid points. This allows the rectilinear grid to have tighter sampling in some areas of space, but the
points are still constrained to be aligned with the axes and each other. The irregular spacing of a rectilinear grid
is specified by providing a separate array each for the x, y, and z coordinates.

The vtkm::cont::DataSetBuilderRectilinear class can be used to easily create 2- or 3-dimensional rectilinear
grids. DataSetBuilderRectilinear has several versions of a method named Create that takes these coordinate
arrays and builds a vtkm::cont::DataSet out of them. The arrays can be supplied as either standard C arrays
or as std::vector objects, in which case the data in the arrays are copied into the DataSet. These arrays can
also be passed as ArrayHandle objects, in which case the data are shallow copied.

The following example creates a vtkm::cont::DataSet containing a rectilinear grid with 201×201×101 points
with different irregular spacing along each axis.

Example 12.3: Creating a rectilinear grid.
1 // Make x coordinates range from -4 to 4 with tighter spacing near 0.
2 std :: vector <vtkm :: Float32 > xCoordinates ;
3 for (vtkm :: Float32 x = -2.0f; x <= 2.0f; x += 0.02f)
4 {
5 xCoordinates . push_back (vtkm :: CopySign (x*x, x));
6 }
7
8 // Make y coordinates range from 0 to 2 with tighter spacing near 2.
9 std :: vector <vtkm :: Float32 > yCoordinates ;

10 for (vtkm :: Float32 y = 0.0f; y <= 4.0f; y += 0.02f)
11 {
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12 yCoordinates . push_back (vtkm :: Sqrt(y));
13 }
14
15 // Make z coordinates rangefrom -1 to 1 with even spacing .
16 std :: vector <vtkm :: Float32 > zCoordinates ;
17 for (vtkm :: Float32 z = -1.0f; z <= 1.0f; z += 0.02f)
18 {
19 zCoordinates . push_back (z);
20 }
21
22 vtkm :: cont :: DataSetBuilderRectilinear dataSetBuilder ;
23
24 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create ( xCoordinates ,
25 yCoordinates ,
26 zCoordinates );

12.1.3 Creating Explicit Meshes

An explicit mesh is an arbitrary collection of cells with arbitrary connections. It can have multiple different
types of cells. Explicit meshes are also known as unstructured grids.

The cells of an explicit mesh are defined by providing the shape, number of indices, and the points that comprise
it for each cell. These three things are stored in separate arrays. Figure 12.1 shows an example of an explicit
mesh and the arrays that can be used to define it.
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Figure 12.1: An example explicit mesh.

The vtkm::cont::DataSetBuilderExplicit class can be used to create data sets with explicit meshes.
DataSetBuilderExplicit has several versions of a method named Create. Generally, these methods take
the shapes, number of indices, and connectivity arrays as well as an array of point coordinates. These arrays
can be given in std::vector objects, and the data are copied into the DataSet created.

The following example creates a mesh like the one shown in Figure 12.1.

Example 12.4: Creating an explicit mesh with DataSetBuilderExplicit.
1 // Array of point coordinates .
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2 std :: vector <vtkm ::Vec <vtkm :: Float32 ,3> > pointCoordinates ;
3 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(1.1f, 0.0f, 0.0f));
4 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(0.2f, 0.4f, 0.0f));
5 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(0.9f, 0.6f, 0.0f));
6 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(1.4f, 0.5f, 0.0f));
7 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(1.8f, 0.3f, 0.0f));
8 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(0.4f, 1.0f, 0.0f));
9 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(1.0f, 1.2f, 0.0f));

10 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 ,3 >(1.5f, 0.9f, 0.0f));
11
12 // Array of shapes .
13 std :: vector <vtkm :: UInt8 > shapes ;
14 shapes . push_back (vtkm :: CELL_SHAPE_TRIANGLE );
15 shapes . push_back (vtkm :: CELL_SHAPE_QUAD );
16 shapes . push_back (vtkm :: CELL_SHAPE_TRIANGLE );
17 shapes . push_back (vtkm :: CELL_SHAPE_POLYGON );
18 shapes . push_back (vtkm :: CELL_SHAPE_TRIANGLE );
19
20 // Array of number of indices per cell.
21 std :: vector <vtkm :: IdComponent > numIndices ;
22 numIndices . push_back (3);
23 numIndices . push_back (4);
24 numIndices . push_back (3);
25 numIndices . push_back (5);
26 numIndices . push_back (3);
27
28 // Connectivity array .
29 std :: vector <vtkm ::Id > connectivity ;
30 connectivity . push_back (0); // Cell 0
31 connectivity . push_back (2);
32 connectivity . push_back (1);
33 connectivity . push_back (0); // Cell 1
34 connectivity . push_back (4);
35 connectivity . push_back (3);
36 connectivity . push_back (2);
37 connectivity . push_back (1); // Cell 2
38 connectivity . push_back (2);
39 connectivity . push_back (5);
40 connectivity . push_back (2); // Cell 3
41 connectivity . push_back (3);
42 connectivity . push_back (7);
43 connectivity . push_back (6);
44 connectivity . push_back (5);
45 connectivity . push_back (3); // Cell 4
46 connectivity . push_back (4);
47 connectivity . push_back (7);
48
49 // Copy these arrays into a DataSet .
50 vtkm :: cont :: DataSetBuilderExplicit dataSetBuilder ;
51
52 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create ( pointCoordinates ,
53 shapes ,
54 numIndices ,
55 connectivity );

Often it is awkward to build your own arrays and then pass them to DataSetBuilderExplicit. There also
exists an alternate builder class named vtkm::cont::DataSetBuilderExplicitIterative that allows you to
specify each cell and point one at a time rather than all at once. This is done by calling one of the versions of
AddPoint and one of the versions of AddCell for each point and cell, respectively. The next example also builds
the mesh shown in Figure 12.1 except this time using DataSetBuilderExplicitIterative.

Example 12.5: Creating an explicit mesh with DataSetBuilderExplicitIterative.
1 vtkm :: cont :: DataSetBuilderExplicitIterative dataSetBuilder ;
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2
3 dataSetBuilder . AddPoint (1.1 , 0.0 , 0.0);
4 dataSetBuilder . AddPoint (0.2 , 0.4 , 0.0);
5 dataSetBuilder . AddPoint (0.9 , 0.6 , 0.0);
6 dataSetBuilder . AddPoint (1.4 , 0.5 , 0.0);
7 dataSetBuilder . AddPoint (1.8 , 0.3 , 0.0);
8 dataSetBuilder . AddPoint (0.4 , 1.0 , 0.0);
9 dataSetBuilder . AddPoint (1.0 , 1.2 , 0.0);

10 dataSetBuilder . AddPoint (1.5 , 0.9 , 0.0);
11
12 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_TRIANGLE );
13 dataSetBuilder . AddCellPoint (0);
14 dataSetBuilder . AddCellPoint (2);
15 dataSetBuilder . AddCellPoint (1);
16
17 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_QUAD );
18 dataSetBuilder . AddCellPoint (0);
19 dataSetBuilder . AddCellPoint (4);
20 dataSetBuilder . AddCellPoint (3);
21 dataSetBuilder . AddCellPoint (2);
22
23 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_TRIANGLE );
24 dataSetBuilder . AddCellPoint (1);
25 dataSetBuilder . AddCellPoint (2);
26 dataSetBuilder . AddCellPoint (5);
27
28 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_POLYGON );
29 dataSetBuilder . AddCellPoint (2);
30 dataSetBuilder . AddCellPoint (3);
31 dataSetBuilder . AddCellPoint (7);
32 dataSetBuilder . AddCellPoint (6);
33 dataSetBuilder . AddCellPoint (5);
34
35 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_TRIANGLE );
36 dataSetBuilder . AddCellPoint (3);
37 dataSetBuilder . AddCellPoint (4);
38 dataSetBuilder . AddCellPoint (7);
39
40 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create ();

12.1.4 Add Fields

In addition to creating the geometric structure of a data set, it is usually important to add fields to the data.
Fields describe numerical data associated with the topological elements in a cell. They often represent a physical
quantity (such as temperature, mass, or volume fraction) but can also represent other information (such as
indices or classifications).

The easiest way to define fields in a data set is to use the vtkm::cont::DataSetFieldAdd class. This class works
on DataSets of any type. It has methods named AddPointField and AddCellField that define a field for either
points or cells. Every field must have an associated field name.

Both AddPointField and AddCellField are overloaded to accept arrays of data in different structures. Field
arrays can be passed as standard C arrays or as std::vectors, in which case the data are copied. Field arrays
can also be passed in a ArrayHandle, in which case the data are not copied.

The following (somewhat contrived) example defines fields for a uniform grid that identify which points and cells
are on the boundary of the mesh.

Example 12.6: Adding fields to a DataSet.
1 // Make a simple structured data set.
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2 const vtkm :: Id3 pointDimensions (20 , 20, 10);
3 const vtkm :: Id3 cellDimensions = pointDimensions - vtkm :: Id3 (1, 1, 1);
4 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
5 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create ( pointDimensions );
6
7 // This is the helper object to add fields to a data set.
8 vtkm :: cont :: DataSetFieldAdd dataSetFieldAdd ;
9

10 // Create a field that identifies points on the boundary .
11 std :: vector <vtkm :: UInt8 > boundaryPoints ;
12 for (vtkm :: Id zIndex = 0; zIndex < pointDimensions [2]; zIndex ++)
13 {
14 for (vtkm :: Id yIndex = 0; yIndex < pointDimensions [1]; yIndex ++)
15 {
16 for (vtkm :: Id xIndex = 0; xIndex < pointDimensions [0]; xIndex ++)
17 {
18 if ( ( xIndex == 0) || ( xIndex == pointDimensions [0] -1) ||
19 ( yIndex == 0) || ( yIndex == pointDimensions [1] -1) ||
20 ( zIndex == 0) || ( zIndex == pointDimensions [2] -1) )
21 {
22 boundaryPoints . push_back (1);
23 }
24 else
25 {
26 boundaryPoints . push_back (0);
27 }
28 }
29 }
30 }
31
32 dataSetFieldAdd . AddPointField (dataSet , " boundary_points ", boundaryPoints );
33
34 // Create a field that identifies cells on the boundary .
35 std :: vector <vtkm :: UInt8 > boundaryCells ;
36 for (vtkm :: Id zIndex = 0; zIndex < cellDimensions [2]; zIndex ++)
37 {
38 for (vtkm :: Id yIndex = 0; yIndex < cellDimensions [1]; yIndex ++)
39 {
40 for (vtkm :: Id xIndex = 0; xIndex < cellDimensions [0]; xIndex ++)
41 {
42 if ( ( xIndex == 0) || ( xIndex == cellDimensions [0] -1) ||
43 ( yIndex == 0) || ( yIndex == cellDimensions [1] -1) ||
44 ( zIndex == 0) || ( zIndex == cellDimensions [2] -1) )
45 {
46 boundaryCells . push_back (1);
47 }
48 else
49 {
50 boundaryCells . push_back (0);
51 }
52 }
53 }
54 }
55
56 dataSetFieldAdd . AddCellField (dataSet , " boundary_cells ", boundaryCells );

12.2 Cell Sets

A cell set determines the topological structure of the data in a data set. Fundamentally, any cell set is a
collection of cells, which typically (but not always) represent some region in space. 3D cells are made up of
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points, edges, and faces. (2D cells have only points and edges, and 1D cells have only points.) Figure 12.2 shows
the relationship between a cell’s shape and these topological elements. The arrangement of these points, edges,
and faces is defined by the shape of the cell, which prescribes a specific ordering of each. The basic cell shapes
provided by VTK-m are discussed in detail in Section 16.1 starting on page 187.

Points

Edges
Face

Figure 12.2: The relationship between a cell shape and its topological elements (points, edges, and faces).

There are multiple ways to express the connections of a cell set, each with different benefits and restrictions.
These different cell set types are managed by different cell set classes in VTK-m. All VTK-m cell set classes
inherit from vtkm::cont::CellSet. The two basic types of cell sets are structured and explicit, and there are
several variations of these types.

12.2.1 Structured Cell Sets

A vtkm::cont::CellSetStructured defines a 1-, 2-, or 3-dimensional grid of points with lines, quadrilaterals,
or hexahedra, respectively, connecting them. The topology of a CellSetStructured is specified by simply
providing the dimensions, which is the number of points in the i, j, and k directions of the grid of points. The
number of points is implicitly i× j× k and the number of cells is implicitly (i− 1)× (j− 1)× (k− 1) (for 3D
grids). Figure 12.3 demonstrates this arrangement.

i

j

k

Cell

Point

Figure 12.3: The arrangement of points and cells in a 3D structured grid.

The big advantage of using vtkm::cont::CellSetStructured to define a cell set is that it is very space efficient
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because the entire topology can be defined by the three integers specifying the dimensions. Also algorithms
can be optimized for CellSetStructured’s regular nature. However, CellSetStructured’s strictly regular grid
structure also limits its applicability. A structured cell set can only be a dense grid of lines, quadrilaterals, or
hexahedra. It cannot represent irregular data well.

Many data models in other software packages, such as the one for VTK, make a distinction between uniform,
rectilinear, and curvilinear grids. VTK-m’s cell sets do not. All three of these grid types are represented by
CellSetStructured. This is because in a VTK-m data set the cell set and the coordinate system are defined
independently and used interchangeably. A structured cell set with uniform point coordinates makes a uniform
grid. A structured cell set with point coordinates defined irregularly along coordinate axes makes a rectilinear
grid. And a structured cell set with arbitrary point coordinates makes a curvilinear grid. The point coordinates
are defined by the data set’s coordinate system, which is discussed in Section 12.4 starting on page 131.

12.2.2 Explicit Cell Sets

A vtkm::cont::CellSetExplicit defines an irregular collection of cells. The cells can be of different types and
connected in arbitrary ways. This is done by explicitly providing for each cell a sequence of points that defines
the cell.

An explicit cell set is defined with a minimum of three arrays. The first array identifies the shape of each cell.
(Cell shapes are discussed in detail in Section 16.1 starting on page 187.) The second array identifies how many
points are in each cell. The third array has a sequence of point indices that make up each cell. Figure 12.4 shows
a simple example of an explicit cell set.
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Figure 12.4: Example of cells in a CellSetExplict and the arrays that define them.

An explicit cell set may also have other topological arrays such as an array of offsets of each cell into the
connectivity array or an array of cells incident on each point. Although these arrays can be provided, they are
optional and can be internally derived from the shape, num indices, and connectivity arrays.

vtkm::cont::ExplicitCellSet is a powerful representation for a cell set because it can represent an arbitrary
collection of cells. However, because all connections must be explicitly defined, ExplicitCellSet requires a
significant amount of memory to represent the topology.
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An important specialization of an explicit cell set is vtkm::cont::CellSetSingleType. CellSetSingleType is
an explicit cell set constrained to contain cells that all have the same shape and all have the same number of
points. So for example if you are creating a surface that you know will contain only triangles, CellSetSingleType
is a good representation for these data.

Using CellSetSingleType saves memory because the array of cell shapes and the array of point counts no longer
need to be stored. CellSetSingleType also allows VTK-m to skip some processing and other storage required
for general explicit cell sets.

12.2.3 Cell Set Permutations

A vtkm::cont::CellSetPermutation rearranges the cells of one cell set to create another cell set. This re-
structuring of cells is not done by copying data to a new structure. Rather, CellSetPermutation establishes a
look-up from one cell structure to another. Cells are permuted on the fly while algorithms are run.

A CellSetPermutation is established by providing a mapping array that for every cell index provides the
equivalent cell index in the cell set being permuted. CellSetPermutation is most often used to mask out cells
in a data set so that algorithms will skip over those cells when running.

Although CellSetPermutation can mask cells, it cannot mask points. All points from the original cell set
are available in the permuted cell set regardless of whether they are used.

Did you know?

The following example uses vtkm::cont::CellSetPermutation with a counting array to expose every tenth
cell. This provides a simple way to subsample a data set.

Example 12.7: Subsampling a data set with CellSetPermutation.
1 // Create a simple data set.
2 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
3 vtkm :: cont :: DataSet originalDataSet =
4 dataSetBuilder . Create (vtkm :: Id3 (33 ,33 ,26));
5 vtkm :: cont :: CellSetStructured <3> originalCellSet ;
6 originalDataSet . GetCellSet (). CopyTo ( originalCellSet );
7
8 // Create a permutation array for the cells . Each value in the array refers
9 // to a cell in the original cell set. This particular array selects every

10 // 10 th cell.
11 vtkm :: cont :: ArrayHandleCounting <vtkm ::Id > permutationArray (0, 10, 2560);
12
13 // Create a permutation of that cell set containing only every 10 th cell.
14 vtkm :: cont :: CellSetPermutation <
15 vtkm :: cont :: CellSetStructured <3>,
16 vtkm :: cont :: ArrayHandleCounting <vtkm ::Id > >
17 permutedCellSet ( permutationArray , originalCellSet );

12.2.4 Dynamic Cell Sets

vtkm::cont::DataSet must hold an arbitrary collection of vtkm::cont::CellSet objects, which it cannot do
while knowing their types at compile time. To manage storing CellSets without knowing their types, DataSet
actually holds references using vtkm::cont::DynamicCellSet.
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DynamicCellSet is similar in nature to DynamicArrayHandle except that it, of course, holds CellSets instead
of ArrayHandles. The interface for the two classes is similar, and you should review the documentation for
DynamicArrayHandle (in Chapter 11 starting on page 115) to understand DynamicCellSet.

vtkm::cont::DynamicCellSet has a method named CastToBase that returns a const reference to the held cell
set as the abstract CellSet class. This can be used to easily access the virtual methods in the CellSet interface.
You can also create a new instance of a cell set with the same type using the NewInstance method.

The DynamicCellSet::IsType() method can be used to determine whether the cell set held in the dynamic cell
set is of a given type. If the cell set type is known, DynamicCellSet::Cast() can be used to safely downcast
the cell set object, or DynamicCellSet::CopyTo() can be used to safely copy to a reference of the appropriate
type.

When a typed version of the cell set stored in the DynamicCellSet is needed but the type is not known, which
happens regularly in the internal workings of VTK-m, the CastAndCall method can be used to make this
transition. CastAndCall works by taking a functor and calls it with the appropriately cast cell set object.

The CastAndCall method works by attempting to cast to a known set of types. This set of types used is defined by
the macro VTKM DEFAULT CELL SET LIST TAG, which is declared in vtkm/cont/CellSetListTag.h. This list can
be overridden globally by defining the VTKM DEFAULT CELL SET LIST TAG macro before any VTK-m headers
are included.

The set of types used in a CastAndCall can also be changed only for a particular instance of a dynamic cell set
by calling its ResetCellSetList. This method takes a list of cell types and returns a new dynamic array handle
of a slightly different type that will use this new list of cells for dynamic casting.

12.2.5 Blocks and Assemblies

Rather than just one cell set, a vtkm::cont::DataSet can hold multiple cell sets. This can be used to construct
multiblock data structures or assemblies of parts. Multiple cell sets can also be used to represent subsets of the
data with particular properties such as all cells filled with a material of a certain type. Or these multiple cells
might represent particular features in the data, such as the set of faces representing a boundary in the simulation.

12.2.6 Zero Cell Sets

It is also possible to construct a vtkm::cont::DataSet that contains no cell set objects whatsoever. This can
be used to manage data that does not contain any topological structure. For example, a collection of series that
come from columns in a table could be stored as multiple fields in a data set with no cell set.

12.3 Fields

A field on a data set provides a value on every point in space on the mesh. Fields are often used to describe
physical properties such as pressure, temperature, mass, velocity, and much more. Fields are represented in a
VTK-m data set as an array where each value is associated with a particular element type of a mesh (such as
points or cells). This association of field values to mesh elements and the structure of the cell set determines
how the field is interpolated throughout the space of the mesh.

Fields are manged by the vtkm::cont::Field class. Field holds its data with a DynamicArrayHandle, which
itself is a container for an ArrayHandle. Field also maintains the association and, optionally, the name of a cell
set for which the field is valid.
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The data array can be retrieved as a DynamicArrayHandle using the GetData method of Field. Field also has
a convenience method named GetRange that finds the range of values stored in the field array. The returned
value of GetRange is an ArrayHandle containing vtkm::Range values. The ArrayHandle will have as many
values as components in the field. So, for example, calling GetRange on a scalar field will return an ArrayHandle
with exactly 1 entry in it. Calling GetRange on a field of 3D vectors will return an ArrayHandle with exactly 3
entries corresponding to each of the components in the range.

12.4 Coordinate Systems

A coordinate system determines the location of a mesh’s elements in space. The spatial location is described
by providing a 3D vector at each point that gives the coordinates there. The point coordinates can then be
interpolated throughout the mesh.

Coordinate systems are managed by the vtkm::cont::CoordinateSystem class. In actuality, a coordinate
system is just a field with a special meaning, and so the CoordinateSystem class inherits from the Field class.
CoordinateSystem constrains the field to be associated with points and typically has 3D floating point vectors
for values.

In addition to all the methods provided by the Field superclass, the CoordinateSystem also provides a Get-
Bounds convenience method that returns a vtkm::Bounds object giving the spatial bounds of the coordinate
system.

It is typical for a DataSet to have one coordinate system defined, but it is possible to define multiple coordinate
systems. This is helpful when there are multiple ways to express coordinates. For example, positions in geographic
may be expressed as Cartesian coordinates or as latitude-longitude coordinates. Both are valid and useful in
different ways.

It is also valid to have a DataSet with no coordinate system. This is useful when the structure is not rooted in
physical space. For example, if the cell set is representing a graph structure, there might not be any physical
space that has meaning for the graph.
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In Chapter 4 we explored the set of filter classes in VTK-m, which provide a convenient interface for running the
algorithms that come with VTK-m. That chapter describes methods like Execute and MapFieldOntoOutput,
which take data process it in parallel. What is not described in Chapter 4 is how the filter chooses data types
and what computing device (e.g. CPU or GPU) to use.

These decisions are determined by policies. A policy defines the behavior of how a filter interprets dynamic data
and what devices it should use. The methods previously described in 4 implicitly use a default policy that tries
the most common types and a group of basic devices. However, each of these methods have an alternate form
that allows you to specify a customized policy. In this chapter we describe policies and demonstrate how to
create and use your own policies.

13.1 Default Policy

The default policy is specified by the vtkm::filter::DefaultPolicy class, which is defined in the vtkm/filter/-
DefaultPolicy.h header file. The default policy can be used any place a standard policy is used, although generally
this is unnecessary as the default policy is used automatically if no policy is specified.

The vtkm::filter::DefaultPolicy class makes for a good reference on what a policy contains and how
to construct a new policy. The contents of the default policy can also be used when creating new policies
where only some of the properties need be different (as is done in the examples here).

Did you know?

[It would be nice if you could create a new policy that inherited all of the default policies
rather than require you to define every one. If that were implemented, then the description
above would change as would pretty much all the examples here.]

13.2 Policy Contents

A policy is a traits-like object that contains the following types. [Most of?] These types are list tag objects.
List tags are described in Section 6.6.
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FieldTypeList A type list tag containing a list of all possible types of values in field arrays used as input to the
filter. The default policy sets this to VTKM DEFAULT TYPE LIST TAG, which corresponds to vtkm::Int32,
vtkm::Int64, vtkm::Float32, vtkm::Float64, vtkm::Vec<vtkm::Float32,3>, and vtkm::Vec<vtkm::-
Float64,3>.

FieldStorageList A type list tag containing a list of all possible storage types for field arrays used as input
to the filter. The default policy sets this to VTKM DEFAULT STORAGE LIST TAG, which corresponds to a
list containing only vtkm::cont::StorageTagBasic (the default storage for vtkm::cont::ArrayHandle
objects).

CoordinateTypeList A type list tag containing a list of all possible types of values in field arrays used as input
to the filter when the field array comes from the coordinates of the data set. The default policy sets
this to VTKM DEFAULT COORDINATE SYSTEM TYPE LIST TAG, which corresponds to vtkm::Vec<vtkm::-
Float32,3> and vtkm::Vec<vtkm::Float64,3>.

CoordinateStorageList A type list tag containing a list of all possible storage types for field arrays used as
input to the filter when the field array comes from the coordinates of the data set. The default policy sets
this to VTKM DEFAULT COORDINATE SYSTEM STORAGE LIST TAG, which corresponds to a list containing
the basic ArrayHandle storage as well as structures for vtkm::cont::ArrayHandleUniformPointCoordi-
nates, vtkm::cont::ArrayHandleCompositeVector, and vtkm::cont::ArrayHandleCartesianProduct.

StructuredCellSetList A type list tag containing a list of all possible cell sets classes used when represent-
ing structured cell sets. The default policy sets this to vtkm::cont::CellSetListTagStructured, which
corresponds to a list containing vtkm::cont::CellSetStructured<2> and vtkm::cont::CellSetStruc-
tured<3>.

UnstructuredCellSetList A type list tag containing a list of all possible cell set classes used when representing
unstructured cell sets. The default policy sets this to vtkm::cont::CellSetListTagUnstructured, which
corresponds to a list containing vtkm::cont::CellSetExplicit and vtkm::cont::CellSetSingleType.

AllCellSetList A type list tag containing a list of all possible cell set classes. This is usually a union
of StructuredCellSetList and UnstructuredCellSetList. The default policy sets this to VTKM -
DEFAULT CELL SET LIST TAG, which corresponds to a list containing vtkm::cont::CellSetStruc-
tured<2>, vtkm::cont::CellSetStructured<3>, vtkm::cont::CellSetExplicit, and vtkm::cont::-
CellSetSingleType

DeviceAdapterList A type list tag containing a list of device adapter tags for the devices to try to run
the algorithm on. The devices are tried in the order they are listed in DeviceAdapterList, so the
“best” devices should be listed first. The default policy sets this to VTKM DEFAULT DEVICE ADAPTER -
LIST TAG, which corresponds to a list containing vtkm::cont::DeviceAdapterTagCuda, vtkm::cont::-
DeviceAdapterTagTBB, and vtkm::cont::DeviceAdapterTagSerial.

Just because a device is listed in DeviceAdapterList there is no guarantee that such a device will ever be
used. For example, if the Cuda device is listed (as in the default) but the filter is not compiled by the Cuda
compiler, then that device will always be skipped.

Common Errors
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13.3 Creating Policies

Creating a policy is as simple as creating a subclass of vtkm::filter::PolicyBase that provides types for each
of the expected policy information types. PolicyBase is a templated class that takes as its single template
parameter the type of the subclass. For example, a policy object named PolicyFoo will subclass Policy-
Base<PolicyFoo>.

The convention of having a subclass be templated on the derived class’ type is known as the Curiously
Recurring Template Pattern (CRTP). In the case of policies, VTK-m uses this CRTP behavior to allow
methods to have templates that accept any policy type but nothing that is not a policy.

Did you know?

After inheriting from PolicyBase, the custom policy class adds definitions for the type names listed in Sec-
tion 13.2. The following examples show type typical structure for some common instances of policies. Although
these custom policies are separated by use case, there is no real restriction on combining them.

[Maybe I will hold off on implementing this. If the virtual method branch gets accepted, then
the policies will change significantly.]

Chapter 13. Filter Policies 135



DRAFT



DRAFTPart III

Developing with VTK-m



DRAFT



DRAFT
CHAPTER

FOURTEEN

WORKLETS

The simplest way to implement an algorithm in VTK-m is to create a worklet. A worklet is fundamentally a
functor that operates on an element of data. Thus, it is a class or struct that has an overloaded parenthesis
operator (which must be declared const for thread safety). However, worklets are also embedded with a sig-
nificant amount of metadata on how the data should be managed and how the execution should be structured.
This chapter explains the basic mechanics of defining and using worklets.

14.1 Worklet Types

Different operations in visualization can have different data access patterns, perform different execution flow,
and require different provisions. VTK-m manages these different accesses, execution, and provisions by grouping
visualization algorithms into common classes of operation and supporting each class with its own worklet type.

Each worklet type has a generic superclass that worklets of that particular type must inherit. This makes the
type of the worklet easy to identify. The following list describes each worklet type provided by VTK-m and the
superclass that supports it. Details on how to create worklets of each type are given in Section 14.5. It is also
possible to create new worklet types in VTK-m. This is an advanced topic covered in Chapter 24.

Field Map A worklet deriving vtkm::worklet::WorkletMapField performs a basic mapping operation that
applies a function (the operator in the worklet) on all the field values at a single point or cell and creates a
new field value at that same location. Although the intention is to operate on some variable over a mesh,
a WorkletMapField may actually be applied to any array. Thus, a field map can be used as a basic map
operation.

Topology Map A worklet deriving vtkm::worklet::WorkletMapTopology or one of its sibling classes performs
a mapping operation that applies a function (the operator in the worklet) on all elements of a particular
type (such as points or cells) and creates a new field for those elements. The basic operation is similar to
a field map except that in addition to access fields being mapped on, the worklet operation also has access
to incident fields.
There are multiple convenience classes available for the most common types of topology mapping. vtkm::-
worklet::WorkletMapPointToCell calls the worklet operation for each cell and makes every incident point
available. This type of map also has access to cell structures and can interpolate point fields. Likewise,
vtkm::worklet::WorkletMapCellToPoint calls the worklet operation for each point and makes every
incident cell available.

Reduce by Key A worklet deriving vtkm::worklet::WorkletReduceByKey operates on an array of keys and
one or more associated arrays of values. When a reduce by key worklet is invoked, all identical keys are
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collected and the worklet is called once for each unique key. Each worklet invocation is given a Vec-like
containing all values associated with the unique key. Reduce by key worklets are very useful for combining
like items such as shared topology elements or coincident points.

14.2 Dispatchers

Worklets, both those provided by VTK-m as listed in Section 14.3 and ones created by a user as described in
Section 14.4, are instantiated in the control environment and run in the execution environment. This means that
the control environment must have a means to invoke worklets that start running in the execution environment.

This invocation is done through a set of dispatcher objects. A dispatcher object is an object in the control
environment that has an instance of a worklet and can invoke that worklet with a set of arguments. There
are multiple types of dispatcher objects, each corresponding to a type of worklet object. All dispatcher objects
have at least two template parameters: the worklet class being invoked, which is always the first argument, and
the device adapter tag, which is always the last argument and will be set to the default device adapter if not
specified.

All dispatcher classes have a method named Invoke that launches the worklet in the execution environment.
The arguments to Invoke must match those expected by the worklet, which is specified by something called a
control signature. The expected arguments for worklets provided by VTK-m are documented in Section 14.3.
Also, for any worklet, the Invoke arguments can be gleaned from the control signature, which is described in
Section 14.4.1.

The following is a list of the dispatchers defined in VTK-m. The dispatcher classes correspond to the list of
worklet types specified in Section 14.1. Many examples of using these dispatchers are provided in Section 14.3.

vtkm::worklet::DispatcherMapField The dispatcher used in conjunction with a worklet that subclasses
vtkm::worklet::WorkletMapField. The dispatcher class has two template arguments: the worklet type
and the device adapter (optional).

vtkm::worklet::DispatcherMapTopology The dispatcher used in conjunction with a worklet that subclasses
vtkm::worklet::WorkletMapTopology or one of its sibling classes (such as vtkm::worklet::WorkletMap-
PointToCell). The dispatcher class has two template arguments: the worklet type and the device adapter
(optional).

vtkm::worklet::DispatcherReduceByKey The dispatcher used in conjunction with a worklet that subclasses
vtkm::worklet::WorkletReduceByKey. The dispatcher class has two template arguments: the worklet
type and the device adapter (optional).

14.3 Provided Worklets

VTK-m comes with several worklet implementations. These worklet implementations for the most part provide
the underlying implementations of the filters described in Chapter 4. The easiest way to execute a filter is to run
it from the associated filter class. However, if your data is not in a vtkm::cont::DataSet structure or you have
knowledge of the specific data types used in the DataSet, it might be more efficient to run the worklet directly.
Note that many of the filters use multiple worklets under the covers to implement the full functionality.

The following example demonstrates using the simple vtkm::worklet::PointElevation worklet directly.
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Example 14.1: Using the provided PointElevation worklet.
1 VTKM_CONT
2 vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault >
3 ComputeAirPressure (
4 vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault ,3> > pointCoordinates )
5 {
6 vtkm :: worklet :: PointElevation elevationWorklet ;
7
8 // Use the elevation worklet to estimate atmospheric pressure based on the
9 // height of the point coordinates . Atmospheric pressure is 101325 Pa at

10 // sea level and drops about 12 Pa per meter .
11 elevationWorklet . SetLowPoint (vtkm ::Vec <vtkm :: Float64 ,3 >(0.0 , 0.0 , 0.0));
12 elevationWorklet . SetHighPoint (vtkm ::Vec <vtkm :: Float64 ,3 >(0.0 , 0.0 , 2000.0));
13 elevationWorklet . SetRange (101325.0 , 77325.0);
14
15 vtkm :: worklet :: DispatcherMapField <vtkm :: worklet :: PointElevation >
16 elevationDispatcher ( elevationWorklet );
17
18 vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > pressure ;
19
20 elevationDispatcher . Invoke ( pointCoordinates , pressure );
21
22 return pressure ;
23 }

14.4 Creating Worklets

A worklet is created by implementing a class or struct with the following features.

1. The class must contain a functional type named ControlSignature, which specifies what arguments are
expected when invoking the class with a dispatcher in the control environment.

2. The class must contain a functional type named ExecutionSignature, which specifies how the data gets
passed from the arguments in the control environment to the worklet running in the execution environment.

3. The class must contain a type named InputDomain, which identifies which input parameter defines the
input domain of the data.

4. The class may define a scatter operation to override a 1:1 mapping from input to output.

5. The class must contain an implementation of the parenthesis operator, which is the method that is executed
in the execution environment. The parenthesis operator must be declared const.

6. The class must publicly inherit from a base worklet class that specifies the type of operation being per-
formed.

Figure 14.1 demonstrates all of the required components of a worklet.

14.4.1 Control Signature

The control signature of a worklet is a functional type named ControlSignature. The function prototype
matches the calling specification used with the dispatcher Invoke function.

Example 14.2: A ControlSignature.
1 typedef void ControlSignature (FieldIn <VecAll > inputVectors ,
2 FieldOut <Scalar > outputMagnitudes );
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De�nes dispatching method

De�nes how input arrays and structures are interpreted

De�nes how data are 
assigned to threads

Speci�es domain argument (optional)

De�nes mapping from 
input domain to output 
domain (optional)

Algorithms are just functions that 
run on a single instance of the input

Figure 14.1: Annotated example of a worklet declaration.

You may have notices that VTK-m code usually uses the using keyword to define type aliases. In contrast
ControlSignature (and its companion ExecutionSignature discussed in Section 14.4.2) use the typedef
keyword to define the type alias. We use typedef rather than using for function signatures because some
older compilers (specifically Microsoft Visual Studio 2013 and earlier) do not support the use of using in
this case.

Did you know?

The return type of the function prototype is always void because the dispatcher Invoke functions do not return
values. The parameters of the function prototype are tags that identify the type of data that is expected to be
passed to invoke. ControlSignature tags are defined by the worklet type and the various tags are documented
more fully in Section 14.5.

By convention, ControlSignature tag names start with the base concept (e.g. Field or Topology) followed by
the domain (e.g. Point or Cell) followed by In or Out. For example, FieldPointIn would specify values for a
field on the points of a mesh that are used as input (read only). Although they should be there in most cases,
some tag names might leave out the domain or in/out parts if they are obvious or ambiguous.

Type List Tags

Some tags are templated to have modifiers. For example, Field tags have a template argument that is set to a
type list tag defining what types of field data are supported. (See Section 6.6.2 for a description of type lists.)
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In fact, this type list modifier is so common that the following convenience subtags used with Field tags are
defined for all worklet types.

Any type list will work as modifiers for ControlSignature tags. However, these common type lists are
provided for convenience and to make the ControlSignature shorter and more readable.

Did you know?

AllTypes All possible types.

CommonTypes The most used types in visualization. This includes signed integers and floats that are 32 or 64
bit. It also includes 3 dimensional vectors of floats. The same as vtkm::TypeListTagCommon.

IdType Contains the single item vtkm::Id. The same as vtkm::TypeListTagId.

Id2Type Contains the single item vtkm::Id2. The same as vtkm::TypeListTagId2.

Id3Type Contains the single item vtkm::Id3. The same as vtkm::TypeListTagId3.

Index All types used to index arrays. Contains vtkm::Id, vtkm::Id2, and vtkm::Id3. The same as vtkm::-
TypeListTagIndex.

FieldCommon A list containing all the types generally used for fields. It is the combination of Scalar, Vec2,
Vec3, and Vec4. The same as vtkm::TypeListTagField.

Scalar Types used for scalar fields. Specifically, it contains floating point numbers of different widths (i.e.
vtkm::Float32 and vtkm::Float64). The same as vtkm::TypeListTagFieldScalar.

ScalarAll All scalar types. It contains signed and unsigned integers of widths from 8 to 64 bits. It also contains
floats of 32 and 64 bit widths. The same as vtkm::TypeListTagScalarAll.

Vec2 Types for values of fields with 2 dimensional vectors. All these vectors use floating point numbers. The
same as vtkm::TypeListTagFieldVec2.

Vec3 Types for values of fields with 3 dimensional vectors. All these vectors use floating point numbers. The
same as vtkm::TypeListTagFieldVec3.

Vec4 Types for values of fields with 4 dimensional vectors. All these vectors use floating point numbers. The
same as vtkm::TypeListTagFieldVec4.

VecAll All vtkm::Vec classes with standard integers or floating points as components and lengths between 2
and 4. The same as vtkm::TypeListTagVecAll.

VecCommon The most common vector types. It contains all vtkm::Vec class of size 2 through 4 containing
components of unsigned bytes, signed 32-bit integers, signed 64-bit integers, 32-bit floats, or 64-bit floats.
The same as vtkm::TypeListTagVecCommon.
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14.4.2 Execution Signature

Like the control signature, the execution signature of a worklet is a functional type named ExecutionSignature.
The function prototype must match the parenthesis operator (described in Section 14.4.4) in terms of arity and
argument semantics.

Example 14.3: An ExecutionSignature.
1 typedef _2 ExecutionSignature (_1 );

The arguments of the ExecutionSignature’s function prototype are tags that define where the data come from.
The most common tags are an underscore followed by a number, such as 1, 2, etc. These numbers refer back
to the corresponding argument in the ControlSignature. For example, 1 means data from the first control
signature argument, 2 means data from the second control signature argument, etc.

Unlike the control signature, the execution signature optionally can declare a return type if the parenthesis
operator returns a value. If this is the case, the return value should be one of the numeric tags (i.e. 1, 2,
etc.) to refer to one of the data structures of the control signature. If the parenthesis operator does not return
a value, then ExecutionSignature should declare the return type as void.

In addition to the numeric tags, there are other execution signature tags to represent other types of data. For
example, the WorkIndex tag identifies the instance of the worklet invocation. Each call to the worklet function
will have a unique WorkIndex. Other such tags exist and are described in the following section on worklet types
where appropriate.

14.4.3 Input Domain

All worklets represent data parallel operations that are executed over independent elements in some domain.
The type of domain is inherent from the worklet type, but the size of the domain is dependent on the data being
operated on. One of the arguments given to the dispatcher’s Invoke in the control environment must specify
the domain.

A worklet identifies the argument specifying the domain with a type alias named InputDomain. The InputDomain
must be aliased to one of the execution signature numeric tags (i.e. 1, 2, etc.). By default, the InputDomain
points to the first argument, but a worklet can override that to point to any argument.

Example 14.4: An InputDomain declaration.
1 using InputDomain = _1;

Different types of worklets can have different types of domain. For example a simple field map worklet has a
FieldIn argument as its input domain, and the size of the input domain is taken from the size of the associated
field array. Likewise, a worklet that maps topology has a CellSetIn argument as its input domain, and the size
of the input domain is taken from the cell set.

Specifying the InputDomain is optional. If it is not specified, the first argument is assumed to be the input
domain.

14.4.4 Worklet Operator

A worklet is fundamentally a functor that operates on an element of data. Thus, the algorithm that the worklet
represents is contained in or called from the parenthesis operator method.

Example 14.5: An overloaded parenthesis operator of a worklet.
1 template < typename T, vtkm :: IdComponent Size >
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2 VTKM_EXEC
3 T operator ()( const vtkm ::Vec <T,Size > & inVector ) const
4 {

There are some constraints on the parenthesis operator. First, it must have the same arity as the Execu-
tionSignature, and the types of the parameters and return must be compatible. Second, because it runs in
the execution environment, it must be declared with the VTKM EXEC (or VTKM EXEC CONT) modifier. Third, the
method must be declared const to help preserve thread safety.

14.5 Worklet Type Reference

There are multiple worklet types provided by VTK-m, each designed to support a particular type of operation.
Section 14.1 gave a brief overview of each type of worklet. This section gives a much more detailed reference
for each of the worklet types including identifying the generic superclass that a worklet instance should derive,
listing the signature tags and their meanings, and giving an example of the worklet in use.

14.5.1 Field Map

A worklet deriving vtkm::worklet::WorkletMapField performs a basic mapping operation that applies a func-
tion (the operator in the worklet) on all the field values at a single point or cell and creates a new field value at
that same location. Although the intention is to operate on some variable over the mesh, a WorkletMapField
can actually be applied to any array.

A WorkletMapField subclass is invoked with a vtkm::worklet::DispatcherMapField. This dispatcher has two
template arguments. The first argument is the type of the worklet subclass. The second argument, which is
optional, is a device adapter tag.

A field map worklet supports the following tags in the parameters of its ControlSignature.

FieldIn This tag represents an input field. A FieldIn argument expects an ArrayHandle or a DynamicAr-
rayHandle in the associated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a
single value out of this array.
FieldIn has a single template parameter that specifies what data types are acceptable for the array. The
type tags are described in Section 14.4.1 starting on page 143.
The worklet’s InputDomain can be set to a FieldIn argument. In this case, the input domain will be the
size of the array.

FieldOut This tag represents an output field. A FieldOut argument expects an ArrayHandle or a DynamicAr-
rayHandle in the associated parameter of the dispatcher’s Invoke. The array is resized before scheduling
begins, and each invocation of the worklet sets a single value in the array.
FieldOut has a single template parameter that specifies what data types are acceptable for the array. The
type tags are described in Section 14.4.1 starting on page 143.

FieldInOut This tag represents field that is both an input and an output. A FieldInOut argument expects
an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke. Each
invocation of the worklet gets a single value out of this array, which is replaced by the resulting value after
the worklet completes.
FieldInOut has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.
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The worklet’s InputDomain can be set to a FieldInOut argument. In this case, the input domain will be
the size of the array.

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 14.6 starting on page 165.
WholeArrayIn has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 14.6 starting on page 165.
WholeArrayOut has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 14.6 starting on page 165.
WholeArrayInOut has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 143.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet in-
vocation. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the
dispatcher’s Invoke. A vtkm::exec::AtomicArray object capable of performing atomic operations to the
entries in the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow
down the running of a parallel algorithm. Atomic arrays are discussed in detail in Section 14.7 starting on
page 168.

ExecObject This tag represents an execution object that is passed directly from the control environment to
the worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase, and this
same object is given to the worklet. Execution objects are discussed in detail in Section 14.9 starting on
page 172.

A field map worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 14.10).

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 14.10).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)
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ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 24.2, but most users can get the information they
need through other signature tags.

Field maps most commonly perform basic calculator arithmetic, as demonstrated in the following example.

Example 14.6: Implementation and use of a field map worklet.
1 # include <vtkm/ worklet / DispatcherMapField .h>
2 # include <vtkm/ worklet / WorkletMapField .h>
3
4 # include <vtkm/cont/ ArrayHandle .h>
5 # include <vtkm/cont/ DynamicArrayHandle .h>
6
7 # include <vtkm/ VecTraits .h>
8 # include <vtkm/ VectorAnalysis .h>
9

10 namespace vtkm {
11 namespace worklet {
12
13 struct Magnitude
14 {
15 class ComputeMagnitude : public vtkm :: worklet :: WorkletMapField
16 {
17 public :
18 typedef void ControlSignature (FieldIn <VecAll > inputVectors ,
19 FieldOut <Scalar > outputMagnitudes );
20 typedef _2 ExecutionSignature (_1 );
21
22 using InputDomain = _1;
23
24 template < typename T, vtkm :: IdComponent Size >
25 VTKM_EXEC
26 T operator ()( const vtkm ::Vec <T,Size > & inVector ) const
27 {
28 return vtkm :: Magnitude ( inVector );
29 }
30 };
31
32 template < typename ValueType , typename Storage >
33 VTKM_CONT
34 static vtkm :: cont :: ArrayHandle < typename vtkm :: VecTraits <ValueType >:: ComponentType >
35 Run( const vtkm :: cont :: ArrayHandle <ValueType ,Storage > & input )
36 {
37 using ComponentType = typename vtkm :: VecTraits <ValueType >:: ComponentType ;
38 vtkm :: cont :: ArrayHandle < ComponentType > output ;
39
40 vtkm :: worklet :: DispatcherMapField < ComputeMagnitude > dispatcher ;
41 dispatcher . Invoke (input , output );
42
43 return output ;
44 }
45 };
46
47 }
48 } // namespace vtkm :: worklet
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Example 14.6 is using an informal but helpful convention where worklets are defined inside another class
that also contains a static method named Run that runs the worklet using a common set of operations.
The Run method helps make clear the intention and use of the worklet. This is especially important for
operations that require a series of worklet invocations that might be non-obvious.

Did you know?

Although simple, the WorkletMapField worklet type can be used (and abused) as a general parallel-
for/scheduling mechanism. In particular, the WorkIndex execution signature tag can be used to get a unique
index, the WholeArray* tags can be used to get random access to arrays, and the ExecObject control signature
tag can be used to pass execution objects directly to the worklet. Whole arrays and execution objects are talked
about in more detail in Sections 14.6 and 14.9, respectively, in more detail, but here is a simple example that
uses the random access of WholeArrayOut to make a worklet that copies an array in reverse order.

Example 14.7: Leveraging field maps and field maps for general processing.
1 namespace vtkm {
2 namespace worklet {
3
4 struct ReverseArrayCopy
5 {
6 struct PermuteArrayValues : vtkm :: worklet :: WorkletMapField
7 {
8 typedef void ControlSignature (FieldIn <> inputArray ,
9 WholeArrayOut <> outputArray );

10 typedef void ExecutionSignature (_1 , _2 , WorkIndex );
11 using InputDomain = _1;
12
13 template < typename InputType , typename OutputArrayPortalType >
14 VTKM_EXEC
15 void operator ()( const InputType & inputValue ,
16 const OutputArrayPortalType & outputArrayPortal ,
17 vtkm :: Id workIndex ) const
18 {
19 vtkm :: Id outIndex = outputArrayPortal . GetNumberOfValues () - workIndex - 1;
20 if ( outIndex >= 0)
21 {
22 outputArrayPortal .Set(outIndex , inputValue );
23 }
24 else
25 {
26 this -> RaiseError (" Output array not sized correctly .");
27 }
28 }
29 };
30
31 template < typename T, typename Storage >
32 VTKM_CONT
33 static vtkm :: cont :: ArrayHandle <T>
34 Run( const vtkm :: cont :: ArrayHandle <T,Storage > & inArray )
35 {
36 vtkm :: cont :: ArrayHandle <T> outArray ;
37 outArray . Allocate ( inArray . GetNumberOfValues ());
38
39 vtkm :: worklet :: DispatcherMapField < PermuteArrayValues > dispatcher ;
40 dispatcher . Invoke (inArray , outArray );
41
42 return outArray ;
43 }
44 };
45
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46 }
47 } // namespace vtkm :: worklet

14.5.2 Topology Map

A topology map performs a mapping that it applies a function (the operator in the worklet) on all the elements
of a DataSet of a particular type (i.e. point, edge, face, or cell). While operating on the element, the worklet
has access to data from all incident elements of another type.

There are several versions of topology maps that differ in what type of element being mapped from and what
type of element being mapped to. The subsequent sections describe these different variations of the topology
maps. Regardless of their names, they are all defined in vtkm/worklet/WorkletMapTopology.h and are all invoked
with vtkm::worklet::DispatcherMapTopology.

Point to Cell Map

A worklet deriving vtkm::worklet::WorkletMapPointToCell performs a mapping operation that applies a
function (the operator in the worklet) on all the cells of a DataSet. While operating on the cell, the worklet
has access to fields associated both with the cell and with all incident points. Additionally, the worklet can get
information about the structure of the cell and can perform operations like interpolation on it.

A WorkletMapPointToCell subclass is invoked with a vtkm::worklet::DispatcherMapTopology. This dis-
patcher has two template arguments. The first argument is the type of the worklet subclass. The second
argument, which is optional, is a device adapter tag.

A point to cell map worklet supports the following tags in the parameters of its ControlSignature.

CellSetIn This tag represents the cell set that defines the collection of cells the map will operate on. A
CellSetIn argument expects a CellSet subclass or a DynamicCellSet in the associated parameter of the
dispatcher’s Invoke. Each invocation of the worklet gets a cell shape tag. (Cell shapes and the operations
you can do with cells are discussed in Chapter 16.)
There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldInPoint This tag represents an input field that is associated with the points. A FieldInPoint argument
expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of points.
Each invocation of the worklet gets a Vec-like object containing the field values for all the points incident
with the cell being visited. The order of the entries is consistent with the defined order of the vertices for
the visited cell’s shape. If the field is a vector field, then the provided object is a Vec of Vecs.
FieldInPoint has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.

FieldInCell This tag represents an input field that is associated with the cells. A FieldInCell argument
expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of cells. Each invocation of the worklet gets a single
value out of this array.
FieldInCell has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.
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FieldOutCell This tag represents an output field, which is necessarily associated with cells. A FieldOut-
Cell argument expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the
dispatcher’s Invoke. The array is resized before scheduling begins, and each invocation of the worklet sets
a single value in the array.
FieldOutCell has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.
FieldOut is an alias for FieldOutCell (since output arrays can only be defined on cells).

FieldInOutCell This tag represents field that is both an input and an output, which is necessarily associated
with cells. A FieldInOutCell argument expects an ArrayHandle or a DynamicArrayHandle in the asso-
ciated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a single value out of this
array, which is replaced by the resulting value after the worklet completes.
FieldInOutCell has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 143.
FieldInOut is an alias for FieldInOutCell (since output arrays can only be defined on cells).

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 14.6 starting on page 165.
WholeArrayIn has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 14.6 starting on page 165.
WholeArrayOut has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 14.6 starting on page 165.
WholeArrayInOut has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 143.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet in-
vocation. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the
dispatcher’s Invoke. A vtkm::exec::AtomicArray object capable of performing atomic operations to the
entries in the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow
down the running of a parallel algorithm. Atomic arrays are discussed in detail in Section 14.7 starting on
page 168.

ExecObject This tag represents an execution object that is passed directly from the control environment to
the worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase, and this
same object is given to the worklet. Execution objects are discussed in detail in Section 14.9 starting on
page 172.
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A field map worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

CellShape This tag produces a shape tag corresponding to the shape of the visited cell. (Cell shapes and the
operations you can do with cells are discussed in Chapter 16.) This is the same value that gets provided
if you reference the CellSetIn parameter.

PointCount This tag produces a vtkm::IdComponent equal to the number of points incident on the cell being
visited. The Vecs provided from a FieldInPoint parameter will be the same size as PointCount.

PointIndices This tag produces a Vec-like object of vtkm::Ids giving the indices for all incident points. Like
values from a FieldInPoint parameter, the order of the entries is consistent with the defined order of the
vertices for the visited cell’s shape.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 14.10).

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 14.10).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 24.2, but most users can get the information they
need through other signature tags.

Point to cell field maps are a powerful construct that allow you to interpolate point fields throughout the space
of the data set. See Chapter 16 for a description on how to work with the cell information provided to the
worklet. The following example provides a simple demonstration that finds the geometric center of each cell by
interpolating the point coordinates to the cell centers.

Example 14.8: Implementation and use of a map point to cell worklet.
1 # include <vtkm/ worklet / DispatcherMapTopology .h>
2 # include <vtkm/ worklet / WorkletMapTopology .h>
3
4 # include <vtkm/cont/ DataSet .h>
5 # include <vtkm/cont/ DataSetFieldAdd .h>
6
7 # include <vtkm/exec/ CellInterpolate .h>
8 # include <vtkm/exec/ ParametricCoordinates .h>
9

10 namespace vtkm {
11 namespace worklet {
12
13 struct CellCenter
14 {
15 class InterpolateCenter : public vtkm :: worklet :: WorkletMapPointToCell
16 {
17 public :
18 typedef void ControlSignature ( CellSetIn cellSet ,
19 FieldInPoint <> inputPointField ,
20 FieldOut <> outputCellField );
21 typedef _3 ExecutionSignature (_1 , PointCount , _2 );

Chapter 14. Worklets 151



DRAFT

14.5. Worklet Type Reference

22
23 using InputDomain = _1;
24
25 template < typename CellShape ,
26 typename InputPointFieldType >
27 VTKM_EXEC
28 typename InputPointFieldType :: ComponentType
29 operator ()( CellShape shape ,
30 vtkm :: IdComponent numPoints ,
31 const InputPointFieldType & inputPointField ) const
32 {
33 vtkm ::Vec <vtkm :: FloatDefault ,3> parametricCenter =
34 vtkm :: exec :: ParametricCoordinatesCenter (numPoints , shape , *this );
35 return vtkm :: exec :: CellInterpolate ( inputPointField ,
36 parametricCenter ,
37 shape ,
38 *this );
39 }
40 };
41
42 template < typename CellSetType , typename ValueType , typename StorageType >
43 VTKM_CONT
44 static vtkm :: cont :: ArrayHandle <ValueType >
45 Run( const CellSetType &cellSet ,
46 const vtkm :: cont :: ArrayHandle <ValueType , StorageType > & inPointField )
47 {
48 vtkm :: cont :: ArrayHandle <ValueType > outCellField ;
49
50 vtkm :: worklet :: DispatcherMapTopology <
51 vtkm :: worklet :: CellCenter :: InterpolateCenter > dispatcher ;
52 dispatcher . Invoke (cellSet , inPointField , outCellField );
53
54 return outCellField ;
55 }
56 };
57
58 }
59 } // namespace vtkm :: worklet

Cell To Point Map

A worklet deriving vtkm::worklet::WorkletMapCellToPoint performs a mapping operation that applies a
function (the operator in the worklet) on all the points of a DataSet. While operating on the point, the worklet
has access to fields associated both with the point and with all incident cells.

A WorkletMapCellToPoint subclass is invoked with a vtkm::worklet::DispatcherMapTopology. This dis-
patcher has two template arguments. The first argument is the type of the worklet subclass. The second
argument, which is optional, is a device adapter tag.

A cell to point map worklet supports the following tags in the parameters of its ControlSignature.

CellSetIn This tag represents the cell set that defines the collection of points the map will operate on. A
CellSetIn argument expects a CellSet subclass or a DynamicCellSet in the associated parameter of the
dispatcher’s Invoke.
There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldInCell This tag represents an input field that is associated with the cells. A FieldInCell argument
expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke.
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The size of the array must be exactly the number of cells.
Each invocation of the worklet gets a Vec-like object containing the field values for all the cells incident
with the point being visited. The order of the entries is arbitrary but will be consistent with the values of
all other FieldInCell arguments for the same worklet invocation. If the field is a vector field, then the
provided object is a Vec of Vecs.
FieldInCell has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.

FieldInPoint This tag represents an input field that is associated with the points. A FieldInPoint argument
expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of points. Each invocation of the worklet gets a single
value out of this array.
FieldInPoint has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.

FieldOutPoint This tag represents an output field, which is necessarily associated with points. A FieldOut-
Point argument expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the
dispatcher’s Invoke. The array is resized before scheduling begins, and each invocation of the worklet sets
a single value in the array.
FieldOutPoint has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.
FieldOut is an alias for FieldOutPoint (since output arrays can only be defined on points).

FieldInOutPoint This tag represents field that is both an input and an output, which is necessarily associated
with points. A FieldInOutPoint argument expects an ArrayHandle or a DynamicArrayHandle in the
associated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a single value out of
this array, which is replaced by the resulting value after the worklet completes.
FieldInOutPoint has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 143.
FieldInOut is an alias for FieldInOutPoint (since output arrays can only be defined on points).

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 14.6 starting on page 165.
WholeArrayIn has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 14.6 starting on page 165.
WholeArrayOut has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 14.6 starting on page 165.
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WholeArrayInOut has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 143.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet in-
vocation. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the
dispatcher’s Invoke. A vtkm::exec::AtomicArray object capable of performing atomic operations to the
entries in the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow
down the running of a parallel algorithm. Atomic arrays are discussed in detail in Section 14.7 starting on
page 168.

ExecObject This tag represents an execution object that is passed directly from the control environment to
the worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase, and this
same object is given to the worklet. Execution objects are discussed in detail in Section 14.9 starting on
page 172.

A field map worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

CellCount This tag produces a vtkm::IdComponent equal to the number of cells incident on the point being
visited. The Vecs provided from a FieldInCell parameter will be the same size as CellCount.

CellIndices This tag produces a Vec-like object of vtkm::Ids giving the indices for all incident cells. The
order of the entries is arbitrary but will be consistent with the values of all other FieldInCell arguments
for the same worklet invocation.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 14.10).

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 14.10).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 24.2, but most users can get the information they
need through other signature tags.

Cell to point field maps are typically used for converting fields associated with cells to points so that they can be
interpolated. The following example does a simple averaging, but you can also implement other strategies such
as a volume weighted average.

Example 14.9: Implementation and use of a map cell to point worklet.
1 # include <vtkm/ worklet / DispatcherMapTopology .h>
2 # include <vtkm/ worklet / WorkletMapTopology .h>
3
4 # include <vtkm/cont/ DataSet .h>
5 # include <vtkm/cont/ DataSetFieldAdd .h>
6 # include <vtkm/cont/ DynamicArrayHandle .h>
7 # include <vtkm/cont/ DynamicCellSet .h>
8 # include <vtkm/cont/ Field .h>
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9
10 namespace vtkm {
11 namespace worklet {
12
13 struct ConvertCellFieldsToPointFields
14 {
15 class AverageCellField : public vtkm :: worklet :: WorkletMapCellToPoint
16 {
17 public :
18 typedef void ControlSignature ( CellSetIn cellSet ,
19 FieldInCell <> inputCellField ,
20 FieldOut <> outputPointField );
21 typedef void ExecutionSignature (CellCount , _2 , _3 );
22
23 using InputDomain = _1;
24
25 template < typename InputCellFieldType , typename OutputFieldType >
26 VTKM_EXEC
27 void
28 operator ()( vtkm :: IdComponent numCells ,
29 const InputCellFieldType & inputCellField ,
30 OutputFieldType & fieldAverage ) const
31 {
32 // TODO: This trickery with calling DoAverage with an extra fabricated type
33 // is to handle when the dynamic type resolution provides combinations that
34 // are incompatible . On the todo list for VTK -m is to allow you to express
35 // types that are the same for different parameters of the control
36 // signature . When that happens , we can get rid of this hack.
37 using InputComponentType = typename InputCellFieldType :: ComponentType ;
38 this -> DoAverage (numCells ,
39 inputCellField ,
40 fieldAverage ,
41 vtkm :: ListTagBase < InputComponentType , OutputFieldType >());
42 }
43
44 private :
45 template < typename InputCellFieldType , typename OutputFieldType >
46 VTKM_EXEC
47 void DoAverage (vtkm :: IdComponent numCells ,
48 const InputCellFieldType & inputCellField ,
49 OutputFieldType & fieldAverage ,
50 vtkm :: ListTagBase < OutputFieldType , OutputFieldType >) const
51 {
52 fieldAverage = OutputFieldType (0);
53
54 for (vtkm :: IdComponent cellIndex = 0; cellIndex < numCells ; cellIndex ++)
55 {
56 fieldAverage = fieldAverage + inputCellField [ cellIndex ];
57 }
58
59 fieldAverage = fieldAverage / OutputFieldType ( numCells );
60 }
61
62 template < typename T1 , typename T2 , typename T3 >
63 VTKM_EXEC
64 void DoAverage (vtkm :: IdComponent , T1 , T2 , T3) const
65 {
66 this -> RaiseError (" Incompatible types for input and output .");
67 }
68 };
69
70 VTKM_CONT
71 static vtkm :: cont :: DataSet Run( const vtkm :: cont :: DataSet & inData )
72 {
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73 vtkm :: cont :: DataSet outData ;
74
75 // Copy parts of structure that should be passed through .
76 for (vtkm :: Id cellSetIndex = 0;
77 cellSetIndex < inData . GetNumberOfCellSets ();
78 cellSetIndex ++)
79 {
80 outData . AddCellSet ( inData . GetCellSet ( cellSetIndex ));
81 }
82 for (vtkm :: Id coordSysIndex = 0;
83 coordSysIndex < inData . GetNumberOfCoordinateSystems ();
84 coordSysIndex ++)
85 {
86 outData . AddCoordinateSystem ( inData . GetCoordinateSystem ( coordSysIndex ));
87 }
88
89 // Copy all fields , converting cell fields to point fields .
90 for (vtkm :: Id fieldIndex = 0;
91 fieldIndex < inData . GetNumberOfFields ();
92 fieldIndex ++)
93 {
94 vtkm :: cont :: Field inField = inData . GetField ( fieldIndex );
95 if ( inField . GetAssociation () == vtkm :: cont :: Field :: ASSOC_CELL_SET )
96 {
97 vtkm :: cont :: DynamicArrayHandle inFieldData = inField . GetData ();
98 vtkm :: cont :: DynamicCellSet inCellSet =
99 inData . GetCellSet ( inField . GetAssocCellSet ());

100
101 vtkm :: cont :: DynamicArrayHandle outFieldData = inFieldData . NewInstance ();
102 vtkm :: worklet :: DispatcherMapTopology < AverageCellField > dispatcher ;
103 dispatcher . Invoke (inCellSet , inFieldData , outFieldData );
104
105 vtkm :: cont :: DataSetFieldAdd :: AddCellField (outData ,
106 inField . GetName (),
107 outFieldData ,
108 inField . GetAssocCellSet ());
109 }
110 else
111 {
112 outData . AddField ( inField );
113 }
114 }
115
116 return outData ;
117 }
118 };
119
120 }
121 } // namespace vtkm :: worklet

General Topology Maps

A worklet deriving vtkm::worklet::WorkletMapTopology performs a mapping operation that applies a function
(the operator in the worklet) on all the elements of a specified type from a DataSet. While operating on each
element, the worklet has access to fields associated both with that element and with all incident elements of a
different specified type.

The WorkletMapTopology class is a template with two template parameters. The first template parameter
specifies the “from” topology element, and the second template parameter specifies the “to” topology element.
The worklet is scheduled such that each instance is associated with a particular “to” topology element and has
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access to incident “from” topology elements.

These from and to topology elements are specified with topology element tags, which are defined in the vtkm/-
TopologyElementTag.h header file. The available topology element tags are vtkm::TopologyElementTagCell,
vtkm::TopologyElementTagPoint, vtkm::TopologyElementTagEdge, and vtkm::TopologyElementTagFace,
which represent the cell, point, edge, and face elements, respectively.

WorkletMapTopology is a generic form of a topology map, and it can perform identically to the aforementioned
forms of topology map with the correct template parameters. For example,

vtkm::worklet::WorkletMapTopology<vtkm::TopologyElementTagPoint, vtkm::TopologyEle-
mentTagCell>

is equivalent to the vtkm::worklet::WorkletMapPointToCell class except the signature tags have different
names. The names used in the specific topology map superclasses (such as WorkletMapPointToCell) tend to
be easier to read and are thus preferable. However, the generic WorkletMapTopology is available for topology
combinations without a specific superclass or to support more general mappings in a worklet.

The general topology map worklet supports the following tags in the parameters of its ControlSignature, which
are equivalent to tags in the other topology maps but with different (more general) names.

CellSetIn This tag represents the cell set that defines the collection of elements the map will operate on. A
CellSetIn argument expects a CellSet subclass or a DynamicCellSet in the associated parameter of the
dispatcher’s Invoke. Each invocation of the worklet gets a cell shape tag. (Cell shapes and the operations
you can do with cells are discussed in Chapter 16.)
There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldInFrom This tag represents an input field that is associated with the “from” elements. A FieldInFrom ar-
gument expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s
Invoke. The size of the array must be exactly the number of “from” elements.
Each invocation of the worklet gets a Vec-like object containing the field values for all the “from” elements
incident with the “to” element being visited. If the field is a vector field, then the provided object is a Vec
of Vecs.
FieldInFrom has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.

FieldInTo This tag represents an input field that is associated with the “to” element. A FieldInTo argument
expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of cells. Each invocation of the worklet gets a single
value out of this array.
FieldInTo has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.

FieldOut This tag represents an output field, which is necessarily associated with “to” elements. A FieldOut ar-
gument expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s
Invoke. The array is resized before scheduling begins, and each invocation of the worklet sets a single
value in the array.
FieldOut has a single template parameter that specifies what data types are acceptable for the array. The
type tags are described in Section 14.4.1 starting on page 143.
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FieldInOut This tag represents field that is both an input and an output, which is necessarily associated
with “to” elements. A FieldInOut argument expects an ArrayHandle or a DynamicArrayHandle in the
associated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a single value out of
this array, which is replaced by the resulting value after the worklet completes.
FieldInOut has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 14.6 starting on page 165.
WholeArrayIn has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 14.6 starting on page 165.
WholeArrayOut has a single template parameter that specifies what data types are acceptable for the array.
The type tags are described in Section 14.4.1 starting on page 143.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 14.6 starting on page 165.
WholeArrayInOut has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 143.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet in-
vocation. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the
dispatcher’s Invoke. A vtkm::exec::AtomicArray object capable of performing atomic operations to the
entries in the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow
down the running of a parallel algorithm. Atomic arrays are discussed in detail in Section 14.7 starting on
page 168.

ExecObject This tag represents an execution object that is passed directly from the control environment to
the worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase, and this
same object is given to the worklet. Execution objects are discussed in detail in Section 14.9 starting on
page 172.

A general topology map worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

CellShape This tag produces a shape tag corresponding to the shape of the visited “to” element. (Cell shapes
and the operations you can do with cells are discussed in Chapter 16.) This is the same value that gets
provided if you reference the CellSetIn parameter.
If the “to” element is cells, the CellShape clearly will match the shape of each cell. Other elements will
have shapes to match their structures. Points have vertex shapes, edges have line shapes, and faces have
some type of polygonal shape.
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FromCount This tag produces a vtkm::IdComponent equal to the number of “from” elements incident on the
“to” element being visited. The Vecs provided from a FieldInFrom parameter will be the same size as
FromCount.

FromIndices This tag produces a Vec-like object of vtkm::Ids giving the indices for all incident “from” elements.
The order of the entries is consistent with the values of all other FieldInFrom arguments for the same
worklet invocation.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 14.10).

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 14.10).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 24.2, but most users can get the information they
need through other signature tags.

14.5.3 Reduce by Key

A worklet deriving vtkm::worklet::WorkletReduceByKey operates on an array of keys and one or more asso-
ciated arrays of values. When a reduce by key worklet is invoked, all identical keys are collected and the worklet
is called once for each unique key. Each worklet invocation is given a Vec-like containing all values associated
with the unique key. Reduce by key worklets are very useful for combining like items such as shared topology
elements or coincident points.

0 2 1 0 4 1 1 4

2 4 6 8 1 2 3 4

4.7 9.7 9.2 1.3 7.9 6.7 5.3 8.1

1

6 2 3

9.2 6.7 5.3

Worklet Call 2

0

2 8

4.7 1.3

Worklet Call 1

2

4

9.7

Worklet Call 3

4

1 4

7.9 8.1

Worklet Call 4

Keys

Values 1

Values 2

Key

Values 1

Values 2

Figure 14.2: The collection of values for a reduce by key worklet.

Figure 14.2 show a pictorial representation of how VTK-m collects data for a reduce by key worklet. All calls to
a reduce by key worklet has exactly one array of keys. The key array in this example has 4 unique keys: 0, 1,
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2, 4. These 4 unique keys will result in 4 calls to the worklet function. This example also has 2 arrays of values
associated with the keys. (A reduce by keys worklet can have any number of values arrays.)

Within the dispatch of the worklet, all these common keys will be collected with their associated values. The
parenthesis operator of the worklet will be called once per each unique key. The worklet call will be given a
Vec-like containing all values that have the key.

A WorkletReduceByKey subclass is invoked with a vtkm::worklet::DispatcherReduceByKey. This dispatcher
has two template arguments. The first argument is the type of the worklet subclass. The second argument,
which is optional, is a device adapter tag.

A reduce by key worklet supports the following tags in the parameters of its ControlSignature.

KeysIn This tag represents the input keys. A KeysIn argument expects a vtkm::worklet::Keys object in the
associated parameter of the dispatcher’s Invoke. The Keys object, which wraps around an ArrayHandle
containing the keys and manages the auxiliary structures for collecting like keys, is described later in this
section.
Each invocation of the worklet gets a single unique key.
A WorkletReduceByKey object must have exactly one KeysIn parameter in its ControlSignature, and
the InputDomain must point to the KeysIn parameter.

ValuesIn This tag represents a set of input values that are associated with the keys. A ValuesIn argument
expects an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke.
The number of values in this array must be equal to the size of the array used with the KeysIn argument.
Each invocation of the worklet gets a Vec-like object containing all the values associated with the unique
key.
ValuesIn has a single template parameter that specifies what data types are acceptable for the array. The
type tags are described in Section 14.4.1 starting on page 143.

ValuesInOut This tag behaves the same as ValuesIn except that the worklet may write values back into the Vec-
like object, and these values will be placed back in their original locations in the array. Use of ValuesInOut
is rare.

ValuesOut This tag behaves the same as ValuesInOut except that the array is resized appropriately and no
input values are passed to the worklet. As with ValuesInOut, values the worklet writes to its Vec-like
object get placed in the location of the original arrays. Use of ValuesOut is rare.

ReducedValuesOut This tag represents the resulting reduced values. A ReducedValuesOut argument expects
an ArrayHandle or a DynamicArrayHandle in the associated parameter of the dispatcher’s Invoke. The
array is resized before scheduling begins, and each invocation of the worklet sets a single value in the array.
ReducedValuesOut has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 143.

ReducedValuesIn This tag represents input values that come from (typically) from a previous invocation of a
reduce by key. A ReducedValuesOut argument expects an ArrayHandle or a DynamicArrayHandle in the
associated parameter of the dispatcher’s Invoke. The number of values in the array must equal the number
of unique keys.
ReducedValuesIn has a single template parameter that specifies what data types are acceptable for the
array. The type tags are described in Section 14.4.1 starting on page 143.
A ReducedValuesIn argument is usually used to pass reduced values from one invocation of a reduce by
key worklet to another invocation of a reduced by key worklet such as in an algorithm that requires iterative
steps.
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A reduce by key worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

ValueCount This tag produces a vtkm::IdComponent that is equal to the number of times the key associated
with this call to the worklet occurs in the input. This is the same size as the Vec-like objects provided by
ValuesIn arguments.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 14.10).

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 14.10).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 24.2, but most users can get the information they
need through other signature tags.

As stated earlier, the reduce by key worklet is useful for collected like values. To demonstrate the reduce by key
worklet, we will create a simple mechanism to generate a histogram in parallel. (VTK-m comes with its own
histogram implementation, but we create our own version here for a simple example.) The way we can use the
reduce by key worklet to compute a histogram is to first identify which bin of the histogram each value is in,
and then use the bin identifiers as the keys to collect the information. To help with this example, we will first
create a helper class named BinScalars that helps us manage the bins.

Example 14.10: A helper class to manage histogram bins.
1 class BinScalars
2 {
3 public :
4 VTKM_EXEC_CONT
5 BinScalars ( const vtkm :: Range & range , vtkm :: Id numBins )
6 : Range ( range ), NumBins ( numBins )
7 { }
8
9 VTKM_EXEC_CONT

10 BinScalars ( const vtkm :: Range & range , vtkm :: Float64 tolerance )
11 : Range ( range )
12 {
13 this -> NumBins = vtkm :: Id(this -> Range . Length ()/ tolerance ) + 1;
14 }
15
16 VTKM_EXEC_CONT
17 vtkm :: Id GetBin (vtkm :: Float64 value ) const
18 {
19 vtkm :: Float64 ratio = ( value - this -> Range .Min )/ this -> Range . Length ();
20 vtkm :: Id bin = vtkm :: Id( ratio * this -> NumBins );
21 bin = vtkm :: Max(bin , vtkm :: Id (0));
22 bin = vtkm :: Min(bin , this ->NumBins -1);
23 return bin;
24 }
25
26 private :
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27 vtkm :: Range Range ;
28 vtkm :: Id NumBins ;
29 };

Using this helper class, we can easily create a simple map worklet that takes values, identifies a bin, and writes
that result out to an array that can be used as keys.

Example 14.11: A simple map worklet to identify histogram bins, which will be used as keys.
1 struct IdentifyBins : vtkm :: worklet :: WorkletMapField
2 {
3 typedef void ControlSignature (FieldIn <Scalar > data ,
4 FieldOut <IdType > bins );
5 typedef _2 ExecutionSignature (_1 );
6 using InputDomain = _1;
7
8 BinScalars Bins;
9

10 VTKM_CONT
11 IdentifyBins ( const BinScalars & bins)
12 : Bins(bins)
13 { }
14
15 VTKM_EXEC
16 vtkm :: Id operator ()( vtkm :: Float64 value ) const
17 {
18 return Bins. GetBin ( value );
19 }
20 };

Once you generate an array to be used as keys, you need to make a vtkm::worklet::Keys object. The Keys
object is what will be passed to the invoke of the reduce by keys dispatcher. This of course happens in the
control environment after calling the dispatcher for our worklet for generating the keys.

Example 14.12: Creating a vtkm::worklet::Keys object.
1 vtkm :: cont :: ArrayHandle <vtkm ::Id > binIds ;
2 vtkm :: worklet :: DispatcherMapField < IdentifyBins , DeviceAdapterTag >
3 identifyDispatcher (bins );
4 identifyDispatcher . Invoke ( valuesArray , binIds );
5
6 vtkm :: worklet :: Keys <vtkm ::Id > keys(binIds , DeviceAdapterTag ());

Now that we have our keys, we are finally ready for our reduce by key worklet. A histogram is simply a count
of the number of elements in a bin. In this case, we do not really need any values for the keys. We just need the
size of the bin, which can be identified with the internally calculated ValueCount.

A complication we run into with this histogram filter is that it is possible for a bin to be empty. If a bin is empty,
there will be no key associated with that bin, and the reduce by key dispatcher will not call the worklet for that
bin/key. To manage this case, we have to initialize an array with 0’s and then fill in the non-zero entities with
our reduce by key worklet. We can find the appropriate entry into the array by using the key, which is actually
the bin identifier, which doubles as an index into the histogram. The following example gives the implementation
for the reduce by key worklet that fills in positive values of the histogram.

Example 14.13: A reduce by key worklet to write histogram bin counts.
1 struct CountBins : vtkm :: worklet :: WorkletReduceByKey
2 {
3 typedef void ControlSignature ( KeysIn keys , WholeArrayOut <> binCounts );
4 typedef void ExecutionSignature (_1 , ValueCount , _2 );
5 using InputDomain = _1;
6
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7 template <typename BinCountsPortalType >
8 VTKM_EXEC
9 void operator ()( vtkm :: Id binId ,

10 vtkm :: IdComponent numValuesInBin ,
11 BinCountsPortalType & binCounts ) const
12 {
13 binCounts .Set(binId , numValuesInBin );
14 }
15 };

The previous example demonstrates the basic usage of the reduce by key worklet to count common keys. A more
common use case is to collect values associated with those keys, do an operation on those values, and provide
a “reduced” value for each unique key. The following example demonstrates such an operation by providing a
worklet that finds the average of all values in a particular bin rather than counting them.

Example 14.14: A worklet that averages all values with a common key.
1 struct BinAverage : vtkm :: worklet :: WorkletReduceByKey
2 {
3 typedef void ControlSignature ( KeysIn keys ,
4 ValuesIn <> originalValues ,
5 ReducedValuesOut <> averages );
6 typedef _3 ExecutionSignature (_2 );
7 using InputDomain = _1;
8
9 template <typename OriginalValuesVecType >

10 VTKM_EXEC
11 typename OriginalValuesVecType :: ComponentType
12 operator ()( const OriginalValuesVecType & originalValues ) const
13 {
14 typename OriginalValuesVecType :: ComponentType sum = 0;
15 for (vtkm :: IdComponent index = 0;
16 index < originalValues . GetNumberOfComponents ();
17 index ++)
18 {
19 sum = sum + originalValues [ index ];
20 }
21 return sum/ originalValues . GetNumberOfComponents ();
22 }
23 };

To complete the code required to average all values that fall into the same bin, the following example shows the
full code required to invoke such a worklet. Note that this example repeats much of the previous examples, but
shows it in a more complete context.

Example 14.15: Using a reduce by key worklet to average values falling into the same bin.
1 struct CombineSimilarValues
2 {
3 struct IdentifyBins : vtkm :: worklet :: WorkletMapField
4 {
5 typedef void ControlSignature (FieldIn <Scalar > data ,
6 FieldOut <IdType > bins );
7 typedef _2 ExecutionSignature (_1 );
8 using InputDomain = _1;
9

10 BinScalars Bins;
11
12 VTKM_CONT
13 IdentifyBins ( const BinScalars & bins)
14 : Bins(bins)
15 { }
16
17 VTKM_EXEC
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18 vtkm :: Id operator ()( vtkm :: Float64 value ) const
19 {
20 return Bins. GetBin ( value );
21 }
22 };
23
24 struct BinAverage : vtkm :: worklet :: WorkletReduceByKey
25 {
26 typedef void ControlSignature ( KeysIn keys ,
27 ValuesIn <> originalValues ,
28 ReducedValuesOut <> averages );
29 typedef _3 ExecutionSignature (_2 );
30 using InputDomain = _1;
31
32 template <typename OriginalValuesVecType >
33 VTKM_EXEC
34 typename OriginalValuesVecType :: ComponentType
35 operator ()( const OriginalValuesVecType & originalValues ) const
36 {
37 typename OriginalValuesVecType :: ComponentType sum = 0;
38 for (vtkm :: IdComponent index = 0;
39 index < originalValues . GetNumberOfComponents ();
40 index ++)
41 {
42 sum = sum + originalValues [ index ];
43 }
44 return sum/ originalValues . GetNumberOfComponents ();
45 }
46 };
47
48 template <typename InArrayHandleType , typename DeviceAdapterTag >
49 VTKM_CONT
50 static
51 vtkm :: cont :: ArrayHandle < typename InArrayHandleType :: ValueType >
52 Run( const InArrayHandleType & valuesArray , vtkm :: Id numBins , DeviceAdapterTag )
53 {
54 VTKM_IS_ARRAY_HANDLE ( InArrayHandleType );
55
56 using ValueType = typename InArrayHandleType :: ValueType ;
57
58 vtkm :: Range range =
59 vtkm :: cont :: ArrayRangeCompute ( valuesArray ). GetPortalConstControl (). Get (0);
60 BinScalars bins(range , numBins );
61
62 vtkm :: cont :: ArrayHandle <vtkm ::Id > binIds ;
63 vtkm :: worklet :: DispatcherMapField < IdentifyBins , DeviceAdapterTag >
64 identifyDispatcher (bins );
65 identifyDispatcher . Invoke ( valuesArray , binIds );
66
67 vtkm :: worklet :: Keys <vtkm ::Id > keys(binIds , DeviceAdapterTag ());
68
69 vtkm :: cont :: ArrayHandle <ValueType > combinedValues ;
70
71 vtkm :: worklet :: DispatcherReduceByKey < BinAverage , DeviceAdapterTag >
72 averageDispatcher ;
73 averageDispatcher . Invoke (keys , valuesArray , combinedValues );
74
75 return combinedValues ;
76 }
77 };
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14.6 Whole Arrays

As documented in Section 14.5, each worklet type has a set of parameter types that can be used to pass data to
and from the worklet invocation. But what happens if you want to pass data that cannot be expressed in these
predefined mechanisms. Chapter 24 describes how to create completely new worklet types and parameter tags.
However, designing such a system for a one-time use is overkill.

Instead, all VTK-m worklets provide a trio of mechanisms that allow you to pass arbitrary data to a worklet. In
this section, we will explore a whole array argument that provides random access to an entire array. In a later
section we describe an even more general mechanism to describe any execution object.

The VTK-m worklet dispatching mechanism performs many safety checks to prevent race conditions across
concurrently running worklets. Using a whole array within a worklet circumvents this guarantee of safety,
so be careful when using whole arrays, especially when writing to whole arrays.

Common Errors

A whole array is declared by adding a WholeArrayIn, a WholeArrayInOut, or a WholeArrayOut to the Con-
trolSignature. The corresponding argument to the dispatcher’s Invoke should be an ArrayHandle. The
ArrayHandle must already be allocated in all cases, including when using WholeArrayOut. When the data are
passed to the operator of the worklet, it is passed as an array portal object. This means that the worklet can
access any entry in the array with Get and/or Set methods.

We have already seen a demonstration of using a whole array in Example 14.7 to perform a simple array copy.
Here we will construct a more thorough example of building functionality that requires random array access.

Let’s say we want to measure the quality of triangles in a mesh. A common method for doing this is using the
equation

q = 4a
√

3
h2

1 +h2
2 +h2

3

where a is the area of the triangle and h1, h2, and h3 are the lengths of the sides. We can easily compute this
in a cell to point map, but what if we want to speed up the computations by reducing precision? After all, we
probably only care if the triangle is good, reasonable, or bad. So instead, let’s build a lookup table and then
retrieve the triangle quality from that lookup table based on its sides.

The following example demonstrates creating such a table lookup in an array and using a worklet argument
tagged with WholeArrayIn to make it accessible.

Example 14.16: Using WholeArrayIn to access a lookup table in a worklet.
1 # include <vtkm/cont/ ArrayHandle .h>
2 # include <vtkm/cont/ DataSet .h>
3
4 # include <vtkm/ worklet / DispatcherMapTopology .h>
5 # include <vtkm/ worklet / WorkletMapTopology .h>
6
7 # include <vtkm/ CellShape .h>
8 # include <vtkm/Math.h>
9 # include <vtkm/ VectorAnalysis .h>

10
11 namespace detail {
12
13 static const vtkm :: Id TRIANGLE_QUALITY_TABLE_DIMENSION = 8;
14 static const vtkm :: Id TRIANGLE_QUALITY_TABLE_SIZE =
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15 TRIANGLE_QUALITY_TABLE_DIMENSION * TRIANGLE_QUALITY_TABLE_DIMENSION ;
16
17 VTKM_CONT
18 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > GetTriangleQualityTable ()
19 {
20 // Use these precomputed values for the array . A real application would
21 // probably use a larger array , but we are keeping it small for demonstration
22 // purposes .
23 static vtkm :: Float32 triangleQualityBuffer [ TRIANGLE_QUALITY_TABLE_SIZE ] = {
24 0, 0, 0, 0, 0, 0, 0, 0,
25 0, 0, 0, 0, 0, 0, 0, 0.24431f,
26 0, 0, 0, 0, 0, 0, 0.43298f, 0.47059f,
27 0, 0, 0, 0, 0, 0.54217f, 0.65923f, 0.66408f,
28 0, 0, 0, 0, 0.57972f, 0.75425f, 0.82154f, 0.81536f,
29 0, 0, 0, 0.54217f, 0.75425f, 0.87460f, 0.92567f, 0.92071f,
30 0, 0, 0.43298f, 0.65923f, 0.82154f, 0.92567f, 0.97664f, 0.98100f,
31 0, 0.24431f, 0.47059f, 0.66408f, 0.81536f, 0.92071f, 0.98100f, 1
32 };
33
34 return vtkm :: cont :: make_ArrayHandle ( triangleQualityBuffer ,
35 TRIANGLE_QUALITY_TABLE_SIZE );
36 }
37
38 template < typename T>
39 VTKM_EXEC_CONT
40 vtkm ::Vec <T,3> TriangleEdgeLengths ( const vtkm ::Vec <T,3> &point1 ,
41 const vtkm ::Vec <T,3> &point2 ,
42 const vtkm ::Vec <T,3> & point3 )
43 {
44 return vtkm :: make_Vec (vtkm :: Magnitude (point1 - point2 ),
45 vtkm :: Magnitude (point2 - point3 ),
46 vtkm :: Magnitude (point3 - point1 ));
47 }
48
49 VTKM_SUPPRESS_EXEC_WARNINGS
50 template < typename PortalType , typename T>
51 VTKM_EXEC_CONT
52 static
53 vtkm :: Float32 LookupTriangleQuality ( const PortalType & triangleQualityPortal ,
54 const vtkm ::Vec <T,3> &point1 ,
55 const vtkm ::Vec <T,3> &point2 ,
56 const vtkm ::Vec <T,3> & point3 )
57 {
58 vtkm ::Vec <T,3> edgeLengths = TriangleEdgeLengths (point1 , point2 , point3 );
59
60 // To reduce the size of the table , we just store the quality of triangles
61 // with the longest edge of size 1. The table is 2D indexed by the length
62 // of the other two edges . Thus , to use the table we have to identify the
63 // longest edge and scale appropriately .
64 T smallEdge1 = vtkm :: Min( edgeLengths [0] , edgeLengths [1]);
65 T tmpEdge = vtkm :: Max( edgeLengths [0] , edgeLengths [1]);
66 T smallEdge2 = vtkm :: Min( edgeLengths [2] , tmpEdge );
67 T largeEdge = vtkm :: Max( edgeLengths [2] , tmpEdge );
68
69 smallEdge1 /= largeEdge ;
70 smallEdge2 /= largeEdge ;
71
72 // Find index into array .
73 vtkm :: Id index1 = static_cast <vtkm ::Id >(
74 vtkm :: Floor ( smallEdge1 *( TRIANGLE_QUALITY_TABLE_DIMENSION -1)+0.5));
75 vtkm :: Id index2 = static_cast <vtkm ::Id >(
76 vtkm :: Floor ( smallEdge2 *( TRIANGLE_QUALITY_TABLE_DIMENSION -1)+0.5));
77 vtkm :: Id totalIndex = index1 + index2 * TRIANGLE_QUALITY_TABLE_DIMENSION ;
78
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79 return triangleQualityPortal .Get( totalIndex );
80 }
81
82 } // namespace detail
83
84 struct TriangleQuality
85 {
86 struct TriangleQualityWorklet : vtkm :: worklet :: WorkletMapPointToCell
87 {
88 typedef void ControlSignature ( CellSetIn cells ,
89 FieldInPoint <Vec3 > pointCoordinates ,
90 WholeArrayIn <Scalar > triangleQualityTable ,
91 FieldOutCell <Scalar > triangleQuality );
92 typedef _4 ExecutionSignature (CellShape , _2 , _3 );
93 using InputDomain = _1;
94
95 template < typename CellShape ,
96 typename PointCoordinatesType ,
97 typename TriangleQualityTablePortalType >
98 VTKM_EXEC
99 vtkm :: Float32 operator ()(

100 CellShape shape ,
101 const PointCoordinatesType & pointCoordinates ,
102 const TriangleQualityTablePortalType & triangleQualityTable ) const
103 {
104 if ( shape .Id != vtkm :: CELL_SHAPE_TRIANGLE )
105 {
106 this -> RaiseError (" Only triangles are supported for triangle quality .");
107 return vtkm :: Nan32 ();
108 }
109
110 return detail :: LookupTriangleQuality ( triangleQualityTable ,
111 pointCoordinates [0] ,
112 pointCoordinates [1] ,
113 pointCoordinates [2]);
114 }
115 };
116
117 template < typename DeviceAdapterTag >
118 VTKM_CONT
119 static
120 vtkm :: cont :: ArrayHandle <vtkm :: Float32 >
121 Run(vtkm :: cont :: DataSet dataSet , DeviceAdapterTag )
122 {
123 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > triangleQualityTable =
124 detail :: GetTriangleQualityTable ();
125
126 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > triangleQualities ;
127
128 vtkm :: worklet :: DispatcherMapTopology < TriangleQualityWorklet , DeviceAdapterTag >
129 dispatcher ;
130 dispatcher . Invoke ( dataSet . GetCellSet (),
131 dataSet . GetCoordinateSystem (). GetData (),
132 triangleQualityTable ,
133 triangleQualities );
134
135 return triangleQualities ;
136 }
137 };
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14.7 Atomic Arrays

One of the problems with writing to whole arrays is that it is difficult to coordinate the access to an array from
multiple threads. If multiple threads are going to write to a common index of an array, then you will probably
need to use an atomic array.

An atomic array allows random access into an array of data, similar to a whole array. However, the operations
on the values in the atomic array allow you to perform an operation that modifies its value that is guaranteed
complete without being interrupted and potentially corrupted.

Due to limitations in available atomic operations, atomic arrays can currently only contain vtkm::Float32
or vtkm::Float64 values.

Common Errors

To use an array as an atomic array, first add the AtomicArrayInOut tag to the worklet’s ControlSignature.
The corresponding argument to the dispatcher’s Invoke should be an ArrayHandle, which must already be
allocated and initialized with values.

When the data are passed to the operator of the worklet, it is passed in a vtkm::exec::AtomicArray structure.
AtomicArray has two important methods:

Add Takes as arguments an index and a value. The entry in the array corresponding to the index will have the
value added to it. If multiple threads attempt to add to the same index in the array, the requests will be
serialized so that the final result is the sum of all the additions.

CompareAndSwap Takes as arguments an index, a new value, and an old value. If the entry in the array corre-
sponding to the index has the same value as the “old value,” then it is changed to the “new value” and the
original value is return from the method. If the entry in the array is not the same as the “old value,” then
nothing happens to the array and the value that is actually stored in the array is returned. If multiple
threads attempt to compare and swap to the same index in the array, the requests are serialized.

Atomic arrays help resolve hazards in parallel algorithms, but they come at a cost. Atomic operations are
more costly than non-thread-safe ones, and they can slow a parallel program immensely if used incorrectly.

Common Errors

The following example uses an atomic array to count the bins in a histogram. It does this by making the array of
histogram bins an atomic array and then using an atomic add. Note that this is not the fastest way to create a
histogram. We gave an implementation in Section 14.5.3 that is generally faster (unless your histogram happens
to be very sparse). VTK-m also comes with a histogram worklet that uses a similar approach.

Example 14.17: Using AtomicArrayInOut to count histogram bins in a worklet.
1 struct CountBins : vtkm :: worklet :: WorkletMapField
2 {
3 typedef void ControlSignature (FieldIn <Scalar > data ,
4 AtomicArrayInOut <> histogramBins );
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5 typedef void ExecutionSignature (_1 , _2 );
6 using InputDomain = _1;
7
8 vtkm :: Range HistogramRange ;
9 vtkm :: Id NumberOfBins ;

10
11 VTKM_CONT
12 CountBins ( const vtkm :: Range & histogramRange , vtkm :: Id & numBins )
13 : HistogramRange ( histogramRange ), NumberOfBins ( numBins )
14 { }
15
16 template < typename T, typename AtomicArrayType >
17 VTKM_EXEC
18 void operator ()(T value , const AtomicArrayType & histogramBins ) const
19 {
20 vtkm :: Float64 interp =
21 ( value - this -> HistogramRange .Min )/ this -> HistogramRange . Length ();
22 vtkm :: Id bin = static_cast <vtkm ::Id >( interp *this -> NumberOfBins );
23 if (bin < 0) { bin = 0; }
24 if (bin >= this -> NumberOfBins ) { bin = this -> NumberOfBins - 1; }
25
26 histogramBins .Add(bin , 1);
27 }
28 };

14.8 Whole Cell Sets

Section 14.5.2 describes how to make a topology map filter that performs an operation on cell sets. The worklet
has access to a single cell element (such as point or cell) and its immediate connections. But there are cases
when you need more general queries on a topology. For example, you might need more detailed information than
the topology map gives or you might need to trace connections from one cell to the next. To do this VTK-m
allows you to provide a whole cell set argument to a worklet that provides random access to the entire topology.

A whole cell set is declared by adding a WholeCellSetIn to the worklet’s ControlSignature. The corresponding
argument to the dispatcher’s Invoke should be a CellSet subclass or a DynamicCellSet (both of which are
described in Section 12.2).

The WholeCellSetIn is templated and takes two arguments: the “from” topology type and the “to” topology
type, respectively. These template arguments must be one of the topology element tags, but for convenience
you can use Point and Cell in lieu of vtkm::TopologyElementTagPoint and vtkm::TopologyElementTagCell,
respectively. The “from” and “to” topology types define which topological elements can be queried and which
incident elements are returned. The semantics of the “from” and “to” topology is the same as that for the general
topology maps described in Section 14.5.2. You can look up an element of the “to” topology by index and then
get all of the “from” elements that are incident from it.

For example, a WholeCellSetIn<Point, Cell> allows you to find all the points that are incident on each cell
(as well as querying the cell shape). Likewise, a WholeCellSetIn<Cell, Point> allows you to find all the cells
that are incident on each point. The default parameters of WholeCellSetIn are from point to cell. That is,
WholeCellSetIn<> is equivalent to WholeCellSetIn<Point, Cell>.

When the cell set is passed to the operator of the worklet, it is passed in a special connectivity object. The
actual object type depends on the cell set, but vtkm::exec::CellSetStructured and are two common examples
vtkm::exec::CellSetExplicit. All these connectivity objects share a common interface. First, they all declare
the following public types.

CellShapeTag The tag for the cell shapes of the cell set. (Cell shape tags are described in Section 16.1.) If
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the connectivity potentially contains more than one type of cell shape, then this type will be vtkm::-
CellShapeTagGeneric.

IndicesType A Vec-like type that stores all the incident indices.

Second they all provide the following methods.

GetNumberOfElements Get the number of “to” topology elements in the cell set. All the other methods require
an element index, and this represents the range of valid indices. The return type is vtkm::Id.

GetCellShape Takes an index for an element and returns a CellShapeTag object of the corresponding cell shape.
If the “to” topology elements are not strictly cell, then a reasonably close shape is returned. For example,
if the “to” topology elements are points, then the shape is returned as a vertex.

GetNumberOfIndices Takes an index for an element and returns the number of incident “from” elements are
connected to it. The returned type is vtkm::IdComponent.

GetIndices Takes an index for an element and returns a Vec-like object of type IndicesType containing the
indices of all incident “from” elements. The size of the Vec-like object is the same as that returned from
GetNumberOfIndicices.

VTK-m comes with several functions to work with the shape and index information returned from these con-
nectivity objects. Most of these methods are documented in Chapter 16.

Let us use the whole cell set feature to help us determine the “flatness” of a polygonal mesh. We will do this
by summing up all the angles incident on each on each point. That is, for each point, we will find each incident
polygon, then find the part of that polygon using the given point, then computing the angle at that point, and
then summing for all such angles. So, for example, in the mesh fragment shown in Figure 14.3 one of the angles
attached to the middle point is labeled θj .

θj

Figure 14.3: The angles incident around a point in a mesh.

We want a worklet to compute
∑

j θ for all such attached angles. This measure is related (but not the same as)
the curvature of the surface. A flat surface will have a sum of 2π. Convex and concave surfaces have a value less
than 2π, and saddle surfaces have a value greater than 2π.

To do this, we create a map cell to point worklet (Section 14.5.2) that visits every point and gives the index of
every incident cell. The worklet then uses a whole cell set to inspect each incident cell to measure the attached
angle and sum them together.

Example 14.18: Using WholeCellSetIn to sum the angles around each point.
1 struct SumOfAngles : vtkm :: worklet :: WorkletMapCellToPoint
2 {
3 typedef void ControlSignature ( CellSetIn inputCells ,
4 WholeCellSetIn <>, // Same as inputCells
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5 WholeArrayIn <> pointCoords ,
6 FieldOutPoint <Scalar > angleSum );
7 typedef void ExecutionSignature ( CellIndices incidentCells ,
8 InputIndex pointIndex ,
9 _2 cellSet ,

10 _3 pointCoordsPortal ,
11 _4 outSum );
12 using InputDomain = _1;
13
14 template < typename IncidentCellVecType ,
15 typename CellSetType ,
16 typename PointCoordsPortalType ,
17 typename SumType >
18 VTKM_EXEC
19 void operator ()( const IncidentCellVecType & incidentCells ,
20 vtkm :: Id pointIndex ,
21 const CellSetType &cellSet ,
22 const PointCoordsPortalType & pointCoordsPortal ,
23 SumType & outSum ) const
24 {
25 using CoordType = typename PointCoordsPortalType :: ValueType ;
26
27 CoordType thisPoint = pointCoordsPortal .Get( pointIndex );
28
29 outSum = 0;
30 for (vtkm :: IdComponent incidentCellIndex = 0;
31 incidentCellIndex < incidentCells . GetNumberOfComponents ();
32 ++ incidentCellIndex )
33 {
34 // Get information about incident cell.
35 vtkm :: Id cellIndex = incidentCells [ incidentCellIndex ];
36 typename CellSetType :: CellShapeTag cellTag =
37 cellSet . GetCellShape ( cellIndex );
38 typename CellSetType :: IndicesType cellConnections =
39 cellSet . GetIndices ( cellIndex );
40 vtkm :: IdComponent numConnections =
41 cellSet . GetNumberOfIndices ( cellIndex );
42 vtkm :: IdComponent numEdges =
43 vtkm :: exec :: CellEdgeNumberOfEdges ( numConnections , cellTag , *this );
44
45 // Iterate over all edges and find the first one with pointIndex .
46 // Use that to find the first vector .
47 vtkm :: IdComponent edgeIndex = -1;
48 CoordType vec1;
49 while (true)
50 {
51 ++ edgeIndex ;
52 if ( edgeIndex >= numEdges )
53 {
54 this -> RaiseError (" Bad cell. Could not find two incident edges .");
55 return ;
56 }
57 vtkm ::Vec <vtkm :: IdComponent ,2> edge =
58 vtkm :: exec :: CellEdgeLocalIndices (
59 numConnections , edgeIndex , cellTag , *this );
60 if ( cellConnections [edge [0]] == pointIndex )
61 {
62 vec1 = pointCoordsPortal .Get( cellConnections [edge [1]]) - thisPoint ;
63 break ;
64 }
65 else if ( cellConnections [edge [1]] == pointIndex )
66 {
67 vec1 = pointCoordsPortal .Get( cellConnections [edge [0]]) - thisPoint ;
68 break ;
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69 }
70 else
71 {
72 // Continue to next iteration of loop.
73 }
74 }
75
76 // Continue iteration over remaining edges and find the second one with
77 // pointIndex . Use that to find the second vector .
78 CoordType vec2;
79 while (true)
80 {
81 ++ edgeIndex ;
82 if ( edgeIndex >= numEdges )
83 {
84 this -> RaiseError (" Bad cell. Could not find two incident edges .");
85 return ;
86 }
87 vtkm ::Vec <vtkm :: IdComponent ,2> edge =
88 vtkm :: exec :: CellEdgeLocalIndices (
89 numConnections , edgeIndex , cellTag , *this );
90 if ( cellConnections [edge [0]] == pointIndex )
91 {
92 vec2 = pointCoordsPortal .Get( cellConnections [edge [1]]) - thisPoint ;
93 break ;
94 }
95 else if ( cellConnections [edge [1]] == pointIndex )
96 {
97 vec2 = pointCoordsPortal .Get( cellConnections [edge [0]]) - thisPoint ;
98 break ;
99 }

100 else
101 {
102 // Continue to next iteration of loop.
103 }
104 }
105
106 // The dot product of two unit vectors is equal to the cosine of the
107 // angle between them.
108 vtkm :: Normalize (vec1 );
109 vtkm :: Normalize (vec2 );
110 SumType cosine = static_cast <SumType >( vtkm :: dot(vec1 , vec2 ));
111
112 outSum += vtkm :: ACos( cosine );
113 }
114 }
115 };

14.9 Execution Objects

Although passing whole arrays and cell sets into a worklet is a convenient way to provide data to a worklet
that is not divided by the input or output domain, they is sometimes not the best structures to represent data.
Thus, all worklets support a another type of argument called an execution object, or exec object for short, that
passes the given object directly to each invocation of the worklet. This is defined by an ExecObject tag in the
ControlSignature.

The execution object must be a subclass of vtkm::exec::ExecutionObjectBase. Also, it must be possible
to copy the object from the control environment to the execution environment and be usable in the execution
environment, and any method of the execution object used within the worklet must be declared with VTKM EXEC
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or VTKM EXEC CONT.

An execution object can refer to an array, but the array reference must be through an array portal for the
execution environment. This can be retrieved from the PrepareForInput method in vtkm::cont::ArrayHandle
as described in Section 7.4. Other VTK-m data objects, such as the subclasses of vtkm::cont::CellSet, have
similar methods.

Returning to the example we have in Section 14.6, we are computing triangle quality quickly by looking up the
value in a table. In Example 14.16 the table is passed directly to the worklet as a whole array. However, there
is some additional code involved to get the appropriate index into the table for a given triangle. Let us say that
we want to have the ability to compute triangle quality in many different worklets. Rather than pass in a raw
array, it would be better to encapsulate the functionality in an object.

We can do that by creating an execution object that has the table stored inside and methods to compute the
triangle quality. The following example uses the table built in Example 14.16 to create such an object.

Example 14.19: Using ExecObject to access a lookup table in a worklet.
1 template < typename DeviceAdapterTag >
2 class TriangleQualityTable : public vtkm :: exec :: ExecutionObjectBase
3 {
4 public :
5 VTKM_CONT
6 TriangleQualityTable ()
7 {
8 this -> TablePortal =
9 detail :: GetTriangleQualityTable (). PrepareForInput ( DeviceAdapterTag ());

10 }
11
12 template < typename T>
13 VTKM_EXEC
14 vtkm :: Float32 GetQuality ( const vtkm ::Vec <T,3> &point1 ,
15 const vtkm ::Vec <T,3> &point2 ,
16 const vtkm ::Vec <T,3> & point3 ) const
17 {
18 return detail :: LookupTriangleQuality (this -> TablePortal , point1 , point2 , point3 );
19 }
20
21 private :
22 using TableArrayType = vtkm :: cont :: ArrayHandle <vtkm :: Float32 >;
23 using TableArrayPortalType =
24 typename TableArrayType :: ExecutionTypes < DeviceAdapterTag >:: PortalConst ;
25 TableArrayPortalType TablePortal ;
26 };
27
28 struct TriangleQualityWorklet2 : vtkm :: worklet :: WorkletMapPointToCell
29 {
30 typedef void ControlSignature ( CellSetIn cells ,
31 FieldInPoint <Vec3 > pointCoordinates ,
32 ExecObject triangleQualityTable ,
33 FieldOutCell <Scalar > triangleQuality );
34 typedef _4 ExecutionSignature (CellShape , _2 , _3 );
35 using InputDomain = _1;
36
37 template < typename CellShape ,
38 typename PointCoordinatesType ,
39 typename TriangleQualityTableType >
40 VTKM_EXEC
41 vtkm :: Float32 operator ()(
42 CellShape shape ,
43 const PointCoordinatesType & pointCoordinates ,
44 const TriangleQualityTableType & triangleQualityTable ) const
45 {
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46 if ( shape .Id != vtkm :: CELL_SHAPE_TRIANGLE )
47 {
48 this -> RaiseError (" Only triangles are supported for triangle quality .");
49 return vtkm :: Nan32 ();
50 }
51
52 return triangleQualityTable . GetQuality ( pointCoordinates [0] ,
53 pointCoordinates [1] ,
54 pointCoordinates [2]);
55 }
56 };
57
58 // Normally we would encapsulate this call in a filter , but for demonstrative
59 // purposes we are just calling the worklet directly .
60 template < typename DeviceAdapterTag >
61 VTKM_CONT
62 vtkm :: cont :: ArrayHandle <vtkm :: Float32 >
63 RunTriangleQuality2 (vtkm :: cont :: DataSet dataSet ,
64 DeviceAdapterTag )
65 {
66 TriangleQualityTable < DeviceAdapterTag > triangleQualityTable ;
67
68 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > triangleQualities ;
69
70 vtkm :: worklet :: DispatcherMapTopology < TriangleQualityWorklet2 , DeviceAdapterTag >
71 dispatcher ;
72 dispatcher . Invoke ( dataSet . GetCellSet (),
73 dataSet . GetCoordinateSystem (). GetData (),
74 triangleQualityTable ,
75 triangleQualities );
76
77 return triangleQualities ;
78 }

14.10 Scatter

The default scheduling of a worklet provides a 1 to 1 mapping from the input domain to the output domain.
For example, a vtkm::worklet::WorkletMapField gets run once for every item of the input array and produces
one item for the output array. Likewise, vtkm::worklet::WorkletMapPointToCell gets run once for every cell
in the input topology and produces one associated item for the output field.

However, there are many operations that do not fall well into this 1 to 1 mapping procedure. The operation
might need to pass over elements that produce no value or the operation might need to produce multiple values
for a single input element.

Such non 1 to 1 mappings can be achieved by defining a scatter for a worklet. The following types of scatter are
provided by VTK-m.

vtkm::worklet::ScatterIdentity Provides a basic 1 to 1 mapping from input to output. This is the default
scatter used if none is specified.

vtkm::worklet::ScatterUniform Provides a 1 to many mapping from input to output with the same number
of outputs for each input. The worklet provides a number at runtime that defines the number of output
values to produce per input.

vtkm::worklet::ScatterCounting Provides a 1 to any mapping from input to output with different numbers of
outputs for each input. The worklet provides an ArrayHandle that is the same size as the input containing
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the count of output values to produce for each input. Values can be zero, in which case that input will be
skipped.

To define a scatter procedure, the worklet must provide two items. The first item is a type definition named
ScatterType. The ScatterType must be set to one of the aforementioned Scatter* classes. The second item
is a const method named GetScatter that returns an object of type ScatterType.

Example 14.20: Declaration of a scatter type in a worklet.
1 using ScatterType = vtkm :: worklet :: ScatterCounting ;
2
3 VTKM_CONT
4 ScatterType GetScatter () const { return this -> Scatter ; }

When using a scatter that produces multiple outputs for a single input, the worklet is invoked multiple times
with the same input values. In such an event the worklet operator needs to distinguish these calls to produce the
correct associated output. This is done by declaring one of the ExecutionSignature arguments as VisitIndex.
This tag will pass a vtkm::IdComponent to the worklet that identifies which invocation is being called.

It is also the case that the when a scatter can produce multiple outputs for some input that the index of the
input element is not the same as the WorkIndex. If the index to the input element is needed, you can use the
InputIndex tag in the ExecutionSignature. It is also good practice to use the OutputIndex tag if the index
to the output element is needed.

To demonstrate using scatters with worklets, we provide some contrived but illustrative examples. The first
example is a worklet that takes a pair of input arrays and interleaves them so that the first, third, fifth, and so
on entries come from the first array and the second, fourth, sixth, and so on entries come from the second array.
We achieve this by using a vtkm::cont::ScatterUniform of size 2 and using the VisitIndex to determine from
which array to pull a value.

Example 14.21: Using ScatterUniform.
1 struct InterleaveArrays : vtkm :: worklet :: WorkletMapField
2 {
3 typedef void ControlSignature (FieldIn <>, FieldIn <>, FieldOut < >);
4 typedef void ExecutionSignature (_1 , _2 , _3 , VisitIndex );
5 using InputDomain = _1;
6
7 using ScatterType = vtkm :: worklet :: ScatterUniform ;
8
9 VTKM_CONT

10 ScatterType GetScatter () const { return vtkm :: worklet :: ScatterUniform (2); }
11
12 template < typename T>
13 VTKM_EXEC
14 void operator ()( const T &input0 ,
15 const T &input1 ,
16 T &output ,
17 vtkm :: IdComponent visitIndex ) const
18 {
19 if ( visitIndex == 0)
20 {
21 output = input0 ;
22 }
23 else // visitIndex == 1
24 {
25 output = input1 ;
26 }
27 }
28 };
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The second example takes a collection of point coordinates and clips them by an axis-aligned bounding box. It
does this using a vtkm::cont::ScatterCounting with an array containing 0 for all points outside the bounds
and 1 for all points inside the bounds. As is typical with this type of operation, we use another worklet with a
default identity scatter to build the count array.

Example 14.22: Using ScatterCounting.
1 struct ClipPoints
2 {
3 class Count : public vtkm :: worklet :: WorkletMapField
4 {
5 public :
6 typedef void ControlSignature (FieldIn <Vec3 > points ,
7 FieldOut < IdComponentType > count );
8 typedef _2 ExecutionSignature (_1 );
9 using InputDomain = _1;

10
11 template < typename T>
12 VTKM_CONT
13 Count ( const vtkm ::Vec <T,3> &boundsMin , const vtkm ::Vec <T,3> & boundsMax )
14 : BoundsMin ( boundsMin [0] , boundsMin [1] , boundsMin [2]) ,
15 BoundsMax ( boundsMax [0] , boundsMax [1] , boundsMax [2])
16 { }
17
18 template < typename T>
19 VTKM_EXEC
20 vtkm :: IdComponent operator ()( const vtkm ::Vec <T,3> & point ) const
21 {
22 return static_cast <vtkm :: IdComponent >(( this -> BoundsMin [0] < point [0]) &&
23 (this -> BoundsMin [1] < point [1]) &&
24 (this -> BoundsMin [2] < point [2]) &&
25 (this -> BoundsMax [0] > point [0]) &&
26 (this -> BoundsMax [1] > point [1]) &&
27 (this -> BoundsMax [2] > point [2]));
28 }
29
30 private :
31 vtkm ::Vec <vtkm :: FloatDefault ,3> BoundsMin ;
32 vtkm ::Vec <vtkm :: FloatDefault ,3> BoundsMax ;
33 };
34
35 class Generate : public vtkm :: worklet :: WorkletMapField
36 {
37 public :
38 typedef void ControlSignature (FieldIn <Vec3 > inPoints ,
39 FieldOut <Vec3 > outPoints );
40 typedef void ExecutionSignature (_1 , _2 );
41 using InputDomain = _1;
42
43 using ScatterType = vtkm :: worklet :: ScatterCounting ;
44
45 VTKM_CONT
46 ScatterType GetScatter () const { return this -> Scatter ; }
47
48 template < typename CountArrayType , typename DeviceAdapterTag >
49 VTKM_CONT
50 Generate ( const CountArrayType & countArray , DeviceAdapterTag )
51 : Scatter ( countArray , DeviceAdapterTag ())
52 {
53 VTKM_IS_ARRAY_HANDLE ( CountArrayType );
54 }
55
56 template < typename InType , typename OutType >
57 VTKM_EXEC
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58 void operator ()( const vtkm ::Vec <InType ,3> &inPoint ,
59 vtkm ::Vec <OutType ,3> & outPoint ) const
60 {
61 // The scatter ensures that this method is only called for input points
62 // that are passed to the output ( where the count was 1). Thus , in this
63 // case we know that we just need to copy the input to the output .
64 outPoint = vtkm ::Vec <OutType ,3 >( inPoint [0] , inPoint [1] , inPoint [2]);
65 }
66
67 private :
68 ScatterType Scatter ;
69 };
70
71 template < typename T, typename Storage , typename DeviceAdapterTag >
72 VTKM_CONT
73 static vtkm :: cont :: ArrayHandle <vtkm ::Vec <T,3> >
74 Run( const vtkm :: cont :: ArrayHandle <vtkm ::Vec <T,3>, Storage > & pointArray ,
75 vtkm ::Vec <T,3> boundsMin ,
76 vtkm ::Vec <T,3> boundsMax ,
77 DeviceAdapterTag )
78 {
79 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > countArray ;
80
81 ClipPoints :: Count workletCount (boundsMin , boundsMax );
82 vtkm :: worklet :: DispatcherMapField < ClipPoints :: Count , DeviceAdapterTag >
83 dispatcherCount ( workletCount );
84 dispatcherCount . Invoke ( pointArray , countArray );
85
86 vtkm :: cont :: ArrayHandle <vtkm ::Vec <T,3> > clippedPointsArray ;
87
88 ClipPoints :: Generate workletGenerate ( countArray , DeviceAdapterTag ());
89 vtkm :: worklet :: DispatcherMapField < ClipPoints :: Generate , DeviceAdapterTag >
90 dispatcherGenerate ( workletGenerate );
91 dispatcherGenerate . Invoke ( pointArray , clippedPointsArray );
92
93 return clippedPointsArray ;
94 }
95 };

14.11 Error Handling

It is sometimes the case during the execution of an algorithm that an error condition can occur that causes
the computation to become invalid. At such a time, it is important to raise an error to alert the calling code
of the problem. Since VTK-m uses an exception mechanism to raise errors, we want an error in the execution
environment to throw an exception.

However, throwing exceptions in a parallel algorithm is problematic. Some accelerator architectures, like CUDA,
do not even support throwing exceptions. Even on architectures that do support exceptions, throwing them in
a thread block can cause problems. An exception raised in one thread may or may not be thrown in another,
which increases the potential for deadlocks, and it is unclear how uncaught exceptions progress through thread
blocks.

VTK-m handles this problem by using a flag and check mechanism. When a worklet (or other subclass of vtkm::-
exec::FunctorBase) encounters an error, it can call its RaiseError method to flag the problem and record a
message for the error. Once all the threads terminate, the scheduler checks for the error, and if one exists it
throws a vtkm::cont::ErrorExecution exception in the control environment. Thus, calling RaiseError looks
like an exception was thrown from the perspective of the control environment code that invoked it.
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Example 14.23: Raising an error in the execution environment.
1 struct SquareRoot : vtkm :: worklet :: WorkletMapField
2 {
3 public :
4 typedef void ControlSignature (FieldIn <Scalar >, FieldOut <Scalar >);
5 typedef _2 ExecutionSignature (_1 );
6
7 template < typename T>
8 VTKM_EXEC
9 T operator ()(T x) const

10 {
11 if (x < 0)
12 {
13 this -> RaiseError (" Cannot take the square root of a negative number .");
14 }
15 return vtkm :: Sqrt(x);
16 }
17 };

It is also worth noting that the VTKM ASSERT macro described in Section 6.7 also works within worklets and
other code running in the execution environment. Of course, a failed assert will terminate execution rather than
just raise an error so is best for checking invalid conditions for debugging purposes.
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VTK-m comes with several math functions that tend to be useful for visualization algorithms. The implementa-
tion of basic math operations can vary subtly on different accelerators, and these functions provide cross platform
support.

All math functions are located in the vtkm package. The functions are most useful in the execution environment,
but they can also be used in the control environment when needed.

15.1 Basic Math

The vtkm/Math.h header file contains several math functions that replicate the behavior of the basic POSIX
math functions as well as related functionality.

When writing worklets, you should favor using these math functions provided by VTK-m over the standard
math functions in math.h. VTK-m’s implementation manages several compiling and efficiency issues when
porting.

Did you know?

vtkm::Abs Returns the absolute value of the single argument. If given a vector, performs a component-wise
operation.

vtkm::ACos Returns the arccosine of a ratio in radians. If given a vector, performs a component-wise operation.

vtkm::ACosH Returns the hyperbolic arccossine. If given a vector, performs a component-wise operation.

vtkm::ASin Returns the arcsine of a ratio in radians. If given a vector, performs a component-wise operation.

vtkm::ASinH Returns the hyperbolic arcsine. If given a vector, performs a component-wise operation.

vtkm::ATan Returns the arctangent of a ratio in radians. If given a vector, performs a component-wise operation.

vtkm::ATan2 Computes the arctangent of y/x where y is the first argument and x is the second argument. ATan2
uses the signs of both arguments to determine the quadrant of the return value. ATan2 is only defined for
floating point types (no vectors).

vtkm::ATanH Returns the hyperbolic arctangent. If given a vector, performs a component-wise operation.
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vtkm::Cbrt Takes one argument and returns the cube root of that argument. If called with a vector type,
returns a component-wise cube root.

vtkm::Ceil Rounds and returns the smallest integer not less than the single argument. If given a vector,
performs a component-wise operation.

vtkm::CopySign Copies the sign of the second argument onto the first argument and returns that. If the second
argument is positive, returns the absolute value of the first argument. If the second argument is negative,
returns the negative absolute value of the first argument.

vtkm::Cos Returns the cosine of an angle given in radians. If given a vector, performs a component-wise
operation.

vtkm::CosH Returns the hyperbolic cosine. If given a vector, performs a component-wise operation.

vtkm::Epsilon Returns the difference between 1 and the least value greater than 1 that is representable by
a floating point number. Epsilon is useful for specifying the tolerance one should have when considering
numerical error. The Epsilon method is templated to specify either a 32 or 64 bit floating point number.
The convenience methods Epsilon32 and Epsilon64 are non-templated versions that return the precision
for a particular precision.

vtkm::Exp Computes ex where x is the argument to the function and e is Euler’s number (approximately
2.71828). If called with a vector type, returns a component-wise exponent.

vtkm::Exp10 Computes 10x where x is the argument. If called with a vector type, returns a component-wise
exponent.

vtkm::Exp2 Computes 2x where x is the argument. If called with a vector type, returns a component-wise
exponent.

vtkm::ExpM1 Computes ex−1 where x is the argument to the function and e is Euler’s number (approximately
2.71828). The accuracy of this function is good even for very small values of x. If called with a vector
type, returns a component-wise exponent.

vtkm::Floor Rounds and returns the largest integer not greater than the single argument. If given a vector,
performs a component-wise operation.

vtkm::FMod Computes the remainder on the division of 2 floating point numbers. The return value is
numerator−n · denominator, where numerator is the first argument, denominator is the second argu-
ment, and n is the quotient of numerator divided by denominator rounded towards zero to an integer. For
example, FMod(6.5,2.3) returns 1.9, which is 6.5−2 ·4.6. If given vectors, FMod performs a component-
wise operation. FMod is similar to Remainder except that the quotient is rounded toward 0 instead of the
nearest integer.

vtkm::Infinity Returns the representation for infinity. The result is greater than any other number except
another infinity or NaN. When comparing two infinities or infinity to NaN, neither is greater than, less
than, nor equal to the other. The Infinity method is templated to specify either a 32 or 64 bit floating
point number. The convenience methods Infinity32 and Infinity64 are non-templated versions that
return the precision for a particular precision.

vtkm::IsFinite Returns true if the argument is a normal number (neither a NaN nor an infinite).

vtkm::IsInf Returns true if the argument is either positive infinity or negative infinity.

vtkm::IsNan Returns true if the argument is not a number (NaN).

vtkm::IsNegative Returns true if the single argument is less than zero, false otherwise.
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vtkm::Log Computes the natural logarithm (i.e. logarithm to the base e) of the single argument. If called with
a vector type, returns a component-wise logarithm.

vtkm::Log10 Computes the logarithm to the base 10 of the single argument. If called with a vector type, returns
a component-wise logarithm.

vtkm::Log1P Computes ln(1+x) where x is the single argument and ln is the natural logarithm (i.e. logarithm
to the base e). The accuracy of this function is good for very small values. If called with a vector type,
returns a component-wise logarithm.

vtkm::Log2 Computes the logarithm to the base 2 of the single argument. If called with a vector type, returns
a component-wise logarithm.

vtkm::Max Takes two arguments and returns the argument that is greater. If called with a vector type, returns
a component-wise maximum.

vtkm::Min Takes two arguments and returns the argument that is lesser. If called with a vector type, returns a
component-wise minimum.

vtkm::ModF Returns the integral and fractional parts of the first argument. The second argument is a reference
in which the integral part is stored. The return value is the fractional part. If given vectors, ModF performs
a component-wise operation.

vtkm::Nan Returns the representation for not-a-number (NaN). A NaN represents an invalid value or the result
of an invalid operation such as 0/0. A NaN is neither greater than nor less than nor equal to any other
number including other NaNs. The NaN method is templated to specify either a 32 or 64 bit floating point
number. The convenience methods Nan32 and NaN64 are non-templated versions that return the precision
for a particular precision.

vtkm::NegativeInfinity Returns the representation for negative infinity. The result is less than any other
number except another negative infinity or NaN. When comparing two negative infinities or negative in-
finity to NaN, neither is greater than, less than, nor equal to the other. The NegativeInfinity method is
templated to specify either a 32 or 64 bit floating point number. The convenience methods NagativeIn-
finity32 and NegativeInfinity64 are non-templated versions that return the precision for a particular
precision.

vtkm::Pi Returns the constant π (about 3.14159).

vtkm::Pi 2 Returns the constant π/2 (about 1.570796).

vtkm::Pi 3 Returns the constant π/3 (about 1.047197).

vtkm::Pi 4 Returns the constant π/4 (about 0.785398).

vtkm::Pow Takes two arguments and returns the first argument raised to the power of the second argument.
This function is only defined for vtkm::Float32 and vtkm::Float64.

vtkm::RCbrt Takes one argument and returns the cube root of that argument. The result of this function is
equivalent to 1/Cbrt(x). However, on some devices it is faster to compute the reciprocal cube root than
the regular cube root. Thus, you should use this function whenever dividing by the cube root.

vtkm::Remainder Computes the remainder on the division of 2 floating point numbers. The return value is
numerator−n ·denominator, where numerator is the first argument, denominator is the second argument,
and n is the quotient of numerator divided by denominator rounded towards the nearest integer. For
example, FMod(6.5,2.3) returns −0.4, which is 6.5− 3 · 2.3. If given vectors, Remainder performs a
component-wise operation. Remainder is similar to FMod except that the quotient is rounded toward the
nearest integer instead of toward 0.
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vtkm::RemainderQuotient Performs an operation identical to Reminder. In addition, this function takes a
third argument that is a reference in which the quotient is given.

vtkm::Round Rounds and returns the integer nearest the single argument. If given a vector, performs a
component-wise operation.

vtkm::RSqrt Takes one argument and returns the square root of that argument. The result of this function is
equivalent to 1/Sqrt(x). However, on some devices it is faster to compute the reciprocal square root than
the regular square root. Thus, you should use this function whenever dividing by the square root.

vtkm::SignBit Returns a nonzero value if the single argument is negative.

vtkm::Sin Returns the sine of an angle given in radians. If given a vector, performs a component-wise operation.

vtkm::SinH Returns the hyperbolic sine. If given a vector, performs a component-wise operation.

vtkm::Sqrt Takes one argument and returns the square root of that argument. If called with a vector type,
returns a component-wise square root. On some hardware it is faster to find the reciprocal square root, so
RSqrt should be used if you actually plan to divide byt the square root.

vtkm::Tan Returns the tangent of an angle given in radians. If given a vector, performs a component-wise
operation.

vtkm::TanH Returns the hyperbolic tangent. If given a vector, performs a component-wise operation.

vtkm::TwoPi Returns the constant 2π (about 6.283185).

15.2 Vector Analysis

Visualization and computational geometry algorithms often perform vector analysis operations. The vtkm/-
VectorAnalysis.h header file provides functions that perform the basic common vector analysis operations.

vtkm::Cross Returns the cross product of two vtkm::Vec of size 3.

vtkm::Lerp Given two values x and y in the first two parameters and a weight w as the third parameter,
interpolates between x and y. Specifically, the linear interpolation is (y−x)w+x although Lerp might
compute the interpolation faster than using the independent arithmetic operations. The two values may
be scalars or equal sized vectors. If the two values are vectors and the weight is a scalar, all components
of the vector are interpolated with the same weight. If the weight is also a vector, then each component of
the value vectors are interpolated with the respective weight component.

vtkm::Magnitude Returns the magnitude of a vector. This function works on scalars as well as vectors, in which
case it just returns the scalar. It is usually much faster to compute MagnitudeSquared, so that should be
substituted when possible (unless you are just going to take the square root, which would be besides the
point). On some hardware it is also faster to find the reciprocal magnitude, so RMagnitude should be used
if you actually plan to divide by the magnitude.

vtkm::MagnitudeSquared Returns the square of the magnitude of a vector. It is usually much faster to compute
the square of the magnitude than the length, so you should use this function in place of Magnitude or
RMagnitude when needing the square of the magnitude or any monotonically increasing function of a
magnitude or distance. This function works on scalars as well as vectors, in which case it just returns the
square of the scalar.
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vtkm::Normal Returns a normalized version of the given vector. The resulting vector points in the same direction
as the argument but has unit length.

vtkm::Normalize Takes a reference to a vector and modifies it to be of unit length. Normalize(v) is functionally
equivalent to v *= RMagnitude(v).

vtkm::RMagnitude Returns the reciprocal magnitude of a vector. On some hardware RMagnitude is faster than
Magnitude, but neither is as fast as MagnitudeSquared. This function works on scalars as well as vectors,
in which case it just returns the reciprocal of the scalar.

vtkm::TriangleNormal Given three points in space (contained in vtkm::Vecs of size 3) that compose a triangle
return a vector that is perpendicular to the triangle. The magnitude of the result is equal to twice the
area of the triangle. The result points away from the “front” of the triangle as defined by the standard
counter-clockwise ordering of the points.

15.3 Matrices

Linear algebra operations on small matrices that are done on a single thread are located in vtkm/Matrix.h.

This header defines the vtkm::Matrix templated class. The template parameters are first the type of component,
then the number of rows, then the number of columns. The overloaded parentheses operator can be used to
retrieve values based on row and column indices. Likewise, the bracket operators can be used to reference the
Matrix as a 2D array (indexed by row first). The following example builds a Matrix that contains the values∣∣∣∣ 0 1 2

10 11 12

∣∣∣∣
Example 15.1: Creating a Matrix.

1 vtkm :: Matrix <vtkm :: Float32 , 2, 3> matrix ;
2
3 // Using parenthesis notation .
4 matrix (0 ,0) = 0.0f;
5 matrix (0 ,1) = 1.0f;
6 matrix (0 ,2) = 2.0f;
7
8 // Using bracket notation .
9 matrix [1][0] = 10.0f;

10 matrix [1][1] = 11.0f;
11 matrix [1][2] = 12.0f;

The vtkm/Matrix.h header also defines the following functions that operate on matrices.

vtkm::MatrixDeterminant Takes a square Matrix as its single argument and returns the determinant of that
matrix.

vtkm::MatrixGetColumn Given a Matrix and a column index, returns a vtkm::Vec of that column. This
function might not be as efficient as vtkm::MatrixRow. (It performs a copy of the column).

vtkm::MatrixGetRow Given a Matrix and a row index, returns a vtkm::Vec of that row.

vtkm::MatrixIdentity Returns the identity matrix. If given no arguments, it creates an identity matrix and
returns it. (In this form, the component type and size must be explicitly set.) If given a single square
matrix argument, fills that matrix with the identity.
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vtkm::MatrixInverse Finds and returns the inverse of a given matrix. The function takes two arguments. The
first argument is the matrix to invert. The second argument is a reference to a Boolean that is set to true
if the inverse is found or false if the matrix is singular and the returned matrix is incorrect.

vtkm::MatrixMultiply Performs a matrix-multiply on its two arguments. Overloaded to work for matrix-
matrix, vector-matrix, or matrix-vector multiply.

vtkm::MatrixSetColumn Given a Matrix, a column index, and a vtkm::Vec, sets the column of that index to
the values of the Tuple.

vtkm::MatrixSetRow Given a Matrix, a row index, and a vtkm::Vec, sets the row of that index to the values
of the Tuple.

vtkm::MatrixTranspose Takes a Matrix and returns its transpose.

vtkm::SolveLinearSystem Solves the linear system Ax = b and returns x. The function takes three arguments.
The first two arguments are the matrix A and the vector b, respectively. The third argument is a reference
to a Boolean that is set to true if a single solution is found, false otherwise.

15.4 Newton’s Method

VTK-m’s matrix methods (documented in Section 15.3) provide a method to solve a small linear system of
equations. However, sometimes it is necessary to solve a small nonlinear system of equations. This can be done
with the vtkm::NewtonsMethod function defined in the vtkm/NewtonsMethod.h header.

The NewtonsMethod function assumes that the number of variables equals the number of equations. Newton’s
method operates on an iterative evaluate and search. Evaluations are performed using the functors passed into
the NewtonsMethod. The function takes the following 6 parameters (three of which are optional).

1. A functor whose operation takes a vtkm::Vec and returns a vtkm::Matrix containing the math function’s
Jacobian vector at that point.

2. A functor whose operation takes a vtkm::Vec and returns the evaluation of the math function at that
point as another vtkm::Vec.

3. The vtkm::Vec that represents the desired output of the function.

4. A vtkm::Vec to use as the initial guess. If not specified, the origin is used.

5. The convergence distance. If the iterative method changes all values less than this amount, then it considers
the solution found. If not specified, set to 10−3.

6. The maximum amount of iterations to run before giving up and returning the best solution. If not specified,
set to 10.

Example 15.2: Using NewtonsMethod to solve a small system of nonlinear equations.
1 // A functor for the mathematical function f(x) = [dot(x,x),x[0]*x[1]]
2 struct FunctionFunctor
3 {
4 template < typename T>
5 VTKM_EXEC_CONT
6 vtkm ::Vec <T,2> operator ()( const vtkm ::Vec <T,2> &x) const
7 {
8 return vtkm :: make_Vec (vtkm :: dot(x,x), x[0]*x [1]);
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9 }
10 };
11
12 // A functor for the Jacobian of the mathematical function
13 // f(x) = [dot(x,x),x[0]*x[1]] , which is
14 // | 2*x[0] 2*x[1] |
15 // | x[1] x[0] |
16 struct JacobianFunctor
17 {
18 template < typename T>
19 VTKM_EXEC_CONT
20 vtkm :: Matrix <T,2,2> operator ()( const vtkm ::Vec <T,2> &x) const
21 {
22 vtkm :: Matrix <T,2,2> jacobian ;
23 jacobian (0 ,0) = 2*x[0];
24 jacobian (0 ,1) = 2*x[1];
25 jacobian (1 ,0) = x[1];
26 jacobian (1 ,1) = x[0];
27
28 return jacobian ;
29 }
30 };
31
32 VTKM_EXEC
33 void SolveNonlinear ()
34 {
35 // Use Newton ’s method to solve the nonlinear system of equations :
36 //
37 // xˆ2 + yˆ2 = 2
38 // x*y = 1
39 //
40 // There are two possible solutions , which are (x=1,y=1) and (x=-1,y= -1).
41 // The one found depends on the starting value .
42 vtkm ::Vec <vtkm :: Float32 ,2> answer1 =
43 vtkm :: NewtonsMethod ( JacobianFunctor (),
44 FunctionFunctor (),
45 vtkm :: make_Vec (2.0f, 1.0f),
46 vtkm :: make_Vec (1.0f, 0.0f));
47 // answer1 is [1 ,1]
48
49 vtkm ::Vec <vtkm :: Float32 ,2> answer2 =
50 vtkm :: NewtonsMethod ( JacobianFunctor (),
51 FunctionFunctor (),
52 vtkm :: make_Vec (2.0f, 1.0f),
53 vtkm :: make_Vec (0.0f, -2.0f));
54 // answer2 is [-1,-1]
55 }
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In the control environment, data is defined in mesh structures that comprise a set of finite cells. (See Section 12.2
starting on page 126 for information on defining cell sets in the control environment.) When worklets that operate
on cells are scheduled, these grid structures are broken into their independent cells, and that data is handed to
the worklet. Thus, cell-based operations in the execution environment exclusively operate on independent cells.

Unlike some other libraries such as VTK, VTK-m does not have a cell class that holds all the information
pertaining to a cell of a particular type. Instead, VTK-m provides tags or identifiers defining the cell shape,
and companion data like coordinate and field information are held in separate structures. This organization is
designed so a worklet may specify exactly what information it needs, and only that information will be loaded.

16.1 Cell Shape Tags and Ids

Cell shapes can be specified with either a tag (defined with a struct with a name like CellShapeTag*) or an
enumerated identifier (defined with a constant number with a name like CELL SHAPE *). These shape tags and
identifiers are defined in vtkm/CellShape.h and declared in the vtkm namespace (because they can be used in
either the control or the execution environment). Figure 16.1 gives both the identifier and the tag names.

In addition to the basic cell shapes, there is a special “empty” cell with the identifier vtkm::CELL SHAPE EMPTY
and tag vtkm::CellShapeTagEmpty. This type of cell has no points, edges, or faces and can be thought of as a
placeholder for a null or void cell.

There is also a special cell shape “tag” named vtkm::CellShapeTagGeneric that is used when the actual cell
shape is not known at compile time. CellShapeTagGeneric actually has a member variable named Id that
stores the identifier for the cell shape. There is no equivalent identifier for a generic cell; cell shape identifiers
can be placed in a vtkm::IdComponent at runtime.

When using cell shapes in templated classes and functions, you can use the VTKM IS CELL SHAPE TAG to ensure
a type is a valid cell shape tag. This macro takes one argument and will produce a compile error if the argument
is not a cell shape tag type.

16.1.1 Converting Between Tags and Identifiers

Every cell shape tag has a member variable named Id that contains the identifier for the cell shape. This
provides a convenient mechanism for converting a cell shape tag to an identifier. Most cell shape tags have their
Id member as a compile-time constant, but CellShapeTagGeneric is set at run time.

vtkm/CellShape.h also declares a templated class named vtkm::CellShapeIdToTag that converts a cell shape
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Figure 16.1: Basic Cell Shapes

identifier to a cell shape tag. CellShapeIdToTag has a single template argument that is the identifier. Inside
the class is a type named Tag that is the type of the correct tag.

Example 16.1: Using CellShapeIdToTag.
1 void CellFunction (vtkm :: CellShapeTagTriangle )
2 {
3 std :: cout << "In CellFunction for triangles ." << std :: endl;
4 }
5
6 void DoSomethingWithACell ()
7 {
8 // Calls CellFunction overloaded with a vtkm :: CellShapeTagTriangle .
9 CellFunction (vtkm :: CellShapeIdToTag <vtkm :: CELL_SHAPE_TRIANGLE >:: Tag ());

10 }

However, CellShapeIdToTag is only viable if the identifier can be resolved at compile time. In the case where
a cell identifier is stored in a variable or an array or the code is using a CellShapeTagGeneric, the correct cell
shape is not known at run time. In this case, vtkmGenericCellShapeMacro can be used to check all possible
conditions. This macro is embedded in a switch statement where the condition is the cell shape identifier.
vtkmGenericCellShapeMacro has a single argument, which is an expression to be executed. Before the expression
is executed, a type named CellShapeTag is defined as the type of the appropriate cell shape tag. Often this
method is used to implement the condition for a CellShapeTagGeneric in a function overloaded for cell types.
A demonstration of vtkmGenericCellShapeMacro is given in Example 16.2.
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16.1.2 Cell Traits

The vtkm/CellTraits.h header file contains a traits class named vtkm::CellTraits that provides information
about a cell. Each specialization of CellTraits contains the following members.

TOPOLOGICAL DIMENSIONS Defines the topological dimensions of the cell type. This is 3 for polyhedra, 2 for
polygons, 1 for lines, and 0 for points.

TopologicalDimensionsTag A type set to either vtkm::CellTopologicalDimensionsTag<3>, CellTopolog-
icalDimensionsTag<2>, CellTopologicalDimensionsTag<1>, or CellTopologicalDimensionsTag<0>.
The number is consistent with TOPOLOGICAL DIMENSIONS. This tag is provided for convenience when spe-
cializing functions.

IsSizeFixed Set to either vtkm::CellTraitsTagSizeFixed for cell types with a fixed number of points (for
example, triangle) or vtkm::CellTraitsTagSizeVariable for cell types with a variable number of points
(for example, polygon).

NUM POINTS A vtkm::IdComponent set to the number of points in the cell. This member is only defined when
there is a constant number of points (i.e. IsSizeFixed is set to vtkm::CellTraitsTagSizeFixed).

Example 16.2: Using CellTraits to implement a polygon normal estimator.
1 namespace detail {
2
3 VTKM_SUPPRESS_EXEC_WARNINGS
4 template < typename PointCoordinatesVector , typename WorkletType >
5 VTKM_EXEC_CONT
6 typename PointCoordinatesVector :: ComponentType
7 CellNormalImpl ( const PointCoordinatesVector & pointCoordinates ,
8 vtkm :: CellTopologicalDimensionsTag <2>,
9 const WorkletType & worklet )

10 {
11 if ( pointCoordinates . GetNumberOfComponents () >= 3)
12 {
13 return vtkm :: TriangleNormal ( pointCoordinates [0] ,
14 pointCoordinates [1] ,
15 pointCoordinates [2]);
16 }
17 else
18 {
19 worklet . RaiseError (" Degenerate polygon .");
20 return typename PointCoordinatesVector :: ComponentType ();
21 }
22 }
23
24 VTKM_SUPPRESS_EXEC_WARNINGS
25 template < typename PointCoordinatesVector ,
26 vtkm :: IdComponent Dimensions ,
27 typename WorkletType >
28 VTKM_EXEC_CONT
29 typename PointCoordinatesVector :: ComponentType
30 CellNormalImpl ( const PointCoordinatesVector &,
31 vtkm :: CellTopologicalDimensionsTag < Dimensions >,
32 const WorkletType & worklet )
33 {
34 worklet . RaiseError (" Only polygons supported for cell normals .");
35 return typename PointCoordinatesVector :: ComponentType ();
36 }
37
38 } // namespace detail
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39
40 VTKM_SUPPRESS_EXEC_WARNINGS
41 template < typename CellShape ,
42 typename PointCoordinatesVector ,
43 typename WorkletType >
44 VTKM_EXEC_CONT
45 typename PointCoordinatesVector :: ComponentType
46 CellNormal (CellShape ,
47 const PointCoordinatesVector & pointCoordinates ,
48 const WorkletType & worklet )
49 {
50 return detail :: CellNormalImpl (
51 pointCoordinates ,
52 typename vtkm :: CellTraits <CellShape >:: TopologicalDimensionsTag (),
53 worklet );
54 }
55
56 VTKM_SUPPRESS_EXEC_WARNINGS
57 template < typename PointCoordinatesVector ,
58 typename WorkletType >
59 VTKM_EXEC_CONT
60 typename PointCoordinatesVector :: ComponentType
61 CellNormal (vtkm :: CellShapeTagGeneric shape ,
62 const PointCoordinatesVector & pointCoordinates ,
63 const WorkletType & worklet )
64 {
65 switch ( shape .Id)
66 {
67 vtkmGenericCellShapeMacro (
68 return CellNormal ( CellShapeTag (), pointCoordinates , worklet ));
69 default :
70 worklet . RaiseError (" Unknown cell type .");
71 return typename PointCoordinatesVector :: ComponentType ();
72 }
73 }

16.2 Parametric and World Coordinates

Each cell type supports a one-to-one mapping between a set of parametric coordinates in the unit cube (or some
subset of it) and the points in 3D space that are the locus contained in the cell. Parametric coordinates are useful
because certain features of the cell, such as vertex location and center, are at a consistent location in parametric
space irrespective of the location and distortion of the cell in world space. Also, many field operations are much
easier with parametric coordinates.

The vtkm/exec/ParametricCoordinates.h header file contains the following functions for working with parametric
coordinates.

vtkm::exec::ParametricCoordinatesCenter Returns the parametric coordinates for the center of a given
shape. It takes 4 arguments: the number of points in the cell, a vtkm::Vec of size 3 to store the results, a
shape tag, and a worklet object (for raising errors). A second form of this method takes 3 arguments and
returns the result as a vtkm::Vec<vtkm::FloatDefault,3> instead of passing it as a parameter.

vtkm::exec::ParametricCoordinatesPoint Returns the parametric coordinates for a given point of a given
shape. It takes 5 arguments: the number of points in the cell, the index of the point to query, a vtkm::Vec
of size 3 to store the results, a shape tag, and a worklet object (for raising errors). A second form of
this method takes 3 arguments and returns the result as a vtkm::Vec<vtkm::FloatDefault,3> instead of
passing it as a parameter.
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vtkm::exec::ParametricCoordinatesToWorldCoordinates Given a vector of point coordinates (usually given
by a FieldPointIn worklet argument), a vtkm::Vec of size 3 containing parametric coordinates, a shape
tag, and a worklet object (for raising errors), returns the world coordinates.

vtkm::exec::WorldCoordinatesToParametricCoordinates Given a vector of point coordinates (usually given
by a FieldPointIn worklet argument), a vtkm::Vec of size 3 containing world coordinates, a shape tag,
and a worklet object (for raising errors), returns the parametric coordinates. This function can be slow for
cell types with nonlinear interpolation (which is anything that is not a simplex).

16.3 Interpolation

The shape of every cell is defined by the connections of some finite set of points. Field values defined on those
points can be interpolated to any point within the cell to estimate a continuous field.

The vtkm/exec/CellInterpolate.h header contains the function vtkm::exec::CellInterpolate that takes a vector
of point field values (usually given by a FieldPointIn worklet argument), a vtkm::Vec of size 3 containing
parametric coordinates, a shape tag, and a worklet object (for raising errors). It returns the field interpolated
to the location represented by the given parametric coordinates.

Example 16.3: Interpolating field values to a cell’s center.
1 struct CellCenters : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 typedef void ControlSignature (CellSetIn ,
4 FieldInPoint <> inputField ,
5 FieldOutCell <> outputField );
6 typedef void ExecutionSignature (CellShape , PointCount , _2 , _3 );
7 using InputDomain = _1;
8
9 template < typename CellShapeTag , typename FieldInVecType , typename FieldOutType >

10 VTKM_EXEC
11 void operator ()( CellShapeTag shape ,
12 vtkm :: IdComponent pointCount ,
13 const FieldInVecType & inputField ,
14 FieldOutType & outputField ) const
15 {
16 vtkm ::Vec <vtkm :: FloatDefault ,3> center =
17 vtkm :: exec :: ParametricCoordinatesCenter ( pointCount , shape , *this );
18 outputField = vtkm :: exec :: CellInterpolate ( inputField , center , shape , *this );
19 }
20 };

16.4 Derivatives

Since interpolations provide a continuous field function over a cell, it is reasonable to consider the derivative of
this function. The vtkm/exec/CellDerivative.h header contains the function vtkm::exec::CellDerivative that
takes a vector of scalar point field values (usually given by a FieldPointIn worklet argument), a vtkm::Vec
of size 3 containing parametric coordinates, a shape tag, and a worklet object (for raising errors). It returns
the field derivative at the location represented by the given parametric coordinates. The derivative is return in
a vtkm::Vec of size 3 corresponding to the partial derivatives in the x, y, and z directions. This derivative is
equivalent to the gradient of the field.

Example 16.4: Computing the derivative of the field at cell centers.
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1 struct CellDerivatives : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 typedef void ControlSignature (CellSetIn ,
4 FieldInPoint <> inputField ,
5 FieldInPoint <Vec3 > pointCoordinates ,
6 FieldOutCell <> outputField );
7 typedef void ExecutionSignature (CellShape , PointCount , _2 , _3 , _4 );
8 using InputDomain = _1;
9

10 template < typename CellShapeTag ,
11 typename FieldInVecType ,
12 typename PointCoordVecType ,
13 typename FieldOutType >
14 VTKM_EXEC
15 void operator ()( CellShapeTag shape ,
16 vtkm :: IdComponent pointCount ,
17 const FieldInVecType & inputField ,
18 const PointCoordVecType & pointCoordinates ,
19 FieldOutType & outputField ) const
20 {
21 vtkm ::Vec <vtkm :: FloatDefault ,3> center =
22 vtkm :: exec :: ParametricCoordinatesCenter ( pointCount , shape , *this );
23 outputField = vtkm :: exec :: CellDerivative ( inputField ,
24 pointCoordinates ,
25 center ,
26 shape ,
27 *this );
28 }
29 };

16.5 Edges and Faces

As explained earlier in this chapter, a cell is defined by a collection of points and a shape identifier that
describes how the points come together to form the structure of the cell. The cell shapes supported by VTK-m
are documented in Section 16.1. It contains Figure 16.1 on page 188, which shows how the points for each shape
form the structure of the cell.

Most cell shapes can be broken into subelements. 2D and 3D cells have pairs of points that form edges at the
boundaries of the cell. Likewise, 3D cells have loops of edges that form faces that encase the cell. Figure 16.2
demonstrates the relationship of these constituent elements for some example cell shapes.

Points

Edges
Face

Figure 16.2: The constituent elements (points, edges, and faces) of cells.

The header file vtkm/exec/CellEdge.h contains a collection of functions to help identify the edges of a cell. The
first such function is vtkm::exec::CellEdgeNumberOfEdges. This function takes the number of points in the
cell, the shape of the cell, and an instance of the calling worklet (for error reporting). It returns the number of
edges the cell has (as a vtkm::IdComponent).

The second function is vtkm::exec::CellEdgeLocalIndices. This function takes the number of points, the
local index of the edge (0 to the number of edges in the cell), the shape of the cell, and an instance of the calling
worklet. It returns a vtkm::Vec<vtkm::IdComponent,2> containing the local indices of the two points forming
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the edge. These local indices are consistent with the point labels in Figure 16.2. To get the point indices relative
to the data set, the edge indices should be used to reference a PointIndices list.

The third function is vtkm::exec::CellEdgeCanonicalId. This function takes the number of points, the local
index of the edge, the shape of the cell, a Vec-like containing the global id of each cell point, and an instance
of the calling worklet. It returns a vtkm::Id2 that is globally unique to that edge. If CellEdgeCanonicalId
is called on an edge for a different cell, the two will be the same if and only if the two cells share that edge.
CellEdgeCanonicalId is useful for finding coincident components of topology.

The following example demonstrates a pair of worklets that use the cell edge functions. As is typical for operations
of this nature, one worklet counts the number of edges in each cell and another uses this count to generate the
data.

Example 16.5 demonstrates one of many techniques for creating cell sets in a worklet. Chapter 17 describes
this and many more such techniques.

Did you know?

Example 16.5: Using cell edge functions.
1 struct EdgesCount : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 typedef void ControlSignature (CellSetIn ,
4 FieldOutCell <> numEdgesInCell );
5 typedef _2 ExecutionSignature (CellShape , PointCount );
6 using InputDomain = _1;
7
8 template < typename CellShapeTag >
9 VTKM_EXEC

10 vtkm :: IdComponent
11 operator ()( CellShapeTag shape , vtkm :: IdComponent numPointsInCell ) const
12 {
13 return vtkm :: exec :: CellEdgeNumberOfEdges ( numPointsInCell , shape , *this );
14 }
15 };
16
17 struct EdgesExtract : vtkm :: worklet :: WorkletMapPointToCell
18 {
19 typedef void ControlSignature (CellSetIn ,
20 FieldOutCell <> edgeIndices );
21 typedef void ExecutionSignature (CellShape , PointIndices , VisitIndex , _2 );
22 using InputDomain = _1;
23
24 using ScatterType = vtkm :: worklet :: ScatterCounting ;
25 VTKM_CONT ScatterType GetScatter () const { return this -> Scatter ; }
26
27 VTKM_CONT
28 EdgesExtract ( const ScatterType & scatter )
29 : Scatter ( scatter ) { }
30
31 template < typename CellShapeTag ,
32 typename PointIndexVecType ,
33 typename EdgeIndexVecType >
34 VTKM_EXEC
35 void operator ()( CellShapeTag shape ,
36 const PointIndexVecType & pointIndices ,
37 vtkm :: IdComponent visitIndex ,
38 EdgeIndexVecType & edgeIndices ) const
39 {
40 vtkm ::Vec <vtkm :: IdComponent ,2> localEdgeIndices =
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41 vtkm :: exec :: CellEdgeLocalIndices ( pointIndices . GetNumberOfComponents (),
42 visitIndex ,
43 shape ,
44 *this );
45 edgeIndices [0] = pointIndices [ localEdgeIndices [0]];
46 edgeIndices [1] = pointIndices [ localEdgeIndices [1]];
47 }
48
49 private :
50 ScatterType Scatter ;
51 };

The header file vtkm/exec/CellFace.h contains a collection of functions to help identify the faces of a cell. The
first such function is vtkm::exec::CellFaceNumberOfFaces. This function takes the shape of the cell and an
instance of the calling worklet (for error reporting). It returns the number of faces the cell has (as a vtkm::-
IdComponent).

The second function is vtkm::exec::CellFaceNumberOfPoints. This function takes the local index of the face
(0 to the number of faces in the cell), the shape of the cell, and an instance of the calling worklet. It returns the
number of points the specified face has (as a vtkm::IdComponent).

The third function is vtkm::exec::CellFaceLocalIndices. This function takes the local index of the face, the
shape of the cell, and an instance of the calling worklet. It returns a vtkm::VecCConst<vtkm::IdComponent>
containing the local indices of the points forming the face. The points are given in counterclockwise order
when viewing the face from the outside of the cell. These local indices are consistent with the point labels in
Figure 16.2. To get the point indices relative to the data set, the face indices should be used to reference a
PointIndices list.

The fourth function is vtkm::exec::CellFaceCanonicalId. This function takes the local index of the face, the
shape of the cell, a Vec-like containing the global id of each cell point, and an instance of the calling worklet.
It returns a vtkm::Id3 that is globally unique to that face. If CellFaceCanonicalId is called on a face for a
different cell, the two will be the same if and only if the two cells share that face. CellFaceCanonicalId is
useful for finding coincident components of topology.

The following example demonstrates a triple of worklets that use the cell face functions. As is typical for
operations of this nature, the worklets are used in steps to first count entities and then generate new entities.
In this case, the first worklet counts the number of faces and the second worklet counts the points in each face.
The third worklet generates cells for each face.

Example 16.6: Using cell face functions.
1 struct FacesCount : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 typedef void ControlSignature (CellSetIn ,
4 FieldOutCell <> numFacesInCell );
5 typedef _2 ExecutionSignature ( CellShape );
6 using InputDomain = _1;
7
8 template < typename CellShapeTag >
9 VTKM_EXEC

10 vtkm :: IdComponent
11 operator ()( CellShapeTag shape ) const
12 {
13 return vtkm :: exec :: CellFaceNumberOfFaces (shape , *this );
14 }
15 };
16
17 struct FacesCountPoints : vtkm :: worklet :: WorkletMapPointToCell
18 {
19 typedef void ControlSignature (CellSetIn ,
20 FieldOutCell <> numPointsInFace ,
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21 FieldOutCell <> faceShape );
22 typedef void ExecutionSignature (CellShape , VisitIndex , _2 , _3 );
23 using InputDomain = _1;
24
25 using ScatterType = vtkm :: worklet :: ScatterCounting ;
26 VTKM_CONT ScatterType GetScatter () const { return this -> Scatter ; }
27
28 VTKM_CONT
29 FacesCountPoints ( const ScatterType & scatter )
30 : Scatter ( scatter ) { }
31
32 template < typename CellShapeTag >
33 VTKM_EXEC
34 void operator ()( CellShapeTag shape ,
35 vtkm :: IdComponent visitIndex ,
36 vtkm :: IdComponent & numPointsInFace ,
37 vtkm :: UInt8 & faceShape ) const
38 {
39 numPointsInFace =
40 vtkm :: exec :: CellFaceNumberOfPoints ( visitIndex , shape , *this );
41 switch ( numPointsInFace )
42 {
43 case 3: faceShape = vtkm :: CELL_SHAPE_TRIANGLE ; break ;
44 case 4: faceShape = vtkm :: CELL_SHAPE_QUAD ; break ;
45 default : faceShape = vtkm :: CELL_SHAPE_POLYGON ; break ;
46 }
47 }
48
49 private :
50 ScatterType Scatter ;
51 };
52
53 struct FacesExtract : vtkm :: worklet :: WorkletMapPointToCell
54 {
55 typedef void ControlSignature (CellSetIn ,
56 FieldOutCell <> faceIndices );
57 typedef void ExecutionSignature (CellShape , PointIndices , VisitIndex , _2 );
58 using InputDomain = _1;
59
60 using ScatterType = vtkm :: worklet :: ScatterCounting ;
61 VTKM_CONT ScatterType GetScatter () const { return this -> Scatter ; }
62
63 VTKM_CONT
64 FacesExtract ( const ScatterType & scatter )
65 : Scatter ( scatter ) { }
66
67 template < typename CellShapeTag ,
68 typename PointIndexVecType ,
69 typename FaceIndexVecType >
70 VTKM_EXEC
71 void operator ()( CellShapeTag shape ,
72 const PointIndexVecType & pointIndices ,
73 vtkm :: IdComponent visitIndex ,
74 FaceIndexVecType & faceIndices ) const
75 {
76 vtkm :: VecCConst <vtkm :: IdComponent > localFaceIndices =
77 vtkm :: exec :: CellFaceLocalIndices ( visitIndex ,
78 shape ,
79 *this );
80
81 vtkm :: IdComponent numPoints = faceIndices . GetNumberOfComponents ();
82 VTKM_ASSERT ( numPoints == localFaceIndices . GetNumberOfComponents ());
83 for (vtkm :: IdComponent localPointIndex = 0;
84 localPointIndex < numPoints ;
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85 localPointIndex ++)
86 {
87 faceIndices [ localPointIndex ] =
88 pointIndices [ localFaceIndices [ localPointIndex ]];
89 }
90 }
91
92 private :
93 ScatterType Scatter ;
94 };
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SEVENTEEN

GENERATING CELL SETS

This chapter describes techniques for designing algorithms in VTK-m that generate cell sets to be inserted in a
vtkm::cont::DataSet. Although Chapter 12 on data sets describes how to create a data set, including defining
its set of cells, these are serial functions run in the control environment that are not designed for computing
geometric structures. Rather, they are designed for specifying data sets built from existing data arrays, from
inherently slow processes (such as file I/O), or for small test data. In this chapter we discuss how to write worklets
that create new mesh topologies by writing data that can be incorporated into a vtkm::cont::CellSet.

This chapter is constructed as a set of patterns that are commonly employed to build cell sets. These techniques
apply the worklet structures documented in Chapter 14. Although it is possible for these worklets to generate
data of its own, the algorithms described here follow the more common use case of deriving one topology
from another input data set. This chapter is not (and cannot be) completely comprehensive by covering every
possible mechanism for building cell sets. Instead, we provide the basic and common patterns used in scientific
visualization.

17.1 Single Cell Type

For our first example of algorithms that generate cell sets is one that creates a set of cells in which all the cells
are of the same shape and have the same number of points. Our motivating example is an algorithm that will
extract all the edges from a cell set. The resulting cell set will comprise a collection of line cells that represent
the edges from the original cell set. Since all cell edges can be represented as lines with two endpoints, we know
all the output cells will be of the same type. As we will see later in the example, we can use a vtkm::cont::-
CellSetSingleType to represent the data.

It is rare that an algorithm generating a cell set will generate exactly one output cell for each input cell. Thus,
the first step in an algorithm generating a cell set is to count the number of cells each input item will create. In
our motivating example, this is the the number of edges for each input cell.

Example 17.1: A simple worklet to count the number of edges on each cell.
1 struct CountEdges : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 typedef void ControlSignature ( CellSetIn cellSet , FieldOut <> numEdges );
4 typedef _2 ExecutionSignature (CellShape , PointCount );
5 using InputDomain = _1;
6
7 template < typename CellShapeTag >
8 VTKM_EXEC_CONT
9 vtkm :: IdComponent operator ()( CellShapeTag shape ,

10 vtkm :: IdComponent numPoints ) const
11 {
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12 return vtkm :: exec :: CellEdgeNumberOfEdges (numPoints , shape , *this );
13 }
14 };

This count array generated in Example 17.1 can be used in a vtkm::worklet::ScatterCounting of a subsequent
worklet that generates the output cells. (See Section 14.10 for information on using a scatter with a worklet.)
We will see this momentarily.

The second and final worklet we need to generate our wireframe cells is one that outputs the indices of an
edge. The worklet parenthesis’s operator takes information about the input cell (shape and point indices) and
an index of which edge to output. The aforementioned ScatterCounting provides a VisitIndex that signals
which edge to output. The worklet parenthesis operator returns the two indices for the line in, naturally enough,
a vtkm::Vec<vtkm::Id,2>.

Example 17.2: A worklet to generate indices for line cells.
1 class EdgeIndices : public vtkm :: worklet :: WorkletMapPointToCell
2 {
3 public :
4 typedef void ControlSignature ( CellSetIn cellSet , FieldOut <> connectivityOut );
5 typedef void ExecutionSignature (CellShape , PointIndices , _2 , VisitIndex );
6 using InputDomain = _1;
7
8 using ScatterType = vtkm :: worklet :: ScatterCounting ;
9 VTKM_CONT

10 ScatterType GetScatter () const { return this -> Scatter ; }
11
12 VTKM_CONT
13 explicit EdgeIndices ( const ScatterType & scatter ) : Scatter ( scatter ) { }
14
15 template < typename CellShapeTag , typename PointIndexVecType >
16 VTKM_EXEC
17 void operator ()( CellShapeTag shape ,
18 const PointIndexVecType & pointIndices ,
19 vtkm ::Vec <vtkm ::Id , 2>& connectivityOut ,
20 vtkm :: IdComponent visitIndex ) const
21 {
22 vtkm ::Vec <vtkm :: IdComponent , 2> localEdgeIndices =
23 vtkm :: exec :: CellEdgeLocalIndices ( pointIndices . GetNumberOfComponents (),
24 visitIndex ,
25 shape ,
26 *this );
27 connectivityOut [0] = pointIndices [ localEdgeIndices [0]];
28 connectivityOut [1] = pointIndices [ localEdgeIndices [1]];
29 }
30
31 private :
32 ScatterType Scatter ;
33 };

Our ultimate goal is to fill a vtkm::cont::CellSetSingleType object with the generated line cells. A CellSetS-
ingleType requires 4 items: the number of points, the constant cell shape, the constant number of points in
each cell, and an array of connection indices. The first 3 items are trivial. The number of points can be taken
from the input cell set as they are the same. The cell shape and number of points are predetermined to be line
and 2, respectively. The last item, the array of connection indices, is what we are creating with the worklet in
Example 17.2.

However, there is a complication. The connectivity array for CellSetSingleType is expected to be a flat
array of vtkm::Id indices, not an array of Vec objects. We could jump through some hoops adjusting the
ScatterCounting to allow the worklet to output only one index of one cell rather than all indices of one cell.
But that would be overly complicated and inefficient.

198 Chapter 17. Generating Cell Sets



DRAFT

17.1. Single Cell Type

A simpler approach is to use the vtkm::cont::ArrayHandleGroupVec fancy array handle (described in Sec-
tion 10.2.11) to make a flat array of indices look like an array of Vec objects. The following example shows a
Run method in a worklet helper class. Note the use of make ArrayHandleGroupVec when calling the Invoke
method to make this conversion.

Example 17.3: Invoking worklets to extract edges from a cell set.
1 template < typename CellSetType , typename Device >
2 VTKM_CONT
3 vtkm :: cont :: CellSetSingleType <> Run( const CellSetType & inCellSet , Device )
4 {
5 VTKM_IS_DYNAMIC_OR_STATIC_CELL_SET ( CellSetType );
6
7 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > edgeCounts ;
8 vtkm :: worklet :: DispatcherMapTopology < CountEdges , Device > countEdgeDispatcher ;
9 countEdgeDispatcher . Invoke (inCellSet , edgeCounts );

10
11 vtkm :: worklet :: ScatterCounting scatter ( edgeCounts , Device ());
12 this -> OutputToInputCellMap =
13 scatter . GetOutputToInputMap ( inCellSet . GetNumberOfCells ());
14
15 vtkm :: cont :: ArrayHandle <vtkm ::Id > connectivityArray ;
16 vtkm :: worklet :: DispatcherMapTopology < EdgeIndices , Device >
17 edgeIndicesDispatcher (( EdgeIndices ( scatter )));
18 edgeIndicesDispatcher . Invoke (
19 inCellSet , vtkm :: cont :: make_ArrayHandleGroupVec <2 >( connectivityArray ));
20
21 vtkm :: cont :: CellSetSingleType <> outCellSet ( inCellSet . GetName ());
22 outCellSet .Fill( inCellSet . GetNumberOfPoints (),
23 vtkm :: CELL_SHAPE_LINE ,
24 2,
25 connectivityArray );
26
27 return outCellSet ;
28 }

Another feature to note in Example 17.3 is that the method calls GetOutputToInputMap on the Scatter object
it creates and squirrels it away for later use. The reason for this behavior is to implement mapping fields that
are attached to the input cells to the indices of the output. In practice, this worklet is going to be called on
DataSet objects to create new DataSet objects. The method in Example 17.3 creates a new CellSet, but we
also need a method to transform the Fields on the data set. The saved OutputToInputCellMap array allows us
to transform input fields to output fields.

The following example shows another convenience method that takes this saved OutputToInputCellMap array
and converts an array from an input cell field to an output cell field array. Note that we can do this by using
the OutputToInputCellMap as an index array in a vtkm::cont::ArrayHandlePermutation.

Example 17.4: Converting cell fields using a simple permutation.
1 template <typename ValueType , typename Storage , typename Device >
2 VTKM_CONT
3 vtkm :: cont :: ArrayHandle <ValueType > ProcessCellField (
4 const vtkm :: cont :: ArrayHandle <ValueType , Storage >& inCellField ,
5 Device ) const
6 {
7 vtkm :: cont :: ArrayHandle <ValueType > outCellField ;
8 vtkm :: cont :: DeviceAdapterAlgorithm <Device >:: Copy(
9 vtkm :: cont :: make_ArrayHandlePermutation (this -> OutputToInputCellMap ,

10 inCellField ),
11 outCellField );
12 return outCellField ;
13 }
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17.2 Combining Like Elements

Our motivating example in Section 17.1 created a cell set with a line element representing each edge in some
input data set. However, on close inspection there is a problem with our algorithm: it is generating a lot of
duplicate elements. The cells in a typical mesh are connected to each other. As such, they share edges with
each other. That is, the edge of one cell is likely to also be part of one or more other cells. When multiple cells
contain the same edge, the algorithm we created in Section 17.1 will create multiple overlapping lines, one for
each cell using the edge, as demonstrated in Figure 17.1. What we really want is to have one line for every edge
in the mesh rather than many overlapping lines.

Figure 17.1: Duplicate lines from extracted edges. Consider the small mesh at the left comprising a square and
a triangle. If we count the edges in this mesh, we would expect to get 6. However, our näıve implementation in
Section 17.1 generates 7 because the shared edge (highlighted in red in the wireframe in the middle) is duplicated.
As seen in the exploded view at right, one line is created for the square and one for the triangle.

In this section we will re-implement the algorithm to generate a wireframe by creating a line for each edge,
but this time we will merge duplicate edges together. Our first step is the same as before. We need to count
the number of edges in each input cell and use those counts to create a vtkm::worklet::ScatterCounting for
subsequent worklets. Counting the edges is a simple worklet.

Example 17.5: A simple worklet to count the number of edges on each cell.
1 struct CountEdges : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 typedef void ControlSignature ( CellSetIn cellSet , FieldOut <> numEdges );
4 typedef _2 ExecutionSignature (CellShape , PointCount );
5 using InputDomain = _1;
6
7 template < typename CellShapeTag >
8 VTKM_EXEC_CONT
9 vtkm :: IdComponent operator ()( CellShapeTag shape ,

10 vtkm :: IdComponent numPoints ) const
11 {
12 return vtkm :: exec :: CellEdgeNumberOfEdges (numPoints , shape , *this );
13 }
14 };

In our previous version, we used the count to directly write out the lines. However, before we do that, we want
to identify all the unique edges and identify which cells share this edge. This grouping is exactly the function
that the reduce by key worklet type (described in Section 14.5.3 is designed to accomplish. The principal idea is
to write a “key” that uniquely identifies the edge. The reduce by key worklet can then group the edges by the
key and allow you to combine the data for the edge.

Thus, our goal of finding duplicate edges hinges on producing a key where two keys are identical if and only if
the edges are the same. One straightforward key is to use the coordinates in 3D space by, say, computing the
midpoint of the edge. The main problem with using point coordinates approach is that a computer can hold a
point coordinate only with floating point numbers of limited precision. Computer floating point computations
are notorious for providing slightly different answers when the results should be the same. For example, if an
edge as endpoints at p1 and p2 and two different cells compute the midpoint as (p1 + p2)/2 and (p2 + p1)/2,
respectively, the answer is likely to be slightly different. When this happens, the keys will not be the same and
we will still produce 2 edges in the output.
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Fortunately, there is a better choice for keys based on the observation that in the original cell set each edge
is specified by endpoints that each have unique indices. We can combine these 2 point indices to form a
“canonical” descriptor of an edge (correcting for order).1 VTK-m comes with a helper function, vtkm::exec::-
CellEdgeCanonicalId, defined in vtkm/exec/CellEdge.h to produce these unique edge keys as vtkm::Id2s. Our
second worklet produces these canonical edge identifiers.

Example 17.6: Worklet generating canonical edge identifiers.
1 class EdgeIds : public vtkm :: worklet :: WorkletMapPointToCell
2 {
3 public :
4 typedef void ControlSignature ( CellSetIn cellSet ,
5 FieldOut <> canonicalIds );
6 typedef void ExecutionSignature ( CellShape shape ,
7 PointIndices globalPointIndices ,
8 VisitIndex localEdgeIndex ,
9 _2 canonicalIdOut );

10 using InputDomain = _1;
11
12 using ScatterType = vtkm :: worklet :: ScatterCounting ;
13
14 VTKM_CONT
15 ScatterType GetScatter () const { return this -> Scatter ; }
16
17 VTKM_CONT
18 explicit EdgeIds ( const ScatterType & scatter )
19 : Scatter ( scatter )
20 { }
21
22 template <typename CellShapeTag , typename PointIndexVecType >
23 VTKM_EXEC
24 void operator ()( CellShapeTag shape ,
25 const PointIndexVecType & pointIndices ,
26 vtkm :: IdComponent localEdgeIndex ,
27 vtkm :: Id2& canonicalIdOut ) const
28 {
29 canonicalIdOut =
30 vtkm :: exec :: CellEdgeCanonicalId ( pointIndices . GetNumberOfComponents (),
31 localEdgeIndex ,
32 shape ,
33 pointIndices ,
34 *this );
35 }
36
37 private :
38 ScatterType Scatter ;
39 };

Our third and final worklet generates the line cells by outputting the indices of each edge. As hinted at earlier,
this worklet is a reduce by key worklet (inheriting from vtkm::worklet::WorkletReduceByKey). The reduce
by key dispatcher will collect the unique keys and call the worklet once for each unique edge. Because there is
no longer a consistent mapping from the generated lines to the elements of the input cell set, we need pairs of
indices identifying the cells/edges from which the edge information comes. We use these indices along with a
connectivity structure produced by a WholeCellSetIn to find the information about the edge. As shown later,
these indices of cells and edges can be extracted from the ScatterCounting used to executed the worklet back
in Example 17.6.

As we did in Section 17.1, this worklet writes out the edge information in a vtkm::Vec<vtkm::Id,2> (which in
some following code will be created with an ArrayHandleGroupVec).

1Using indices to find common mesh elements is described by Miller et al. in “Finely-Threaded History-Based Topology Compu-
tation” (in Eurographics Symposium on Parallel Graphics and Visualization, June 2014).
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Example 17.7: A worklet to generate indices for line cells from combined edges.
1 class EdgeIndices : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 typedef void ControlSignature ( KeysIn keys ,
5 WholeCellSetIn <> inputCells ,
6 ValuesIn <> originCells ,
7 ValuesIn <> originEdges ,
8 ReducedValuesOut <> connectivityOut );
9 typedef void ExecutionSignature (_2 inputCells ,

10 _3 originCell ,
11 _4 originEdge ,
12 _5 connectivityOut );
13 using InputDomain = _1;
14
15 template <typename CellSetType ,
16 typename OriginCellsType ,
17 typename OriginEdgesType >
18 VTKM_EXEC
19 void operator ()( const CellSetType & cellSet ,
20 const OriginCellsType & originCells ,
21 const OriginEdgesType & originEdges ,
22 vtkm :: Id2& connectivityOut ) const
23 {
24 // Regardless of how many cells / edges are in the input , we know they are
25 // all the same , so just pick the first one.
26 vtkm ::Vec <vtkm :: IdComponent , 2> localEdgeIndices =
27 vtkm :: exec :: CellEdgeLocalIndices (
28 cellSet . GetNumberOfIndices ( originCells [0]) ,
29 originEdges [0] ,
30 cellSet . GetCellShape ( originCells [0]) ,
31 *this );
32 auto pointIndices = cellSet . GetIndices ( originCells [0]);
33 connectivityOut [0] = pointIndices [ localEdgeIndices [0]];
34 connectivityOut [1] = pointIndices [ localEdgeIndices [1]];
35 }
36 };

It so happens that the vtkm::Id2s generated by CellEdgeCanonicalId contain the point indices of the two
endpoints, which is enough information to create the edge. Thus, in this example it would be possible to
forgo the steps of looking up indices through the cell set. That said, this is more often not the case, so for
the purposes of this example we show how to construct cells without depending on the structure of the keys.

Did you know?

With these 3 worklets, it is now possible to generate all the information we need to fill a vtkm::cont::-
CellSetSingleType object. A CellSetSingleType requires 4 items: the number of points, the constant cell
shape, the constant number of points in each cell, and an array of connection indices. The first 3 items are
trivial. The number of points can be taken from the input cell set as they are the same. The cell shape and
number of points are predetermined to be line and 2, respectively.

The last item, the array of connection indices, is what we are creating with the worklet in Example 17.7. The
connectivity array for CellSetSingleType is expected to be a flat array of vtkm::Id indices, but the worklet
needs to provide groups of indices for each cell (in this case as a Vec object). To reconcile what the worklet
provides and what the connectivity array must look like, we use the vtkm::cont::ArrayHandleGroupVec fancy
array handle (described in Section 10.2.11) to make a flat array of indices look like an array of Vec objects. The
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following example shows a Run method in a worklet helper class. Note the use of make ArrayHandleGroupVec
when calling the Invoke method to make this conversion.

Example 17.8: Invoking worklets to extract unique edges from a cell set.
1 template < typename CellSetType , typename Device >
2 VTKM_CONT
3 vtkm :: cont :: CellSetSingleType <> Run( const CellSetType & inCellSet , Device )
4 {
5 VTKM_IS_DYNAMIC_OR_STATIC_CELL_SET ( CellSetType );
6
7 // First , count the edges in each cell.
8 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > edgeCounts ;
9 vtkm :: worklet :: DispatcherMapTopology < CountEdges , Device > countEdgeDispatcher ;

10 countEdgeDispatcher . Invoke (inCellSet , edgeCounts );
11
12 vtkm :: worklet :: ScatterCounting scatter ( edgeCounts , Device ());
13 this -> OutputToInputCellMap =
14 scatter . GetOutputToInputMap ( inCellSet . GetNumberOfCells ());
15 vtkm :: worklet :: ScatterCounting :: VisitArrayType outputToInputEdgeMap =
16 scatter . GetVisitArray ( inCellSet . GetNumberOfCells ());
17
18 // Second , for each edge , extract a canonical id.
19 vtkm :: cont :: ArrayHandle <vtkm ::Id2 > canonicalIds ;
20
21 vtkm :: worklet :: DispatcherMapTopology <EdgeIds , Device >
22 edgeIdsDispatcher (( EdgeIds ( scatter )));
23 edgeIdsDispatcher . Invoke (inCellSet , canonicalIds );
24
25 // Third , use a Keys object to combine all like edge ids.
26 this -> CellToEdgeKeys = vtkm :: worklet :: Keys <vtkm ::Id2 >( canonicalIds , Device ());
27
28 // Fourth , use a reduce -by -key to extract indices for each unique edge.
29 vtkm :: cont :: ArrayHandle <vtkm ::Id > connectivityArray ;
30 vtkm :: worklet :: DispatcherReduceByKey < EdgeIndices , Device > edgeIndicesDispatcher ;
31 edgeIndicesDispatcher . Invoke (
32 this -> CellToEdgeKeys ,
33 inCellSet ,
34 this -> OutputToInputCellMap ,
35 outputToInputEdgeMap ,
36 vtkm :: cont :: make_ArrayHandleGroupVec <2 >( connectivityArray ));
37
38 // Fifth , use the created connectivity array to build a cell set.
39 vtkm :: cont :: CellSetSingleType <> outCellSet ( inCellSet . GetName ());
40 outCellSet .Fill( inCellSet . GetNumberOfPoints (),
41 vtkm :: CELL_SHAPE_LINE ,
42 2,
43 connectivityArray );
44
45 return outCellSet ;
46 }

Another feature to note in Example 17.8 is that the method calls GetOutputToInputMap on the Scatter object
it creates and squirrels it away for later use. It also saves the vtkm::worklet::Keys object created for later user.
The reason for this behavior is to implement mapping fields that are attached to the input cells to the indices of
the output. In practice, these worklet are going to be called on DataSet objects to create new DataSet objects.
The method in Example 17.8 creates a new CellSet, but we also need a method to transform the Fields on the
data set. The saved OutputToInputCellMap array and Keys object allow us to transform input fields to output
fields.

The following example shows another convenience method that takes these saved objects and converts an array
from an input cell field to an output cell field array. Because in general there are several cells that contribute to
each edge/line in the output, we need a method to combine all these cell values to one. The most appropriate
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combination is likely an average of all the values. Because this is a common operation, VTK-m provides the
vtkm::worklet::AverageByKey to help perform exactly this operation. AverageByKey provides a Run method
that takes a Keys object, an array of in values, and a device adapter tag and produces and array of values
averaged by key.

Example 17.9: Converting cell fields that average collected values.
1 template <typename ValueType , typename Storage , typename Device >
2 VTKM_CONT
3 vtkm :: cont :: ArrayHandle <ValueType > ProcessCellField (
4 const vtkm :: cont :: ArrayHandle <ValueType , Storage >& inCellField ,
5 Device ) const
6 {
7 return vtkm :: worklet :: AverageByKey :: Run(
8 this -> CellToEdgeKeys ,
9 vtkm :: cont :: make_ArrayHandlePermutation (this -> OutputToInputCellMap ,

10 inCellField ),
11 Device ());
12 }

17.3 Faster Combining Like Elements with Hashes

In the previous two sections we constructed worklets that took a cell set and created a new set of cells that
represented the edges of the original cell set, which can provide a wireframe of the mesh. In Section 17.1 we
provided a pair of worklets that generate one line per edge per cell. In Section 17.2 we improved on this behavior
by using a reduce by key worklet to find and merge shared edges.

If we were to time all the operations run in the later implementation to generate the wireframe (i.e. the operations
in Example 17.8), we would find that the vast majority of the time is not spent in the actual worklets. Rather,
the majority of the time is spent in collecting the like keys, which happens in the constructor of the vtkm::-
worklet::Keys object. Internally, keys are collected by sorting them. The most fruitful way to improve the
performance of this algorithm is to improve the sorting behavior.

The details of how the sort works is dependent on the inner workings of the device adapter. It turns out that
the performance of the sort of the keys is highly dependent on the data type of the keys. For example, sorting
numbers stored in a 32-bit integer is often much faster than sorting groups of 2 or 3 64-bit integer. This is
particularly true when the sort is capable of performing a radix-based sort.

An easy way to convert collections of indices like those returned from vtkm::exec::CellEdgeCanonicalId to
a 32-bit integer is to use a hash function. To facilitate the creation of hash values, VTK-m comes with a simple
vtkm::Hash function (in the vtkm/Hash.h header file). Hash takes a Vec or Vec-like object of integers and returns
a value of type vtkm::HashType (an alias for a 32-bit integer). This hash function uses the FNV-1a algorithm
that is designed to create hash values that are quasi-random but deterministic. This means that hash values of
two different identifiers are unlikely to be the same.

That said, hash collisions can happen and become increasingly likely on larger data sets. Therefore, if we wish
to use hash values, we also have to add conditions that manage when collisions happen. Resolving hash value
collisions adds overhead, but time saved in faster sorting of hash values generally outweighs the overhead added
by resolving collisions.2 In this section we will improve on the implementation given in Section 17.2 by using
hash values for keys and resolving for collisions.

As always, our first step is to count the number of edges in each input cell. These counts are used to create a
vtkm::worklet::ScatterCounting for subsequent worklets.

2A comparison of the time required for completely unique keys and hash keys with collisions is studied by Lessley, et al. in
“Techniques for Data-Parallel Searching for Duplicate Elements” (in IEEE Symposium on Large Data Analysis and Visualization,
October 2017).
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Example 17.10: A simple worklet to count the number of edges on each cell.
1 struct CountEdges : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 typedef void ControlSignature ( CellSetIn cellSet , FieldOut <> numEdges );
4 typedef _2 ExecutionSignature (CellShape , PointCount );
5 using InputDomain = _1;
6
7 template < typename CellShapeTag >
8 VTKM_EXEC_CONT
9 vtkm :: IdComponent operator ()( CellShapeTag shape ,

10 vtkm :: IdComponent numPoints ) const
11 {
12 return vtkm :: exec :: CellEdgeNumberOfEdges (numPoints , shape , *this );
13 }
14 };

Our next step is to generate keys that can be used to find like elements. As before, we will use the vtkm::-
exec::CellEdgeCanonicalId function to create a unique representation for each edge. However, rather than
directly use the value from CellEdgeCanonicalId, which is a vtkm::Id2, we will instead use that to generate a
hash value.

Example 17.11: Worklet generating hash values.
1 class EdgeHashes : public vtkm :: worklet :: WorkletMapPointToCell
2 {
3 public :
4 typedef void ControlSignature ( CellSetIn cellSet ,
5 FieldOut <> hashValues );
6 typedef _2 ExecutionSignature ( CellShape shape ,
7 PointIndices globalPointIndices ,
8 VisitIndex localEdgeIndex );
9 using InputDomain = _1;

10
11 using ScatterType = vtkm :: worklet :: ScatterCounting ;
12
13 VTKM_CONT
14 ScatterType GetScatter () const { return this -> Scatter ; }
15
16 VTKM_CONT
17 explicit EdgeHashes ( const ScatterType & scatter )
18 : Scatter ( scatter )
19 { }
20
21 template <typename CellShapeTag , typename PointIndexVecType >
22 VTKM_EXEC
23 vtkm :: HashType operator ()( CellShapeTag shape ,
24 const PointIndexVecType & pointIndices ,
25 vtkm :: IdComponent localEdgeIndex ) const
26 {
27 return vtkm :: Hash(
28 vtkm :: exec :: CellEdgeCanonicalId ( pointIndices . GetNumberOfComponents (),
29 localEdgeIndex ,
30 shape ,
31 pointIndices ,
32 *this ));
33 }
34
35 private :
36 ScatterType Scatter ;
37 };

The hash values generated by the worklet in Example 17.11 will be the same for two identical edges. However,
it is no longer guaranteed that two distinct edges will have different keys, and collisions of this nature become
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increasingly common for larger cell sets. Thus, our next step is to resolve any such collisions.

The following example provides a worklet that goes through each group of edges associated with the same hash
value (using a reduce by key worklet). It identifies which edges are actually the same as which other edges,
marks a local identifier for each unique edge group, and returns the number of unique edges associated with the
hash value.

Example 17.12: Worklet to resolve hash collisions occurring on edge identifiers.
1 class EdgeHashCollisions : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 typedef void ControlSignature ( KeysIn keys ,
5 WholeCellSetIn <> inputCells ,
6 ValuesIn <> originCells ,
7 ValuesIn <> originEdges ,
8 ValuesOut <> localEdgeIndices ,
9 ReducedValuesOut <> numEdges );

10 typedef _6 ExecutionSignature (_2 inputCells ,
11 _3 originCells ,
12 _4 originEdges ,
13 _5 localEdgeIndices );
14 using InputDomain = _1;
15
16 template <typename CellSetType ,
17 typename OriginCellsType ,
18 typename OriginEdgesType ,
19 typename localEdgeIndicesType >
20 VTKM_EXEC
21 vtkm :: IdComponent operator ()( const CellSetType & cellSet ,
22 const OriginCellsType & originCells ,
23 const OriginEdgesType & originEdges ,
24 localEdgeIndicesType & localEdgeIndices ) const
25 {
26 vtkm :: IdComponent numEdgesInHash = localEdgeIndices . GetNumberOfComponents ();
27
28 // Sanity checks .
29 VTKM_ASSERT ( originCells . GetNumberOfComponents () == numEdgesInHash );
30 VTKM_ASSERT ( originEdges . GetNumberOfComponents () == numEdgesInHash );
31
32 // Clear out localEdgeIndices
33 for (vtkm :: IdComponent index = 0; index < numEdgesInHash ; ++ index )
34 {
35 localEdgeIndices [ index ] = -1;
36 }
37
38 // Count how many unique edges there are and create an id for each;
39 vtkm :: IdComponent numUniqueEdges = 0;
40 for (vtkm :: IdComponent firstEdgeIndex = 0;
41 firstEdgeIndex < numEdgesInHash ;
42 ++ firstEdgeIndex )
43 {
44 if ( localEdgeIndices [ firstEdgeIndex ] == -1)
45 {
46 vtkm :: IdComponent edgeId = numUniqueEdges ;
47 localEdgeIndices [ firstEdgeIndex ] = edgeId ;
48 // Find all matching edges .
49 vtkm :: Id firstCellIndex = originCells [ firstEdgeIndex ];
50 vtkm :: Id2 canonicalEdgeId =
51 vtkm :: exec :: CellEdgeCanonicalId (
52 cellSet . GetNumberOfIndices ( firstCellIndex ),
53 originEdges [ firstEdgeIndex ],
54 cellSet . GetCellShape ( firstCellIndex ),
55 cellSet . GetIndices ( firstCellIndex ),
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56 *this );
57 for (vtkm :: IdComponent laterEdgeIndex = firstEdgeIndex +1;
58 laterEdgeIndex < numEdgesInHash ;
59 ++ laterEdgeIndex )
60 {
61 vtkm :: Id laterCellIndex = originCells [ laterEdgeIndex ];
62 vtkm :: Id2 otherCanonicalEdgeId =
63 vtkm :: exec :: CellEdgeCanonicalId (
64 cellSet . GetNumberOfIndices ( laterCellIndex ),
65 originEdges [ laterEdgeIndex ],
66 cellSet . GetCellShape ( laterCellIndex ),
67 cellSet . GetIndices ( laterCellIndex ),
68 *this );
69 if ( canonicalEdgeId == otherCanonicalEdgeId )
70 {
71 localEdgeIndices [ laterEdgeIndex ] = edgeId ;
72 }
73 }
74 ++ numUniqueEdges ;
75 }
76 }
77
78 return numUniqueEdges ;
79 }
80 };

With all hash collisions correctly identified, we are ready to generate the connectivity array for the line elements.
This worklet uses a reduce by key dispatch like the previous example, but this time we use a ScatterCounting
to run the worklet multiple times for hash values that contain multiple unique edges. The worklet takes all the
information it needs to reference back to the edges in the original mesh including a WholeCellSetIn, look back
indices for the cells and respective edges, and the unique edge group indicators produced by Example 17.11.

As in the previous sections, this worklet writes out the edge information in a vtkm::Vec<vtkm::Id,2> (which
in some following code will be created with an ArrayHandleGroupVec).

Example 17.13: A worklet to generate indices for line cells from combined edges and potential collisions.
1 class EdgeIndices : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 typedef void ControlSignature ( KeysIn keys ,
5 WholeCellSetIn <> inputCells ,
6 ValuesIn <> originCells ,
7 ValuesIn <> originEdges ,
8 ValuesIn <> localEdgeIndices ,
9 ReducedValuesOut <> connectivityOut );

10 typedef void ExecutionSignature (_2 inputCells ,
11 _3 originCell ,
12 _4 originEdge ,
13 _5 localEdgeIndices ,
14 VisitIndex localEdgeIndex ,
15 _6 connectivityOut );
16 using InputDomain = _1;
17
18 using ScatterType = vtkm :: worklet :: ScatterCounting ;
19
20 VTKM_CONT
21 ScatterType GetScatter () const { return this -> Scatter ; }
22
23 VTKM_CONT
24 explicit EdgeIndices ( const ScatterType & scatter )
25 : Scatter ( scatter )
26 { }
27
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28 template <typename CellSetType ,
29 typename OriginCellsType ,
30 typename OriginEdgesType ,
31 typename LocalEdgeIndicesType >
32 VTKM_EXEC
33 void operator ()( const CellSetType & cellSet ,
34 const OriginCellsType & originCells ,
35 const OriginEdgesType & originEdges ,
36 const LocalEdgeIndicesType & localEdgeIndices ,
37 vtkm :: IdComponent localEdgeIndex ,
38 vtkm :: Id2& connectivityOut ) const
39 {
40 // Find the first edge that matches the index given and return it.
41 for (vtkm :: IdComponent edgeIndex = 0; ; ++ edgeIndex )
42 {
43 if ( localEdgeIndices [ edgeIndex ] == localEdgeIndex )
44 {
45 vtkm :: Id cellIndex = originCells [ edgeIndex ];
46 vtkm ::Vec <vtkm :: IdComponent , 2> localPointIndices =
47 vtkm :: exec :: CellEdgeLocalIndices (
48 cellSet . GetNumberOfIndices ( cellIndex ),
49 originEdges [ edgeIndex ],
50 cellSet . GetCellShape ( cellIndex ),
51 *this );
52 auto pointIndices = cellSet . GetIndices ( cellIndex );
53 connectivityOut [0] = pointIndices [ localPointIndices [0]];
54 connectivityOut [1] = pointIndices [ localPointIndices [1]];
55
56 break ;
57 }
58 }
59 }
60
61 private :
62 ScatterType Scatter ;
63 };

With these 3 worklets, it is now possible to generate all the information we need to fill a vtkm::cont::-
CellSetSingleType object. A CellSetSingleType requires 4 items: the number of points, the constant cell
shape, the constant number of points in each cell, and an array of connection indices. The first 3 items are
trivial. The number of points can be taken from the input cell set as they are the same. The cell shape and
number of points are predetermined to be line and 2, respectively.

The last item, the array of connection indices, is what we are creating with the worklet in Example 17.7. The
connectivity array for CellSetSingleType is expected to be a flat array of vtkm::Id indices, but the worklet
needs to provide groups of indices for each cell (in this case as a Vec object). To reconcile what the worklet
provides and what the connectivity array must look like, we use the vtkm::cont::ArrayHandleGroupVec fancy
array handle (described in Section 10.2.11) to make a flat array of indices look like an array of Vec objects. The
following example shows a Run method in a worklet helper class. Note the use of make ArrayHandleGroupVec
when calling the Invoke method to make this conversion.

Example 17.14: Invoking worklets to extract unique edges from a cell set using hash values.
1 template < typename CellSetType , typename Device >
2 VTKM_CONT
3 vtkm :: cont :: CellSetSingleType <> Run( const CellSetType & inCellSet , Device )
4 {
5 VTKM_IS_DYNAMIC_OR_STATIC_CELL_SET ( CellSetType );
6
7 // First , count the edges in each cell.
8 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > edgeCounts ;
9 vtkm :: worklet :: DispatcherMapTopology < CountEdges , Device > countEdgeDispatcher ;
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10 countEdgeDispatcher . Invoke (inCellSet , edgeCounts );
11
12 vtkm :: worklet :: ScatterCounting scatter ( edgeCounts , Device ());
13 this -> OutputToInputCellMap =
14 scatter . GetOutputToInputMap ( inCellSet . GetNumberOfCells ());
15 vtkm :: worklet :: ScatterCounting :: VisitArrayType outputToInputEdgeMap =
16 scatter . GetVisitArray ( inCellSet . GetNumberOfCells ());
17
18 // Second , for each edge , extract a hash.
19 vtkm :: cont :: ArrayHandle <vtkm :: HashType > hashValues ;
20
21 vtkm :: worklet :: DispatcherMapTopology < EdgeHashes , Device >
22 EdgeHashesDispatcher (( EdgeHashes ( scatter )));
23 EdgeHashesDispatcher . Invoke (inCellSet , hashValues );
24
25 // Third , use a Keys object to combine all like hashes .
26 this -> CellToEdgeKeys = vtkm :: worklet :: Keys <vtkm :: HashType >( hashValues , Device ());
27
28 // Fourth , use a reduce -by -key to collect like hash values , resolve collisions ,
29 // and count the number of unique edges associated with each hash.
30 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > numUniqueEdgesInEachHash ;
31
32 vtkm :: worklet :: DispatcherReduceByKey < EdgeHashCollisions >
33 edgeHashCollisionDispatcher ;
34 edgeHashCollisionDispatcher . Invoke (this -> CellToEdgeKeys ,
35 inCellSet ,
36 this -> OutputToInputCellMap ,
37 outputToInputEdgeMap ,
38 this -> LocalEdgeIndices ,
39 numUniqueEdgesInEachHash );
40
41 // Fifth , use a reduce -by -key to extract indices for each unique edge.
42 this -> HashCollisionScatter =
43 vtkm :: worklet :: ScatterCounting ( numUniqueEdgesInEachHash , Device ());
44
45 vtkm :: cont :: ArrayHandle <vtkm ::Id > connectivityArray ;
46 vtkm :: worklet :: DispatcherReduceByKey < EdgeIndices , Device >
47 edgeIndicesDispatcher (( EdgeIndices (this -> HashCollisionScatter )));
48 edgeIndicesDispatcher . Invoke (
49 this -> CellToEdgeKeys ,
50 inCellSet ,
51 this -> OutputToInputCellMap ,
52 outputToInputEdgeMap ,
53 this -> LocalEdgeIndices ,
54 vtkm :: cont :: make_ArrayHandleGroupVec <2 >( connectivityArray ));
55
56 // Sixth , use the created connectivity array to build a cell set.
57 vtkm :: cont :: CellSetSingleType <> outCellSet ( inCellSet . GetName ());
58 outCellSet .Fill( inCellSet . GetNumberOfPoints (),
59 vtkm :: CELL_SHAPE_LINE ,
60 2,
61 connectivityArray );
62
63 return outCellSet ;
64 }

As noted in Section 17.2, in practice these worklets are going to be called on DataSet objects to create new
DataSet objects. Although Example 17.14 creates a new CellSet, we also need a method to transform the
Fields on the data set. To do this, we need to save some information. This includes the map from the edge
of each cell to its origin cell (OutputToInputCellMap), a Keys object on the hash values (CellToEdgeKeys), an
array of indices resolving collisions (LocalEdgeIndices), and a ScatterCounting to repeat edge outputs when
unique edges collide on a hash (HashCollisionScatter).
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In Section 17.2 we used a convenience method to average a field attached to cells on the input to each unique
edge in the output. Unfortunately, that function does not take into account the collisions that can occur on the
keys. Instead we need a custom worklet to average those values that match the same unique edge.

Example 17.15: A worklet to average values with the same key, resolving for collisions.
1 class AverageCellField : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 typedef void ControlSignature ( KeysIn keys ,
5 ValuesIn <> inFieldValues ,
6 ValuesIn <> localEdgeIndices ,
7 ReducedValuesOut <> averagedField );
8 typedef _4 ExecutionSignature (_2 inFieldValues ,
9 _3 localEdgeIndices ,

10 VisitIndex localEdgeIndex );
11 using InputDomain = _1;
12
13 using ScatterType = vtkm :: worklet :: ScatterCounting ;
14
15 VTKM_CONT
16 ScatterType GetScatter () const { return this -> Scatter ; }
17
18 VTKM_CONT
19 explicit AverageCellField ( const ScatterType & scatter )
20 : Scatter ( scatter )
21 { }
22
23 template <typename InFieldValuesType , typename LocalEdgeIndicesType >
24 VTKM_EXEC
25 typename InFieldValuesType :: ComponentType
26 operator ()( const InFieldValuesType & inFieldValues ,
27 const LocalEdgeIndicesType & localEdgeIndices ,
28 vtkm :: IdComponent localEdgeIndex ) const
29 {
30 using FieldType = typename InFieldValuesType :: ComponentType ;
31
32 FieldType averageField = FieldType (0);
33 vtkm :: IdComponent numValues = 0;
34 for (vtkm :: IdComponent reduceIndex = 0;
35 reduceIndex < inFieldValues . GetNumberOfComponents ();
36 ++ reduceIndex )
37 {
38 if ( localEdgeIndices [ reduceIndex ] == localEdgeIndex )
39 {
40 FieldType fieldValue = inFieldValues [ reduceIndex ];
41 averageField = averageField + fieldValue ;
42 ++ numValues ;
43 }
44 }
45 VTKM_ASSERT ( numValues > 0);
46 return averageField / numValues ;
47 }
48
49 private :
50 ScatterType Scatter ;
51 };

With this worklet, it is straightforward to process cell fields.

Example 17.16: Invoking the worklet to process cell fields, resolving for collisions.
1 template <typename ValueType , typename Storage , typename Device >
2 VTKM_CONT
3 vtkm :: cont :: ArrayHandle <ValueType > ProcessCellField (
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4 const vtkm :: cont :: ArrayHandle <ValueType , Storage >& inCellField ,
5 Device ) const
6 {
7 vtkm :: cont :: ArrayHandle <ValueType > averageField ;
8 vtkm :: worklet :: DispatcherReduceByKey < AverageCellField , Device >
9 dispatcher (( AverageCellField (this -> HashCollisionScatter )));

10 dispatcher . Invoke (
11 this -> CellToEdgeKeys ,
12 vtkm :: cont :: make_ArrayHandlePermutation (this -> OutputToInputCellMap ,
13 inCellField ),
14 this -> LocalEdgeIndices ,
15 averageField );
16 return averageField ;
17 }

17.4 Variable Cell Types

So far in our previous examples we have demonstrated creating a cell set where every cell is the same shape and
number of points (i.e. a CellSetSingleType). However, it can also be the case where an algorithm must create
cells of a different type (into a vtkm::cont::CellSetExplicit). The procedure for generating cells of different
shapes is similar to that of creating a single shape. There is, however, an added step of counting the size (in
number of points) of each shape to build the appropriate structure for storing the cell connectivity.

Our motivating example is a set of worklets that extracts all the unique faces in a cell set and stores them in a
cell set of polygons. This problem is similar to the one addressed in Sections 17.1, 17.2, and 17.3. In both cases
it is necessary to find all subelements of each cell (in this case the faces instead of the edges). It is also the case
that we expect many faces to be shared among cells in the same way edges are shared among cells. We will use
the hash-based approach demonstrated in Section 17.3 except this time applied to faces instead of edges.

The main difference between the two extraction tasks is that whereas all edges are lines with two points, faces
can come in different sizes. A tetrahedron has triangular faces whereas a hexahedron has quadrilateral faces.
Pyramid and wedge cells have both triangular and quadrilateral faces. Thus, in general the algorithm must be
capable of outputing multiple cell types.

Our algorithm for extracting unique cell faces follows the same algorithm as that in Section 17.3. We first need
three worklets (used in succession) to count the number of faces in each cell, to generate a hash value for each face,
and to resolve hash collisions. These are essentially the same as Examples 17.10, 17.11, and 17.12, respectively,
with superficial changes made (like changing Edge to Face). To make it simpler to follow the discussion, the
code is not repeated here.

When extracting edges, these worklets provide everything necessary to write out line elements. However, before
we can write out polygons of different sizes, we first need to count the number of points in each polygon. The
following example does just that. This worklet also writes out the identifier for the shape of the face, which
we will eventually require to build a CellSetExplicit. Also recall that we have to work with the information
returned from the collision resolution to report on the appropriate unique cell face.

Example 17.17: A worklet to count the points in the final cells of extracted faces
1 class CountPointsInFace : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 typedef void ControlSignature ( KeysIn keys ,
5 WholeCellSetIn <> inputCells ,
6 ValuesIn <> originCells ,
7 ValuesIn <> originFaces ,
8 ValuesIn <> localFaceIndices ,
9 ReducedValuesOut <> faceShape ,
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10 ReducedValuesOut <> numPointsInEachFace );
11 typedef void ExecutionSignature (_2 inputCells ,
12 _3 originCell ,
13 _4 originFace ,
14 _5 localFaceIndices ,
15 VisitIndex localFaceIndex ,
16 _6 faceShape ,
17 _7 numPointsInFace );
18 using InputDomain = _1;
19
20 using ScatterType = vtkm :: worklet :: ScatterCounting ;
21
22 VTKM_CONT
23 ScatterType GetScatter () const { return this -> Scatter ; }
24
25 VTKM_CONT
26 explicit CountPointsInFace ( const ScatterType & scatter )
27 : Scatter ( scatter )
28 { }
29
30 template <typename CellSetType ,
31 typename OriginCellsType ,
32 typename OriginFacesType ,
33 typename LocalFaceIndicesType >
34 VTKM_EXEC
35 void operator ()( const CellSetType & cellSet ,
36 const OriginCellsType & originCells ,
37 const OriginFacesType & originFaces ,
38 const LocalFaceIndicesType & localFaceIndices ,
39 vtkm :: IdComponent localFaceIndex ,
40 vtkm :: UInt8 & faceShape ,
41 vtkm :: IdComponent & numPointsInFace ) const
42 {
43 // Find the first face that matches the index given .
44 for (vtkm :: IdComponent faceIndex = 0; ; ++ faceIndex )
45 {
46 if ( localFaceIndices [ faceIndex ] == localFaceIndex )
47 {
48 vtkm :: Id cellIndex = originCells [ faceIndex ];
49 faceShape =
50 vtkm :: exec :: CellFaceShape ( originFaces [ faceIndex ],
51 cellSet . GetCellShape ( cellIndex ),
52 *this );
53 numPointsInFace =
54 vtkm :: exec :: CellFaceNumberOfPoints ( originFaces [ faceIndex ],
55 cellSet . GetCellShape ( cellIndex ),
56 *this );
57 break ;
58 }
59 }
60 }
61
62 private :
63 ScatterType Scatter ;
64 };

When extracting edges, we converted a flat array of connectivity information to an array of Vecs using an
ArrayHandleGroupVec. However, ArrayHandleGroupVec can only create Vecs of a constant size. Instead, for
this use case we need to use vtkm::cont::ArrayHandleGroupVecVariable. As described in Section 10.2.11,
ArrayHandleGroupVecVariable takes a flat array of values and an index array of offsets that points to the
beginning of each group to represent as a Vec-like. The worklet in Example 17.17 does not actually give us the
array of offsets we need. Rather, it gives us the count of each group. We can get the offsets from the counts by
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using the vtkm::cont::ConvertNumComponentsToOffsets convenience function.

Example 17.18: Converting counts of connectivity groups to offsets for ArrayHandleGroupVecVariable.
1 vtkm :: cont :: ArrayHandle <vtkm ::Id > offsetsArray ;
2 vtkm :: Id connectivityArraySize ;
3 vtkm :: cont :: ConvertNumComponentsToOffsets (
4 numPointsInEachFace , offsetsArray , connectivityArraySize , Device ());
5 OutCellSetType :: ConnectivityArrayType connectivityArray ;
6 connectivityArray . Allocate ( connectivityArraySize );
7 auto connectivityArrayVecs = vtkm :: cont :: make_ArrayHandleGroupVecVariable (
8 connectivityArray , offsetsArray );

Once we have created an ArrayHandleGroupVecVariable, we can pass that to a worklet that produces the point
connections for each output polygon. The worklet is very similar to the one for creating edge lines (shown in
Example 17.13), but we have to correctly handle the Vec-like of unknown type and size.

Example 17.19: A worklet to generate indices for polygon cells of different sizes from combined edges and
potential collisions.

1 class FaceIndices : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 typedef void ControlSignature ( KeysIn keys ,
5 WholeCellSetIn <> inputCells ,
6 ValuesIn <> originCells ,
7 ValuesIn <> originFaces ,
8 ValuesIn <> localFaceIndices ,
9 ReducedValuesOut <> connectivityOut );

10 typedef void ExecutionSignature (_2 inputCells ,
11 _3 originCell ,
12 _4 originFace ,
13 _5 localFaceIndices ,
14 VisitIndex localFaceIndex ,
15 _6 connectivityOut );
16 using InputDomain = _1;
17
18 using ScatterType = vtkm :: worklet :: ScatterCounting ;
19
20 VTKM_CONT
21 ScatterType GetScatter () const { return this -> Scatter ; }
22
23 VTKM_CONT
24 explicit FaceIndices ( const ScatterType & scatter )
25 : Scatter ( scatter )
26 { }
27
28 template <typename CellSetType ,
29 typename OriginCellsType ,
30 typename OriginFacesType ,
31 typename LocalFaceIndicesType ,
32 typename ConnectivityVecType >
33 VTKM_EXEC
34 void operator ()( const CellSetType & cellSet ,
35 const OriginCellsType & originCells ,
36 const OriginFacesType & originFaces ,
37 const LocalFaceIndicesType & localFaceIndices ,
38 vtkm :: IdComponent localFaceIndex ,
39 ConnectivityVecType & connectivityOut ) const
40 {
41 // Find the first face that matches the index given and return it.
42 for (vtkm :: IdComponent faceIndex = 0; ; ++ faceIndex )
43 {
44 if ( localFaceIndices [ faceIndex ] == localFaceIndex )
45 {
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46 vtkm :: Id cellIndex = originCells [ faceIndex ];
47 auto localPointIndices =
48 vtkm :: exec :: CellFaceLocalIndices ( originFaces [ faceIndex ],
49 cellSet . GetCellShape ( cellIndex ),
50 *this );
51 VTKM_ASSERT ( localPointIndices . GetNumberOfComponents () ==
52 connectivityOut . GetNumberOfComponents ());
53 auto pointIndices = cellSet . GetIndices ( cellIndex );
54 for (vtkm :: IdComponent localPointI = 0;
55 localPointI < localPointIndices . GetNumberOfComponents ();
56 ++ localPointI )
57 {
58 connectivityOut [ localPointI ] =
59 pointIndices [ localPointIndices [ localPointI ]];
60 }
61
62 break ;
63 }
64 }
65 }
66
67 private :
68 ScatterType Scatter ;
69 };

With these worklets in place, we can use the following helper method to execute the series of worklets to extract
unique faces.

Example 17.20: Invoking worklets to extract unique faces froma cell set.
1 vtkm :: cont :: ArrayHandle <vtkm ::Id > offsetsArray ;
2 vtkm :: Id connectivityArraySize ;
3 vtkm :: cont :: ConvertNumComponentsToOffsets (
4 numPointsInEachFace , offsetsArray , connectivityArraySize , Device ());
5 OutCellSetType :: ConnectivityArrayType connectivityArray ;
6 connectivityArray . Allocate ( connectivityArraySize );
7 auto connectivityArrayVecs = vtkm :: cont :: make_ArrayHandleGroupVecVariable (
8 connectivityArray , offsetsArray );

As noted previously, in practice these worklets are going to be called on DataSet objects to create new DataSet
objects. The process for doing so is no different from our previous algorithm as described at the end of Section 17.3
(Examples 17.15 and 17.16).
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In Chapter 14 we discuss how to implement an algorithm in the VTK-m framework by creating a worklet.
Worklets might be straightforward to implement and invoke for those well familiar with the appropriate VTK-
m API. However, novice users have difficulty using worklets directly. For simplicity, worklet algorithms are
generally wrapped in what are called filter objects for general usage. Chapter 4 introduces the concept of filters
and documents those that come with the VTK-m library. In this chapter we describe how to build new filter
objects using the worklet examples introduced in Chapter 14.

Unsurprisingly, the base filter objects are contained in the vtkm::filter package. The basic implementation
of a filter involves subclassing one of the base filter objects and implementing the DoExecute method. The
DoExecute method performs the operation of the filter and returns the appropriate result object.

As with worklets, there are several flavors of filter types to address different operating behaviors although their
is not a one-to-one relationship between worklet and filter types. This chapter is sectioned by the different filter
types with an example of implementations for each.

18.1 Field Filters

As described in Section 4.2 (starting on page 18), field filters are a category of filters that generate a new fields.
These new fields are typically derived from one or more existing fields or point coordinates on the data set. For
example, mass, volume, and density are interrelated, and any one can be derived from the other two.

Field filters are implemented in classes that derive the vtkm::filter::FilterField base class. FilterField
is a templated class that has a single template argument, which is the type of the concrete subclass.

The convention of having a subclass be templated on the derived class’ type is known as the Curiously
Recurring Template Pattern (CRTP). In the case of FilterField and other filter base classes, VTK-m
uses this CRTP behavior to allow the general implementation of these algorithms to run DoExecute in the
subclass, which as we see in a moment is itself templated.

Did you know?

All FilterField subclasses must implement a DoExecute method. The FilterField base class implements an
Execute method (actually several overloaded versions of Execute), processes the arguments, and then calls the
DoExecute method of its subclass. The DoExecute method has the following 5 arguments.

• An input data set contained in a vtkm::cont::DataSet object. (See Chapter 12 for details on DataSet
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objects.)

• The field from the DataSet specified in the Execute method to operate on. The field is always passed as
an instance of vtkm::cont::ArrayHandle. (See Chapter 7 for details on ArrayHandle objects.) The type
of the ArrayHandle is generally not known until the class is used and requires a template type.

• A vtkm::filter::FieldMetadata object that contains the associated metadata of the field not contained
in the ArrayHandle of the second argument. The FieldMetadata contains information like the name of
the field and what topological element the field is associated with (such as points or cells).

• A policy class. (See Chapter 13 for details on policy classes.) The type of the policy is generally to known
until the class is used and requires a template type.

• A device adapter tag. (See Chapter 8 for details on device adapters and their tags.) The type of the device
adapter is generally to known until the class is used and requires a template type.

In this section we provide an example implementation of a field filter that wraps the “magnitude” worklet
provided in Example 14.6 (listed on page 147). By convention, filter implementations are split into two files.
The first file is a standard header file with a .h extension that contains the declaration of the filter class without
the implementation. So we would expect the following code to be in a file named FieldMagnitude.h.

Example 18.1: Header declaration for a field filter.
1 namespace vtkm {
2 namespace filter {
3
4 class FieldMagnitude : public vtkm :: filter :: FilterField < FieldMagnitude >
5 {
6 public :
7 VTKM_CONT
8 FieldMagnitude ();
9

10 template < typename ArrayHandleType , typename Policy , typename DeviceAdapter >
11 VTKM_CONT
12 vtkm :: filter :: Result
13 DoExecute ( const vtkm :: cont :: DataSet &inDataSet ,
14 const ArrayHandleType &inField ,
15 const vtkm :: filter :: FieldMetadata & fieldMetadata ,
16 vtkm :: filter :: PolicyBase <Policy >,
17 DeviceAdapter );
18 };
19
20 template <>
21 class FilterTraits <vtkm :: filter :: FieldMagnitude >
22 {
23 public :
24 struct InputFieldTypeList :
25 vtkm :: ListTagBase <vtkm ::Vec <vtkm :: Float32 ,2>,
26 vtkm ::Vec <vtkm :: Float64 ,2>,
27 vtkm ::Vec <vtkm :: Float32 ,3>,
28 vtkm ::Vec <vtkm :: Float64 ,3>,
29 vtkm ::Vec <vtkm :: Float32 ,4>,
30 vtkm ::Vec <vtkm :: Float64 ,4> >
31 { };
32 };
33
34 }
35 } // namespace vtkm :: filter

Notice that in addition to declaring the class for FieldMagnitude, Example 18.1 also specializes the vtkm::-
filter::FilterTraits templated class for FieldMagnitude. The FilterTraits class, declared in vtkm/filter/-
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FilterTraits.h, provides hints used internally in the base filter classes to modify its behavior based on the subclass.
A FilterTraits class is expected to define the following types.

InputFieldTypeList A type list containing all the types that are valid for the input field. For example, a filter
operating on positions in space might limit the types to three dimensional vectors. Type lists are discussed
in detail in Section 6.6.2.

In the particular case of our FieldMagnitude filter, the filter expects to operate on some type of vector field.
Thus, the InputFieldTypeList is modified to a list of all standard floating point Vecs.

Once the filter class and (optionally) the FilterTraits are declared in the .h file, the implementation filter is by
convention given in a separate .hxx file. So the continuation of our example that follows would be expected in a
file named FieldMagnitude.hxx. The .h file near its bottom needs an include line to the .hxx file. This convention
is set up because a near future version of VTK-m will allow the building of filter libraries containing default
policies that can be used by only including the header declaration.

The implementation of DoExecute is straightforward. A worklet is invoked to compute a new field array.
DoExecute then returns a newly constructed vtkm::filter::Result object. There are numerous constructors
for Result, but the simplest one to use for a filter that adds a field takes the following 5 arguments.

• The input data set. This is the same data set passed to the first argument of DoExecute.

• The array containing the data for the new field, which was presumably computed by the filter.

• The name of the new field.

• The topological association (e.g. points or cells) of the new field. In the case where the filter is a sim-
ple operation on a field array, the association can usually be copied from the FieldMetadata passed to
DoExecute.

• The name of the element set the new field is associated with. This only has meaning if the new field is
associated with cells and usually is specified if and only if the new field is associated with cells. This name
usually can be copied from the FieldMetadata passed to DoExecute.

Note that all fields need a unique name, which is the reason for the third argument to the Result construc-
tor. The vtkm::filter::FilterField base class contains a pair of methods named SetOutputFieldName and
GetOutputFieldName to allow users to specify the name of output fields. The DoExecute method should respect
the given output field name. However, it is also good practice for the filter to have a default name if none is
given. This might be simply specifying a name in the constructor, but it is worthwhile for many filters to derive
a name based on the name of the input field.

Example 18.2: Implementation of a field filter.
1 namespace vtkm {
2 namespace filter {
3
4 VTKM_CONT
5 FieldMagnitude :: FieldMagnitude ()
6 {
7 this -> SetOutputFieldName ("");
8 }
9

10 template < typename ArrayHandleType , typename Policy , typename DeviceAdapter >
11 VTKM_CONT
12 vtkm :: filter :: Result
13 FieldMagnitude :: DoExecute ( const vtkm :: cont :: DataSet &inDataSet ,
14 const ArrayHandleType &inField ,
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15 const vtkm :: filter :: FieldMetadata & fieldMetadata ,
16 vtkm :: filter :: PolicyBase <Policy >,
17 DeviceAdapter )
18 {
19 VTKM_IS_ARRAY_HANDLE ( ArrayHandleType );
20 VTKM_IS_DEVICE_ADAPTER_TAG ( DeviceAdapter );
21
22 using ComponentType =
23 typename vtkm :: VecTraits < typename ArrayHandleType :: ValueType >:: ComponentType ;
24
25 vtkm :: cont :: ArrayHandle < ComponentType > outField
26 = vtkm :: worklet :: Magnitude :: Run( inField );
27
28 std :: string outFieldName = this -> GetOutputFieldName ();
29 if ( outFieldName == "")
30 {
31 outFieldName = fieldMetadata . GetName () + " _magnitude ";
32 }
33
34 return vtkm :: filter :: Result (inDataSet ,
35 outField ,
36 outFieldName ,
37 fieldMetadata . GetAssociation (),
38 fieldMetadata . GetCellSetName ());
39 }
40
41 }
42 } // namespace vtkm :: filter

18.2 Field Filters Using Cell Connectivity

A special subset of field filters are those that take into account the connectivity of a cell set to compute derivative
fields. These types of field filters should be implemented in classes that derive the vtkm::filter::FilterCell
base class. FilterCell is itself a subclass of vtkm::filter::FilterField and behaves essentially the same.
FilterCell adds the pair of methods SetActiveCellSet and GetActiveCellSetIndex. [Why is there a
mismatch in the naming? Should they be changed? If they are, update the documentation here
and in the ProvidedFilters chapter.] The SetActiveCellSet method allows users to specify which cell
set of the given DataSet to use. Likewise, FilterCell subclasses should use GetActiveCellSetIndex when
retrieving a cell set from the given DataSet.

Like FilterField, FilterCell is a templated class that takes as its single template argument the type of the
derived class. Also like FilterField, a FilterCell subclass must implement a method named DoExecute
with 5 arguments: an input vtkm::cont::DataSet object, a vtkm::cont::ArrayHandle of the input field, a
vtkm::filter::FieldMetadata information object, a policy class, and a device adapter tag.

In this section we provide an example implementation of a field filter on cells that wraps the “cell center” worklet
provided in Example 14.8 (listed on page 151). By convention, filter implementations are split into two files.
The first file is a standard header file with a .h extension that contains the declaration of the filter class without
the implementation. So we would expect the following code to be in a file named CellCenter.h.

Example 18.3: Header declaration for a field filter using cell topology.
1 namespace vtkm {
2 namespace filter {
3
4 class CellCenters : public vtkm :: filter :: FilterCell < CellCenters >
5 {
6 public :
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7 VTKM_CONT
8 CellCenters ();
9

10 template < typename ArrayHandleType , typename Policy , typename DeviceAdapter >
11 VTKM_CONT
12 vtkm :: filter :: Result
13 DoExecute ( const vtkm :: cont :: DataSet &inDataSet ,
14 const ArrayHandleType &inField ,
15 const vtkm :: filter :: FieldMetadata & FieldMetadata ,
16 vtkm :: filter :: PolicyBase <Policy >,
17 DeviceAdapter );
18 };
19
20 }
21 } // namespace vtkm :: filter

You may have noticed that Example 18.1 provided a specialization for vtkm::filter::FilterTraits but
Example 18.3 provides no such specialization. This demonstrates that declaring filter traits is optional. If
a filter only works on some limited number of types, then it can use FilterTraits to specify the specific
types it supports. But if a filter is generally applicable to many field types, it can simply use the default
filter traits.

Did you know?

Once the filter class and (optionally) the FilterTraits are declared in the .h file, the implementation filter is by
convention given in a separate .hxx file. So the continuation of our example that follows would be expected in a
file named CellCenter.hxx. The .h file near its bottom needs an include line to the .hxx file. This convention is set
up because a near future version of VTK-m will allow the building of filter libraries containing default policies
that can be used by only including the header declaration.

Like with a FilterField, a subclass of FilterCell implements DoExecute by invoking a worklet to compute a
new field array and then return a newly constructed vtkm::filter::Result object.

Example 18.4: Implementation of a field filter using cell topology.
1 namespace vtkm {
2 namespace filter {
3
4 VTKM_CONT
5 CellCenters :: CellCenters ()
6 {
7 this -> SetOutputFieldName ("");
8 }
9

10 template < typename ArrayHandleType , typename Policy , typename DeviceAdapter >
11 VTKM_CONT
12 vtkm :: filter :: Result
13 CellCenters :: DoExecute ( const vtkm :: cont :: DataSet &inDataSet ,
14 const ArrayHandleType &inField ,
15 const vtkm :: filter :: FieldMetadata & fieldMetadata ,
16 vtkm :: filter :: PolicyBase <Policy >,
17 DeviceAdapter )
18 {
19 VTKM_IS_ARRAY_HANDLE ( ArrayHandleType );
20 VTKM_IS_DEVICE_ADAPTER_TAG ( DeviceAdapter );
21
22 if (! fieldMetadata . IsPointField ())
23 {
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24 throw vtkm :: cont :: ErrorBadType (
25 "Cell Centers filter operates on point data .");
26 }
27
28 vtkm :: cont :: DynamicCellSet cellSet =
29 inDataSet . GetCellSet (this -> GetActiveCellSetIndex ());
30
31 using ValueType = typename ArrayHandleType :: ValueType ;
32
33 vtkm :: cont :: ArrayHandle <ValueType > outField =
34 vtkm :: worklet :: CellCenter :: Run(vtkm :: filter :: ApplyPolicy (cellSet , Policy ()) ,
35 inField );
36
37 std :: string outFieldName = this -> GetOutputFieldName ();
38 if ( outFieldName == "")
39 {
40 outFieldName = fieldMetadata . GetName () + " _center ";
41 }
42
43 return vtkm :: filter :: Result (inDataSet ,
44 outField ,
45 outFieldName ,
46 vtkm :: cont :: Field :: ASSOC_CELL_SET ,
47 cellSet . GetName ());
48 }
49
50 }
51 } // namespace vtkm :: filter

The policy passed to the DoExecute method contains information on what types of cell sets should be
supported by the execution. This list of cell set types could be different than the default types specified the
DynamicCellSet returned from DataSet::GetCellSet(). Thus, it is important to apply the policy to the
cell set before passing it to the dispatcher’s invoke method. The policy is applied by calling the vtkm::-
filter::ApplyPolicy function on the DynamicCellSet. The use of ApplyPolicy is demonstrated in
Example 18.4. [The details of this may change when moving to virtual methods.]

Common Errors

[Add documentation for vtkm::filter::FilterDataSet and vtkm::filter::FilterDataSetWithField.
These will make more sense once we have worklet types that support creating new topologies.]
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VTK-m comes with several implementations of device adapters so that it may be ported to a variety of platforms.
It is also possible to provide new device adapters to support yet more devices, compilers, and libraries. A new
device adapter provides a tag, a class to manage arrays in the execution environment, a class to establish virtual
objects in the execution environment, a collection of algorithms that run in the execution environment, and
(optionally) a timer.

Most device adapters are associated with some type of device or library, and all source code related directly to
that device is placed in a subdirectory of vtkm/cont. For example, files associated with CUDA are in vtkm/-
cont/cuda and files associated with the Intel Threading Building Blocks (TBB) are located in vtkm/cont/tbb.
The documentation here assumes that you are adding a device adapter to the VTK-m source code and following
these file conventions.

For the purposes of discussion in this section, we will give a simple example of implementing a device adapter
using the std::thread class provided by C++11. We will call our device Cxx11Thread and place it in the
directory vtkm/cont/cxx11.

By convention the implementation of device adapters within VTK-m are divided into 4 header files with the
names DeviceAdapterTag∗.h, ArrayManagerExecution∗.h, VirtualObjectTransfer∗.h, and DeviceAdapterAlgorithm∗.h,
which are hidden in internal directories. The DeviceAdapter∗.h that most code includes is a trivial header that
simply includes these other 4 files. For our example std::thread device, we will create the base header at
vtkm/cont/cxx11/DeviceAdapterCxx11Thread.h. The contents are the following (with minutia like include guards
removed).

Example 20.1: Contents of the base header for a device adapter.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2 # include <vtkm/cont/ cxx11 / internal / ArrayManagerExecutionCxx11Thread .h>
3 # include <vtkm/cont/ cxx11 / internal / VirtualObjectTransferCxx11Thread .h>
4 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterAlgorithmCxx11Thread .h>

The reason VTK-m breaks up the code for its device adapters this way is that there is an interdependence between
the implementation of each device adapter and the mechanism to pick a default device adapter. Breaking up
the device adapter code in this way maintains an acyclic dependence among header files.

20.1 Tag

The device adapter tag, as described in Section 8.1 is a simple empty type that is used as a template parameter
to identify the device adapter. Every device adapter implementation provides one. The device adapter tag is
typically defined in an internal header file with a prefix of DeviceAdapterTag.
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The device adapter tag should be created with the macro VTKM VALID DEVICE ADAPTER. This adapter takes
an abbreviated name that it will append to DeviceAdapterTag to make the tag structure. It will also create
some support classes that allow VTK-m to introspect the device adapter. The macro also expects a unique
integer identifier that is usually stored in a macro prefixed with VTKM DEVICE ADAPTER . These identifiers for
the device adapters provided by the core VTK-m are declared in vtkm/cont/internal/DeviceAdapterTag.h.

The following example gives the implementation of our custom device adapter, which by convention would be
placed in the vtkm/cont/cxx11/internal/DeviceAdapterTagCxx11Thread.h header file.

Example 20.2: Implementation of a device adapter tag.
1 # include <vtkm/cont/ internal / DeviceAdapterTag .h>
2
3 // If this device adapter were to be contributed to VTK -m, then this macro
4 // declaration should be moved to DeviceAdapterTag .h and given a unique
5 // number .
6 # define VTKM_DEVICE_ADAPTER_CXX11_THREAD 101
7
8 VTKM_VALID_DEVICE_ADAPTER ( Cxx11Thread , VTKM_DEVICE_ADAPTER_CXX11_THREAD );

20.2 Array Manager Execution

VTK-m defines a template named vtkm::cont::internal::ArrayManagerExecution that is responsible for al-
locating memory in the execution environment and copying data between the control and execution environment.
ArrayManagerExecution is also paired with two helper classes, vtkm::cont::internal::ExecutionPortal-
FactoryBasic and vtkm::cont::internal::ExecutionArrayInterfaceBasic, which provide operations for
creating and operating on and manipulating data in standard C arrays. All 3 class specializations are typically
defined in an internal header file with a prefix of ArrayManagerExecution. The following subsections describe
each of these classes.

20.2.1 ArrayManagerExecution

Example 20.3: Prototype for vtkm::cont::internal::ArrayManagerExecution.
1 namespace vtkm {
2 namespace cont {
3 namespace internal {
4
5 template < typename T, typename StorageTag , typename DeviceAdapterTag >
6 class ArrayManagerExecution ;
7
8 }
9 }

10 } // namespace vtkm :: cont :: internal

A device adapter must provide a partial specialization of vtkm::cont::internal::ArrayManagerExecution for
its device adapter tag. The implementation for ArrayManagerExecution is expected to manage the resources
for a single array. All ArrayManagerExecution specializations must have a constructor that takes a pointer
to a vtkm::cont::internal::Storage object. The ArrayManagerExecution should store a reference to this
Storage object and use it to pass data between control and execution environments. Additionally, ArrayMan-
agerExecution must provide the following elements.

ValueType The type for each item in the array. This is the same type as the first template argument.

PortalType The type of an array portal that can be used in the execution environment to access the array.
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PortalConstType A read-only (const) version of PortalType.

GetNumberOfValues A method that returns the number of values stored in the array. The results are undefined
if the data has not been loaded or allocated.

PrepareForInput A method that ensures an array is allocated in the execution environment and valid data
is there. The method takes a bool flag that specifies whether data needs to be copied to the execution
environment. (If false, then data for this array has not changed since the last operation.) The method
returns a PortalConstType that points to the data.

PrepareForInPlace A method that ensures an array is allocated in the execution environment and valid data
is there. The method takes a bool flag that specifies whether data needs to be copied to the execution
environment. (If false, then data for this array has not changed since the last operation.) The method
returns a PortalType that points to the data.

PrepareForOutput A method that takes an array size and allocates an array in the execution environment of
the specified size. The initial memory may be uninitialized. The method returns a PortalType to the
data.

RetrieveOutputData This method takes a storage object, allocates memory in the control environment, and
copies data from the execution environment into it. If the control and execution environments share arrays,
then this can be a no-operation.

CopyInto This method takes an STL-compatible iterator and copies data from the execution environment into
it.

Shrink A method that adjusts the size of the array in the execution environment to something that is a smaller
size. All the data up to the new length must remain valid. Typically, no memory is actually reallocated.
Instead, a different end is marked.

ReleaseResources A method that frees any resources (typically memory) in the execution environment.

Specializations of this template typically take on one of two forms. If the control and execution environments
have separate memory spaces, then this class behaves by copying memory in methods such as PrepareForInput
and RetrieveOutputData. This might require creating buffers in the control environment to efficiently move
data from control array portals.

However, if the control and execution environments share the same memory space, the execution array manager
can, and should, delegate all of its operations to the Storage it is constructed with. VTK-m comes with a class
called vtkm::cont::internal::ArrayManagerExecutionShareWithControl that provides the implementation
for an execution array manager that shares a memory space with the control environment. In this case, making
the ArrayManagerExecution specialization be a trivial subclass is sufficient.

Continuing our example of a device adapter based on C++11’s std::thread class, here is the im-
plementation of ArrayManagerExecution, which by convention would be placed in the vtkm/con-
t/cxx11/internal/ArrayManagerExecutionCxx11Thread.h header file.

Example 20.4: Specialization of ArrayManagerExecution.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ internal / ArrayManagerExecution .h>
4 # include <vtkm/cont/ internal / ArrayManagerExecutionShareWithControl .h>
5
6 namespace vtkm {
7 namespace cont {
8 namespace internal {
9
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10 template < typename T, typename StorageTag >
11 class ArrayManagerExecution <
12 T, StorageTag , vtkm :: cont :: DeviceAdapterTagCxx11Thread >
13 : public vtkm :: cont :: internal :: ArrayManagerExecutionShareWithControl <
14 T, StorageTag >
15 {
16 using Superclass =
17 vtkm :: cont :: internal :: ArrayManagerExecutionShareWithControl <T, StorageTag >;
18
19 public :
20 VTKM_CONT
21 ArrayManagerExecution ( typename Superclass :: StorageType * storage )
22 : Superclass ( storage ) { }
23 };
24
25 }
26 }
27 } // namespace vtkm :: cont :: internal

20.2.2 ExecutionPortalFactoryBasic

Example 20.5: Prototype for vtkm::cont::internal::ExecutionPortalFactoryBasic.
1 namespace vtkm {
2 namespace cont {
3 namespace internal {
4
5 template < typename T, typename DeviceAdapterTag >
6 struct ExecutionPortalFactoryBasic ;
7
8 }
9 }

10 } // namespace vtkm :: cont :: internal

A device adapter must provide a partial specialization of vtkm::cont::internal::ExecutionPortalFactory-
Basic for its device adapter tag. The implementation for ExecutionPortalFactoryBasic is capable of taking
pointers to an array in the execution environment and returning an array portal to the data in that array.
ExecutionPortalFactoryBasic has no state and all of its methods are static. ExecutionPortalFactoryBasic
provides the following elements.

ValueType The type for each item in the array. This is the same type as the first template argument.

PortalType The type for the read/write portals created by the class.

PortalConstType The type for read-only portals created by the class.

CreatePortal A static method that takes two pointers of type ValueType* that point to the beginning (first
element) and end (one past the last element) of the array to create a portal for. Returns a portal of type
PortalType that works in the execution environment. [Is that true? If so, why not just create
an array portal of iterators?]

CreatePortalConst A static method that takes two pointers of type const ValueType* that point to the
beginning (first element) and end (one past the last element) of the array to create a portal for. Returns a
portal of type PortalConstType that works in the execution environment. [Is that true? If so, why
not just create an array portal of iterators?]

Specializations of this template typically take on one of two forms. If the control and execution environments
have separate memory spaces, then this class behaves by creating an object in the execution environment for this
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data that is not directly accessible in the control environment. [Is this true? The CUDA version seems
to be doing something more fancy.]

However, if the control and execution environments share the same memory space, then the execution array man-
ager can, and should, return a simple vtkm::cont::internal::ArrayPortalFromIterators. VTK-m comes
with a class called vtkm::cont::internal::ExecutionPortalFactoryBasicShareWithControl that provides
the implementation for a basic execution portal factory that shares a memory space with the control environment.
In this case, making the ExecutionPortalFactoryBasic specialization be a trivial subclass is sufficient.

Continuing our example of a device adapter based on C++11’s std::thread class, here is the imple-
mentation of ExecutionPortalFactoryBasic, which by convention would be placed in the vtkm/con-
t/cxx11/internal/ArrayManagerExecutionCxx11Thread.h header file.

Example 20.6: Specialization of ExecutionPortalFactoryBasic.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ internal / ArrayManagerExecutionShareWithControl .h>
4
5 namespace vtkm {
6 namespace cont {
7 namespace internal {
8
9 template <typename T>

10 class ExecutionPortalFactoryBasic <T, vtkm :: cont :: DeviceAdapterTagCxx11Thread >
11 : public vtkm :: cont :: internal :: ExecutionPortalFactoryBasicShareWithControl <T>
12 {
13 };
14
15 }
16 }
17 } // namespace vtkm :: cont :: internal

20.2.3 ExecutionArrayInterfaceBasic

Example 20.7: Prototype for vtkm::cont::internal::ExecutionArrayInterfaceBasic.
1 namespace vtkm {
2 namespace cont {
3 namespace internal {
4
5 template < typename DeviceAdapterTag >
6 struct ExecutionArrayInterfaceBasic ;
7
8 }
9 }

10 } // namespace vtkm :: cont :: internal

A device adapter must provide a partial specialization of vtkm::cont::internal::ExecutionArrayInterface-
Basic for its device adapter tag. The implementation for ExecutionArrayInterfaceBasic is expected to allow
allocation of basic C arrays in the execution environment and to copy data between control and execution
environments. All implementations of ExecutionArrayInterfaceBasic are expected to inherit from vtkm::-
cont::internal::ExecutionArrayInterfaceBasicBase and implement the pure virtual methods therein. All
implementations are also expected to have a constructor that takes a reference to a vtkm::cont::internal::-
StorageBasicBase, which should subsequently be passed to the ExecutionArrayInterfaceBasicBase. The
methods that vtkm::cont::internal::ExecutionArrayInterfaceBasic must override are the following.

GetDeviceId Returns a vtkm::cont::DeviceAdapterId integer representing a unique identifier for the device
associated with this implementation. This number should be the same as the VTKM DEVICE ADAPTER -
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macro described in Section 20.1.

Allocate Takes a reference to a vtkm::cont::internal::TypelessExecutionArray, which holds a collection
of array pointer references, and a size of allocation in bytes. The method should allocate an array of the
given size in the execution environment and return the resulting pointers in the given TypelessExecu-
tionArray reference.

Free Takes a reference to a vtkm::cont::internal::TypelessExecutionArray created in a previous call to
Allocate and frees the memory. The array references in the TypelessExecutionArray should be set to
nullptr.

CopyFromControl Takes a const void* pointer for an array in the control environment, a void* for an array in
the execution environment, and a size of the arrays in bytes. The method copies the data from the control
array to the execution array.

CopyToControl Takes a const void* pointer for an array in the execution environment, a void* for an array in
the control environment, and a size of the arrays in bytes. The method copies the data from the execution
array to the control array.

Specializations of this template typically take on one of two forms. If the control and execution environments
have separate memory spaces, then this class behaves by allocating arrays on the device and copying data between
the main CPU and the device.

However, if the control and execution environments share the same memory space, then the execution array
interface can, and should, use the storage on the control environment to allocate arrays and do simple copies
(shallow where possible). VTK-m comes with a class called vtkm::cont::internal::ExecutionArrayInter-
faceBasicShareWithControl that provides the implementation for a basic execution array interface that shares
a memory space with the control environment. In this case, it is best to make the ExecutionArrayInterfaceBa-
sic specialization a subclass of ExecutionArrayInterfaceBasicShareWithControl. Note that in this case you
still need to define a constructor that takes a reference to vtkm::cont::internal::StorageBasicBase (which
is passed straight to the superclass) and an implementation of the GetDeviceId method.

Continuing our example of a device adapter based on C++11’s std::thread class, here is the imple-
mentation of ExecutionArrayInterfaceBasic, which by convention would be placed in the vtkm/con-
t/cxx11/internal/ArrayManagerExecutionCxx11Thread.h header file.

Example 20.8: Specialization of ExecutionArrayInterfaceBasic.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ internal / ArrayManagerExecutionShareWithControl .h>
4
5 namespace vtkm {
6 namespace cont {
7 namespace internal {
8
9 template <>

10 class ExecutionArrayInterfaceBasic <vtkm :: cont :: DeviceAdapterTagCxx11Thread >
11 : public vtkm :: cont :: internal :: ExecutionArrayInterfaceBasicShareWithControl
12 {
13 public :
14 using Superclass =
15 vtkm :: cont :: internal :: ExecutionArrayInterfaceBasicShareWithControl ;
16
17 VTKM_CONT
18 ExecutionArrayInterfaceBasic (vtkm :: cont :: internal :: StorageBasicBase & storage )
19 : Superclass ( storage )
20 {
21 }
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22
23 VTKM_CONT
24 virtual vtkm :: cont :: DeviceAdapterId GetDeviceId () const final override
25 {
26 return VTKM_DEVICE_ADAPTER_CXX11_THREAD ;
27 }
28 };
29
30 }
31 }
32 } // namespace vtkm :: cont :: internal

20.3 Virtual Object Transfer

VTK-m defines a template named vtkm::cont::internal::VirtualObjectTransfer that is responsible for
instantiating virtual objects in the execution environment. Chapter 19 discusses how to design and implement
virtual objects. The VirtualObjectTransfer class is the internal mechanism that allocates space for the object
and sets up the method tables for them. This class has three template parameters: the class of the virtual object
used in the execution environment, the class of the concrete implementation, and the device adapter on which
to put the object.

Example 20.9: Prototype for vtkm::cont::internal::VirtualObjectTransfer.
1 namespace vtkm {
2 namespace cont {
3 namespace internal {
4
5 template < typename VirtualObject , typename TargetClass , typename DeviceAdapter >
6 struct VirtualObjectTransfer ;
7
8 }
9 }

10 } // namespace vtkm :: cont :: internal

A device adapter must provide a partial specialization of VirtualObjectTransfer for its device adapter tag.
This partial specialization is typically defined in an internal header file with a prefix of VirtualObjectTransfer.
The implementation for VirtualObjectTransfer can establish a virtual object in the execution environment
based on an object in the control environment, update the state of said object, and release all the resources for
the object. VirtualObjectTransfer must provide the following methods.

Create A static method that takes a reference to the virtual object to create and a pointer to the concrete object
to bind to. The method returns a void* pointer to an internal data structure that is passed to the other
2 methods.

Update A static method that takes the void* pointer returned from Create and the pointer to the concrete
object passed to Create. The state of the object in the execution environment (the first argument) is
updated to reflected to update the state of the control object (the second argument).

Cleanup A static method that takes the void* pointer returned from Create and deletes all the state and
resources used in the execution environment. After calling this method the virtual object becomes invalid.

Specializations of this template typically take on one of two forms. If the control and execution environments
have separate memory spaces, then this class behaves by copying the concrete control object to the execution
environment, allocating space for the virtual object in the execution environment, and calling Bind on the virtual
object. A pointer to the allocated space is what is returned from Create.
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However, if the control and execution environments share the same memory space, the virtual object transfer
can, and should, just bind directly with the target concrete object. VTK-m comes with a class called vtkm::-
cont::internal::VirtualObjectTransferShareWithControl that provides the implementation for a virtual
object transfer that shares a memory space with the control environment. In this case, making the VirtualOb-
jectTransfer specialization be a trivial subclass is sufficient. Continuing our example of a device adapter based
on C++11’s std::thread class, here is the implementation of VirtualObjectTransfer, which by convention
would be placed in the vtkm/cont/cxx11/internal/VirtualObjectTransferCxx11Thread.h header file.

Example 20.10: Specialization of VirtualObjectTransfer.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ internal / VirtualObjectTransfer .h>
4 # include <vtkm/cont/ internal / VirtualObjectTransferShareWithControl .h>
5
6 namespace vtkm {
7 namespace cont {
8 namespace internal {
9

10 template < typename VirtualObject , typename TargetClass >
11 class VirtualObjectTransfer <
12 VirtualObject , TargetClass , vtkm :: cont :: DeviceAdapterTagCxx11Thread >
13 : public VirtualObjectTransferShareWithControl < VirtualObject , TargetClass >
14 {
15 };
16
17 }
18 }
19 } // namespace vtkm :: cont :: internal

20.4 Algorithms

A device adapter implementation must also provide a specialization of vtkm::cont::DeviceAdapterAlgorithm,
which is documented in Section 8.2. The implementation for the device adapter algorithms is typically placed
in a header file with a prefix of DeviceAdapterAlgorithm.

Although there are many methods in DeviceAdapterAlgorithm, it is seldom necessary to implement them all.
Instead, VTK-m comes with vtkm::cont::internal::DeviceAdapterAlgorithmGeneral that provides generic
implementation for most of the required algorithms. By deriving the specialization of DeviceAdapterAlgorithm
from DeviceAdapterAlgorithmGeneral, only the implementations for Schedule and Synchronize need to be
implemented. All other algorithms can be derived from those.

That said, not all of the algorithms implemented in DeviceAdapterAlgorithmGeneral are optimized for all
types of devices. Thus, it is worthwhile to provide algorithms optimized for the specific device when possible.
In particular, it is best to provide specializations for the sort, scan, and reduce algorithms.

It is standard practice to implement a specialization of DeviceAdapterAlgorithm by having it inherit
from vtkm::cont::internal::DeviceAdapterAlgorithmGeneral and specializing those methods that are
optimized for a particular system. DeviceAdapterAlgorithmGeneral is a templated class that takes as
its single template parameter the type of the subclass. For example, a device adapter algorithm struc-
ture named DeviceAdapterAlgorithm<DeviceAdapterTagFoo> will subclass DeviceAdapterAlgorithmGen-
eral<DeviceAdapterAlgorithm<DeviceAdapterTagFoo> >.
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The convention of having a subclass be templated on the derived class’ type is known as the Curiously
Recurring Template Pattern (CRTP). In the case of DeviceAdapterAlgorithmGeneral, VTK-m uses
this CRTP behavior to allow the general implementation of these algorithms to run Schedule and other
specialized algorithms in the subclass.

Did you know?

One point to note when implementing the Schedule methods is to make sure that errors handled in the exe-
cution environment are handled correctly. As described in Section 14.11, errors are signaled in the execution
environment by calling RaiseError on a functor or worklet object. This is handled internally by the vtkm::-
exec::internal::ErrorMessageBuffer class. ErrorMessageBuffer really just holds a small string buffer,
which must be provided by the device adapter’s Schedule method.

So, before Schedule executes the functor it is given, it should allocate a small string array in the execution
environment, initialize it to the empty string, encapsulate the array in an ErrorMessageBuffer object, and set
this buffer object in the functor. When the execution completes, Schedule should check to see if an error exists
in this buffer and throw a vtkm::cont::ErrorExecution if an error has been reported.

Exceptions are generally not supposed to be thrown in the execution environment, but it could happen on
devices that support them. Nevertheless, few thread schedulers work well when an exception is thrown in
them. Thus, when implementing adapters for devices that do support exceptions, it is good practice to catch
them within the thread and report them through the ErrorMessageBuffer.

Common Errors

The following example is a minimal implementation of device adapter algorithms using C++11’s std::thread
class. Note that no attempt at providing optimizations has been attempted (and many are possible). By
convention this code would be placed in the vtkm/cont/cxx11/internal/DeviceAdapterAlgorithmCxx11Thread.h
header file.

Example 20.11: Minimal specialization of DeviceAdapterAlgorithm.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ DeviceAdapterAlgorithm .h>
4 # include <vtkm/cont/ ErrorExecution .h>
5 # include <vtkm/cont/ internal / DeviceAdapterAlgorithmGeneral .h>
6
7 # include <thread >
8
9 namespace vtkm {

10 namespace cont {
11
12 template <>
13 struct DeviceAdapterAlgorithm <vtkm :: cont :: DeviceAdapterTagCxx11Thread >
14 : vtkm :: cont :: internal :: DeviceAdapterAlgorithmGeneral <
15 DeviceAdapterAlgorithm <vtkm :: cont :: DeviceAdapterTagCxx11Thread >,
16 vtkm :: cont :: DeviceAdapterTagCxx11Thread >
17 {
18 private :
19 template < typename FunctorType >
20 struct ScheduleKernel1D
21 {
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22 VTKM_CONT
23 ScheduleKernel1D ( const FunctorType & functor )
24 : Functor ( functor )
25 { }
26
27 VTKM_EXEC
28 void operator ()() const
29 {
30 try
31 {
32 for (vtkm :: Id threadId = this -> BeginId ;
33 threadId < this -> EndId ;
34 threadId ++)
35 {
36 this -> Functor ( threadId );
37 // If an error is raised , abort execution .
38 if (this -> ErrorMessage . IsErrorRaised ()) { return ; }
39 }
40 }
41 catch (vtkm :: cont :: Error error )
42 {
43 this -> ErrorMessage . RaiseError ( error . GetMessage (). c_str ());
44 }
45 catch (std :: exception error )
46 {
47 this -> ErrorMessage . RaiseError ( error .what ());
48 }
49 catch (...)
50 {
51 this -> ErrorMessage . RaiseError (" Unknown exception raised .");
52 }
53 }
54
55 FunctorType Functor ;
56 vtkm :: exec :: internal :: ErrorMessageBuffer ErrorMessage ;
57 vtkm :: Id BeginId ;
58 vtkm :: Id EndId ;
59 };
60
61 template < typename FunctorType >
62 struct ScheduleKernel3D
63 {
64 VTKM_CONT
65 ScheduleKernel3D ( const FunctorType &functor , vtkm :: Id3 maxRange )
66 : Functor ( functor ), MaxRange ( maxRange )
67 { }
68
69 VTKM_EXEC
70 void operator ()() const
71 {
72 vtkm :: Id3 threadId3D (this -> BeginId %this -> MaxRange [0] ,
73 (this -> BeginId /this -> MaxRange [0])% this -> MaxRange [1] ,
74 this -> BeginId /( this -> MaxRange [0]* this -> MaxRange [1]));
75
76 try
77 {
78 for (vtkm :: Id threadId = this -> BeginId ;
79 threadId < this -> EndId ;
80 threadId ++)
81 {
82 this -> Functor ( threadId3D );
83 // If an error is raised , abort execution .
84 if (this -> ErrorMessage . IsErrorRaised ()) { return ; }
85
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86 threadId3D [0]++;
87 if ( threadId3D [0] >= MaxRange [0])
88 {
89 threadId3D [0] = 0;
90 threadId3D [1]++;
91 if ( threadId3D [1] >= MaxRange [1])
92 {
93 threadId3D [1] = 0;
94 threadId3D [2]++;
95 }
96 }
97 }
98 }
99 catch (vtkm :: cont :: Error error )

100 {
101 this -> ErrorMessage . RaiseError ( error . GetMessage (). c_str ());
102 }
103 catch (std :: exception error )
104 {
105 this -> ErrorMessage . RaiseError ( error .what ());
106 }
107 catch (...)
108 {
109 this -> ErrorMessage . RaiseError (" Unknown exception raised .");
110 }
111 }
112
113 FunctorType Functor ;
114 vtkm :: exec :: internal :: ErrorMessageBuffer ErrorMessage ;
115 vtkm :: Id BeginId ;
116 vtkm :: Id EndId ;
117 vtkm :: Id3 MaxRange ;
118 };
119
120 template < typename KernelType >
121 VTKM_CONT
122 static void DoSchedule ( KernelType kernel ,
123 vtkm :: Id numInstances )
124 {
125 if ( numInstances < 1) { return ; }
126
127 const vtkm :: Id MESSAGE_SIZE = 1024;
128 char errorString [ MESSAGE_SIZE ];
129 errorString [0] = ’\0’;
130 vtkm :: exec :: internal :: ErrorMessageBuffer errorMessage ( errorString ,
131 MESSAGE_SIZE );
132 kernel . Functor . SetErrorMessageBuffer ( errorMessage );
133 kernel . ErrorMessage = errorMessage ;
134
135 vtkm :: Id numThreads =
136 static_cast <vtkm ::Id >( std :: thread :: hardware_concurrency ());
137 if ( numThreads > numInstances )
138 {
139 numThreads = numInstances ;
140 }
141 vtkm :: Id numInstancesPerThread = ( numInstances + numThreads -1)/ numThreads ;
142
143 std :: thread * threadPool = new std :: thread [ numThreads ];
144 vtkm :: Id beginId = 0;
145 for (vtkm :: Id threadIndex = 0; threadIndex < numThreads ; threadIndex ++)
146 {
147 vtkm :: Id endId = std :: min( beginId + numInstancesPerThread , numInstances );
148 KernelType threadKernel = kernel ;
149 threadKernel . BeginId = beginId ;
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150 threadKernel . EndId = endId ;
151 std :: thread newThread ( threadKernel );
152 threadPool [ threadIndex ]. swap( newThread );
153 beginId = endId ;
154 }
155
156 for (vtkm :: Id threadIndex = 0; threadIndex < numThreads ; threadIndex ++)
157 {
158 threadPool [ threadIndex ]. join ();
159 }
160
161 delete [] threadPool ;
162
163 if ( errorMessage . IsErrorRaised ())
164 {
165 throw vtkm :: cont :: ErrorExecution ( errorString );
166 }
167 }
168
169 public :
170 template < typename FunctorType >
171 VTKM_CONT
172 static void Schedule ( FunctorType functor , vtkm :: Id numInstances )
173 {
174 DoSchedule ( ScheduleKernel1D < FunctorType >( functor ), numInstances );
175 }
176
177 template < typename FunctorType >
178 VTKM_CONT
179 static void Schedule ( FunctorType functor , vtkm :: Id3 maxRange )
180 {
181 vtkm :: Id numInstances = maxRange [0]* maxRange [1]* maxRange [2];
182 DoSchedule ( ScheduleKernel3D < FunctorType >( functor , maxRange ), numInstances );
183 }
184
185 VTKM_CONT
186 static void Synchronize ()
187 {
188 // Nothing to do. This device schedules all of its operations using a
189 // split /join paradigm . This means that the if the control threaad is
190 // calling this method , then nothing should be running in the execution
191 // environment .
192 }
193 };
194
195 }
196 } // namespace vtkm :: cont

20.5 Timer Implementation

The VTK-m timer, described in Chapter 9, delegates to an internal class named vtkm::cont::DeviceAdapter-
TimerImplementation. The interface for this class is the same as that for vtkm::cont::Timer. A default im-
plementation of this templated class uses the system timer and the Synchronize method in the device adapter
algorithms.

However, some devices might provide alternate or better methods for implementing timers. For example, the TBB
and CUDA libraries come with high resolution timers that have better accuracy than the standard system timers.
Thus, the device adapter can optionally provide a specialization of DeviceAdapterTimerImplementation, which
is typically placed in the same header file as the device adapter algorithms.
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Continuing our example of a custom device adapter using C++11’s std::thread class, we could use the de-
fault timer and it would work fine. But C++11 also comes with a std::chrono package that contains some
portable time functions. The following code demonstrates creating a custom timer for our device adapter us-
ing this package. By convention, DeviceAdapterTimerImplementation is placed in the same header file as
DeviceAdapterAlgorithm.

Example 20.12: Specialization of DeviceAdapterTimerImplementation.
1 # include <chrono >
2
3 namespace vtkm {
4 namespace cont {
5
6 template <>
7 class DeviceAdapterTimerImplementation <vtkm :: cont :: DeviceAdapterTagCxx11Thread >
8 {
9 public :

10 VTKM_CONT
11 DeviceAdapterTimerImplementation ()
12 {
13 this -> Reset ();
14 }
15
16 VTKM_CONT
17 void Reset ()
18 {
19 vtkm :: cont :: DeviceAdapterAlgorithm <vtkm :: cont :: DeviceAdapterTagCxx11Thread >
20 :: Synchronize ();
21 this -> StartTime = std :: chrono :: high_resolution_clock :: now ();
22 }
23
24 VTKM_CONT
25 vtkm :: Float64 GetElapsedTime ()
26 {
27 vtkm :: cont :: DeviceAdapterAlgorithm <vtkm :: cont :: DeviceAdapterTagCxx11Thread >
28 :: Synchronize ();
29 std :: chrono :: high_resolution_clock :: time_point endTime =
30 std :: chrono :: high_resolution_clock :: now ();
31
32 std :: chrono :: high_resolution_clock :: duration elapsedTicks =
33 endTime - this -> StartTime ;
34
35 std :: chrono :: duration <vtkm :: Float64 > elapsedSeconds ( elapsedTicks );
36
37 return elapsedSeconds . count ();
38 }
39
40 private :
41 std :: chrono :: high_resolution_clock :: time_point StartTime ;
42 };
43
44 }
45 } // namespace vtkm :: cont
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For flexibility’s sake a worklet is free to declare a ControlSignature with whatever number of arguments are
sensible for its operation. The Invoke method of the dispatcher is expected to support arguments that match
these arguments, and part of the dispatching operation may require these arguments to be augmented before
the worklet is scheduled. This leaves dispatchers with the tricky task of managing some collection of arguments
of unknown size and unknown types.

[FunctionInterface is in the vtkm::internal interface. I still can’t decide if it should be moved
to the vtkm interface.]

To simplify this management, VTK-m has the vtkm::internal::FunctionInterface class. FunctionInter-
face is a templated class that manages a generic set of arguments and return value from a function. An instance
of FunctionInterface holds an instance of each argument. You can apply the arguments in a FunctionInter-
face object to a functor of a compatible prototype, and the resulting value of the function call is saved in the
FunctionInterface.

22.1 Declaring and Creating

vtkm::internal::FunctionInterface is a templated class with a single parameter. The parameter is the
signature of the function. A signature is a function type. The syntax in C++ is the return type followed by the
argument types encased in parentheses.

Example 22.1: Declaring vtkm::internal::FunctionInterface.
1 // FunctionInterfaces matching some common POSIX functions .
2 vtkm :: internal :: FunctionInterface < size_t ( const char *)>
3 strlenInterface ;
4
5 vtkm :: internal :: FunctionInterface <char *( char *, const char *s2 , size_t )>
6 strncpyInterface ;

The vtkm::internal::make FunctionInterface function provies an easy way to create a FunctionInterface
and initialize the state of all the parameters. make FunctionInterface takes a variable number of arguments,
one for each parameter. Since the return type is not specified as an argument, you must always specify it as a
template parameter.

Example 22.2: Using vtkm::internal::make FunctionInterface.
1 const char *s = " Hello World ";
2 static const size_t BUFFER_SIZE = 100;
3 char * buffer = (char *) malloc ( BUFFER_SIZE );
4
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5 strlenInterface =
6 vtkm :: internal :: make_FunctionInterface <size_t >(s);
7
8 strncpyInterface =
9 vtkm :: internal :: make_FunctionInterface <char *>( buffer , s, BUFFER_SIZE );

22.2 Parameters

One created, FunctionInterface contains methods to query and manage the parameters and objects associated
with them. The number of parameters can be retrieved either with the constant field ARITY or with the GetArity
method.

Example 22.3: Getting the arity of a FunctionInterface.
1 VTKM_STATIC_ASSERT (
2 vtkm :: internal :: FunctionInterface < size_t ( const char *) >:: ARITY == 1);
3
4 vtkm :: IdComponent arity = strncpyInterface . GetArity (); // arity = 3

To get a particular parameter, FunctionInterface has the templated method GetParameter. The template
parameter is the index of the parameter. Note that the parameters in FunctionInterface start at index 1.
Although this is uncommon in C++, it is customary to number function arguments starting at 1.

There are two ways to specify the index for GetParameter. The first is to directly specify the template parameter
(e.g. GetParameter<1>()). However, note that in a templated function or method where the type is not fully
resolved the compiler will not register GetParameter as a templated method and will fail to parse the template
argument without a template keyword. The second way to specify the index is to provide a vtkm::internal::-
IndexTag object as an argument to GetParameter. Although this syntax is more verbose, it works the same
whether the FunctionInterface is fully resolved or not. The following example shows both methods in action.

Example 22.4: Using FunctionInterface::GetParameter().
1 void GetFirstParameterResolved (
2 const vtkm :: internal :: FunctionInterface < void (std :: string )> & interface )
3 {
4 // The following two uses of GetParameter are equivalent
5 std :: cout << interface . GetParameter <1 >() << std :: endl;
6 std :: cout << interface . GetParameter (vtkm :: internal :: IndexTag <1 >())
7 << std :: endl;
8 }
9

10 template < typename FunctionSignature >
11 void GetFirstParameterTemplated (
12 const vtkm :: internal :: FunctionInterface < FunctionSignature > & interface )
13 {
14 // The following two uses of GetParameter are equivalent
15 std :: cout << interface . template GetParameter <1 >() << std :: endl;
16 std :: cout << interface . GetParameter (vtkm :: internal :: IndexTag <1 >())
17 << std :: endl;
18 }

Likewise, there is a SetParmeter method for changing parameters. The same rules for indexing and template
specification apply.

Example 22.5: Using FunctionInterface::SetParameter().
1 void SetFirstParameterResolved (
2 vtkm :: internal :: FunctionInterface < void (std :: string )> &interface ,
3 const std :: string & newFirstParameter )
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4 {
5 // The following two uses of SetParameter are equivalent
6 interface . SetParameter <1 >( newFirstParameter );
7 interface . SetParameter ( newFirstParameter , vtkm :: internal :: IndexTag <1 >());
8 }
9

10 template < typename FunctionSignature , typename T>
11 void SetFirstParameterTemplated (
12 vtkm :: internal :: FunctionInterface < FunctionSignature > &interface ,
13 T newFirstParameter )
14 {
15 // The following two uses of SetParameter are equivalent
16 interface . template SetParameter <1 >( newFirstParameter );
17 interface . SetParameter ( newFirstParameter , vtkm :: internal :: IndexTag <1 >());
18 }

22.3 Invoking

FunctionInterface can invoke a functor of a matching signature using the parameters stored within. If the
functor returns a value, that return value will be stored in the FunctionInterface object for later retrieval.
There are several versions of the invoke method. There are always seperate versions of invoke methods for the
control and execution environments so that functors for either environment can be executed. The basic version
of invoke passes the parameters directly to the function and directly stores the result.

Example 22.6: Invoking a FunctionInterface.
1 vtkm :: internal :: FunctionInterface < size_t ( const char *)> strlenInterface ;
2 strlenInterface . SetParameter <1 >(" Hello world ");
3
4 strlenInterface . InvokeCont ( strlen );
5
6 size_t length = strlenInterface . GetReturnValue (); // length = 11

Another form of the invoke methods takes a second transform functor that is applied to each argument before
passed to the main function. If the main function returns a value, the transform is applied to that as well before
being stored back in the FunctionInterface.

Example 22.7: Invoking a FunctionInterface with a transform.
1 // Our transform converts C strings to integers , leaves everything else alone .
2 struct TransformFunctor
3 {
4 template < typename T>
5 VTKM_CONT
6 const T & operator ()( const T &x) const
7 {
8 return x;
9 }

10
11 VTKM_CONT
12 const vtkm :: Int32 operator ()( const char *x) const
13 {
14 return atoi(x);
15 }
16 };
17
18 // The function we are invoking simply compares two numbers .
19 struct IsSameFunctor
20 {
21 template < typename T1 , typename T2 >
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22 VTKM_CONT
23 bool operator ()( const T1 &x, const T2 &y) const
24 {
25 return x == y;
26 }
27 };
28
29 void TryTransformedInvoke ()
30 {
31 vtkm :: internal :: FunctionInterface <bool( const char *, vtkm :: Int32 )>
32 functionInterface =
33 vtkm :: internal :: make_FunctionInterface <bool >(( const char *)"42" ,
34 (vtkm :: Int32 )42);
35
36 functionInterface . InvokeCont ( IsSameFunctor (), TransformFunctor ());
37
38 bool isSame = functionInterface . GetReturnValue (); // isSame = true
39 }

As demonstrated in the previous examples, FunctionInterface has a method named GetReturnValue that
returns the value from the last invoke. Care should be taken to only use GetReturnValue when the function
specification has a return value. If the function signature has a void return type, using GetReturnValue will
cause a compile error.

FunctionInterface has an alternate method named GetReturnValueSafe that returns the value wrapped in
a templated structure named vtkm::internal::FunctionInterfaceReturnContainer. This structure always
has a static constant Boolean named VALID that is false if there is no return type and true otherwise. If the
container is valid, it also has an entry named Value containing the result.

Example 22.8: Getting return value from FunctionInterface safely.
1 template < typename ResultType , bool Valid > struct PrintReturnFunctor ;
2
3 template < typename ResultType >
4 struct PrintReturnFunctor < ResultType , true >
5 {
6 VTKM_CONT
7 void operator ()(
8 const vtkm :: internal :: FunctionInterfaceReturnContainer < ResultType > &x)
9 const

10 {
11 std :: cout << x. Value << std :: endl;
12 }
13 };
14
15 template < typename ResultType >
16 struct PrintReturnFunctor < ResultType , false >
17 {
18 VTKM_CONT
19 void operator ()(
20 const vtkm :: internal :: FunctionInterfaceReturnContainer < ResultType > &)
21 const
22 {
23 std :: cout << "No return type ." << std :: endl;
24 }
25 };
26
27 template < typename FunctionInterfaceType >
28 void PrintReturn ( const FunctionInterfaceType & functionInterface )
29 {
30 using ResultType = typename FunctionInterfaceType :: ResultType ;
31 using ReturnContainerType =
32 vtkm :: internal :: FunctionInterfaceReturnContainer < ResultType >;
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33
34 PrintReturnFunctor < ResultType , ReturnContainerType :: VALID > printReturn ;
35 printReturn ( functionInterface . GetReturnValueSafe ());
36 }

22.4 Modifying Parameters

In addition to storing and querying parameters and invoking functions, FunctionInterface also contains mul-
tiple ways to modify the parameters to augment the function calls. This can be used in the same use case as a
chain of function calls that generally pass their parameters but also augment the data along the way.

The Append method returns a new FunctionInterface object with the same parameters plus a new parameter
(the argument to Append) to the end of the parameters. There is also a matching AppendType templated structure
that can return the type of an augmented FunctionInterface with a new type appended.

Example 22.9: Appending parameters to a FunctionInterface.
1 using vtkm :: internal :: FunctionInterface ;
2 using vtkm :: internal :: make_FunctionInterface ;
3
4 using InitialFunctionInterfaceType =
5 FunctionInterface < void (std :: string , vtkm :: Id)>;
6 InitialFunctionInterfaceType initialFunctionInterface =
7 make_FunctionInterface <void >( std :: string (" Hello World "), vtkm :: Id (42));
8
9 using AppendedFunctionInterfaceType1 =

10 FunctionInterface < void (std :: string , vtkm ::Id , std :: string )>;
11 AppendedFunctionInterfaceType1 appendedFunctionInterface1 =
12 initialFunctionInterface . Append (std :: string (" foobar "));
13 // appendedFunctionInterface1 has parameters (" Hello World ", 42, " foobar ")
14
15 using AppendedFunctionInterfaceType2 =
16 InitialFunctionInterfaceType :: AppendType <vtkm :: Float32 >:: type;
17 AppendedFunctionInterfaceType2 appendedFunctionInterface2 =
18 initialFunctionInterface . Append (vtkm :: Float32 (3.141));
19 // appendedFunctionInterface2 has parameters (" Hello World ", 42, 3.141)

Replace is a similar method that returns a new FunctionInterface object with the same paraemters except
with a specified parameter replaced with a new parameter (the argument to Replace). There is also a matching
ReplaceType templated structure that can return the type of an augmented FunctionInterface with one of
the parameters replaced.

Example 22.10: Replacing parameters in a FunctionInterface.
1 using vtkm :: internal :: FunctionInterface ;
2 using vtkm :: internal :: make_FunctionInterface ;
3
4 using InitialFunctionInterfaceType =
5 FunctionInterface < void (std :: string , vtkm :: Id)>;
6 InitialFunctionInterfaceType initialFunctionInterface =
7 make_FunctionInterface <void >( std :: string (" Hello World "), vtkm :: Id (42));
8
9 using ReplacedFunctionInterfaceType1 =

10 FunctionInterface < void (vtkm :: Float32 , vtkm :: Id)>;
11 ReplacedFunctionInterfaceType1 replacedFunctionInterface1 =
12 initialFunctionInterface .Replace <1 >( vtkm :: Float32 (3.141));
13 // replacedFunctionInterface1 has parameters (3.141 , 42)
14
15 using ReplacedFunctionInterfaceType2 =
16 InitialFunctionInterfaceType :: ReplaceType <2, std :: string >:: type;
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17 ReplacedFunctionInterfaceType2 replacedFunctionInterface2 =
18 initialFunctionInterface .Replace <2 >( std :: string (" foobar "));
19 // replacedFunctionInterface2 has parameters (" Hello World ", " foobar ")

It is sometimes desirable to make multiple modifications at a time. This can be achieved by chaining modifications
by calling Append or Replace on the result of a previous call.

Example 22.11: Chaining Replace and Append with a FunctionInterface.
1 template < typename FunctionInterfaceType >
2 void FunctionCallChain ( const FunctionInterfaceType & parameters ,
3 vtkm :: Id arraySize )
4 {
5 // In this hypothetical function call chain , this function replaces the
6 // first parameter with an array of that type and appends the array size
7 // to the end of the parameters .
8
9 using ArrayValueType =

10 typename FunctionInterfaceType :: template ParameterType <1 >:: type;
11
12 // Allocate and initialize array .
13 ArrayValueType value = parameters . template GetParameter <1 >();
14 ArrayValueType * array = new ArrayValueType [ arraySize ];
15 for (vtkm :: Id index = 0; index < arraySize ; index ++)
16 {
17 array [ index ] = value ;
18 }
19
20 // Call next function with modified parameters .
21 NextFunctionChainCall (
22 parameters . template Replace <1 >( array ). Append ( arraySize ));
23
24 // Clean up.
25 delete [] array ;
26 }

22.5 Transformations

Rather than replace a single item in a FunctionInterface, it is sometimes desirable to change them all in a
similar way. FunctionInterface supports two basic transform operations on its parameters: a static transform
and a dynamic transform. The static transform determines its types at compile-time whereas the dynamic
transform happens at run-time.

The static transform methods (named StaticTransformCont and StaticTransformExec) operate by accepting
a functor that defines a function with two arguments. The first argument is the FunctionInterface parameter
to transform. The second argument is an instance of the vtkm::internal::IndexTag templated class that
statically identifies the parameter index being transformed. An IndexTag object has no state, but the class
contains a static integer named INDEX. The function returns the transformed argument.

The functor must also contain a templated class named ReturnType with an internal type named type that
defines the return type of the transform for a given parameter type. ReturnType must have two template
parameters. The first template parameter is the type of the FunctionInterface parameter to transform. It is
the same type as passed to the operator. The second template parameter is a vtkm::IdComponent specifying
the index.

The transformation is only applied to the parameters of the function. The return argument is unaffected.

The return type can be determined with the StaticTransformType template in the FunctionInterface class.
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StaticTransformType has a single parameter that is the transform functor and contains a type named type
that is the transformed FunctionInterface.

In the following example, a static transform is used to convert a FunctionInterface to a new object that has
the pointers to the parameters rather than the values themselves. The parameter index is always ignored as all
parameters are uniformly transformed.

Example 22.12: Using a static transform of function interface class.
1 struct ParametersToPointersFunctor {
2 template < typename T, vtkm :: IdComponent Index >
3 struct ReturnType {
4 using type = const T*;
5 };
6
7 template < typename T, vtkm :: IdComponent Index >
8 VTKM_CONT
9 const T * operator ()( const T &x, vtkm :: internal :: IndexTag <Index >) const {

10 return &x;
11 }
12 };
13
14 template < typename FunctionInterfaceType >
15 VTKM_CONT
16 typename FunctionInterfaceType ::
17 template StaticTransformType < ParametersToPointersFunctor >:: type
18 ParametersToPointers ( const FunctionInterfaceType & functionInterface )
19 {
20 return functionInterface . StaticTransformCont ( ParametersToPointersFunctor ());
21 }

There are cases where one set of parameters must be transformed to another set, but the types of the new
set are not known until run-time. That is, the transformed type depends on the contents of the data. The
DynamicTransformCont method achieves this using a templated callback that gets called with the correct type
at run-time.

The dynamic transform works with two functors provided by the user code (as opposed to the one functor in
static transform). These functors are called the transform functor and the finish functor. The transform functor
accepts three arguments. The first argument is a parameter to transform. The second argument is a continue
function. Rather than return the transformed value, the transform functor calls the continue function, passing
the transformed value as an argument. The third argument is a vtkm::internal::IndexTag for the index of
the argument being transformed.

Unlike its static counterpart, the dynamic transform method does not return the transformed FunctionInter-
face. Instead, it passes the transformed FunctionInterface to the finish functor passed into DynamicTrans-
formCont.

In the following contrived but illustrative example, a dynamic transform is used to convert strings containing
numbers into number arguments. Strings that do not have numbers and all other arguments are passed through.
Note that because the types for strings are not determined till run-time, this transform cannot be determined
at compile time with meta-template programming. The index argument is ignored because all arguments are
transformed the same way.

Example 22.13: Using a dynamic transform of a function interface.
1 struct UnpackNumbersTransformFunctor {
2 template < typename InputType ,
3 typename ContinueFunctor ,
4 vtkm :: IdComponent Index >
5 VTKM_CONT
6 void operator ()( const InputType &input ,
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7 const ContinueFunctor & continueFunction ,
8 vtkm :: internal :: IndexTag <Index >) const
9 {

10 continueFunction ( input );
11 }
12
13 template < typename ContinueFunctor , vtkm :: IdComponent Index >
14 VTKM_CONT
15 void operator ()( const std :: string &input ,
16 const ContinueFunctor & continueFunction ,
17 vtkm :: internal :: IndexTag <Index >) const
18 {
19 if (( input [0] >= ’0’) && ( input [0] <= ’9’))
20 {
21 std :: stringstream stream ( input );
22 vtkm :: FloatDefault value ;
23 stream >> value ;
24 continueFunction ( value );
25 }
26 else
27 {
28 continueFunction ( input );
29 }
30 }
31 };
32
33 struct UnpackNumbersFinishFunctor {
34 template < typename FunctionInterfaceType >
35 VTKM_CONT
36 void operator ()( FunctionInterfaceType & functionInterface ) const
37 {
38 // Do something
39 }
40 };
41
42 template < typename FunctionInterfaceType >
43 void DoUnpackNumbers ( const FunctionInterfaceType & functionInterface )
44 {
45 functionInterface . DynamicTransformCont ( UnpackNumbersTransformFunctor (),
46 UnpackNumbersFinishFunctor ());
47 }

One common use for the FunctionInterface dynamic transform is to convert parameters of virtual polymor-
phic type like vtkm::cont::DynamicArrayHandle and vtkm::cont::DynamicPointCoordinates. This use case
is handled with a functor named vtkm::cont::internal::DynamicTransform. When used as the dynamic
transform functor, it will convert all of these dynamic types to their static counterparts.

Example 22.14: Using DynamicTransform to cast dynamic arrays in a function interface.
1 template < typename Device >
2 struct ArrayCopyFunctor {
3 template < typename Signature >
4 VTKM_CONT
5 void operator ()(
6 vtkm :: internal :: FunctionInterface <Signature > functionInterface ) const
7 {
8 functionInterface . InvokeCont (* this );
9 }

10
11 template < typename T, class CIn , class COut >
12 VTKM_CONT
13 void operator ()( const vtkm :: cont :: ArrayHandle <T, CIn > &input ,
14 vtkm :: cont :: ArrayHandle <T, COut > & output ) const
15 {
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16 vtkm :: cont :: DeviceAdapterAlgorithm <Device >:: Copy(input , output );
17 }
18
19 template < typename TIn , typename TOut , class CIn , class COut >
20 VTKM_CONT
21 void operator ()( const vtkm :: cont :: ArrayHandle <TIn , CIn > &,
22 vtkm :: cont :: ArrayHandle <TOut , COut > &) const
23 {
24 throw vtkm :: cont :: ErrorBadType (" Arrays to copy must be the same type .");
25 }
26 };
27
28 template < typename Device >
29 void CopyDynamicArrays (vtkm :: cont :: DynamicArrayHandle input ,
30 vtkm :: cont :: DynamicArrayHandle output ,
31 Device )
32 {
33 vtkm :: internal :: FunctionInterface < void (vtkm :: cont :: DynamicArrayHandle ,
34 vtkm :: cont :: DynamicArrayHandle )>
35 functionInterface =
36 vtkm :: internal :: make_FunctionInterface <void >( input , output );
37
38 functionInterface . DynamicTransformCont (
39 vtkm :: cont :: internal :: DynamicTransform (), ArrayCopyFunctor <Device >());
40 }

22.6 For Each

The invoke methods (principally) make a single function call passing all of the parameters to this function. The
transform methods call a function on each parameter to convert it to some other data type. It is also sometimes
helpful to be able to call a unary function on each parameter that is not expected to return a value. Typically
the use case is for the function to have some sort of side effect. For example, the function might print out some
value (such as in the following example) or perform some check on the data and throw an exception on failure.

This feature is implemented in the for each methods of FunctionInterface. As with all the FunctionInterface
methods that take functors, there are separate implementations for the control environment and the execution
environment. There are also separate implementations taking const and non-const references to functors to
simplify making functors with side effects.

Example 22.15: Using the ForEach feature of FunctionInterface.
1 struct PrintArgumentFunctor {
2 template < typename T, vtkm :: IdComponent Index >
3 VTKM_CONT
4 void operator ()( const T &argument , vtkm :: internal :: IndexTag <Index >) const
5 {
6 std :: cout << Index << ":" << argument << " ";
7 }
8 };
9

10 template < typename FunctionInterfaceType >
11 VTKM_CONT
12 void PrintArguments ( const FunctionInterfaceType & functionInterface )
13 {
14 std :: cout << "( ";
15 functionInterface . ForEachCont ( PrintArgumentFunctor ());
16 std :: cout << ")" << std :: endl;
17 }
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TWENTYTHREE

WORKLET ARGUMENTS

From the ControlSignature and ExecutionSignature defined in worklets, VTK-m uses template meta-
programming to build the code required to manage data from control to execution environment. These signatures
contain tags that define the meaning of each argument and control how the argument data are transferred from
the control to execution environments and broken up for each worklet instance.

Chapter 14 documents the many ControlSignature and ExecutionSignature tags that come with the worklet
types. This chapter discusses the internals of these tags and how they control data management. Defining new
worklet argument types can allow you to define new data structures in VTK-m. New worklet arguments are also
usually a critical components for making new worklet types, as described in Chapter 24.

The management of data in worklet arguments is handled by three classes that provide type checking, trans-
portation, and fetching. This chapter will first describe these type checking, transportation, and fetching classes
and then describe how ControlSignature and ExecutionSignature tags specify these classes.

Throughout this chapter we demonstrate the definition of worklet arguments using an example of a worklet
argument that represents line segments in 2D. The input for such an argument expects an ArrayHandle con-
taining floating point vtkm::Vecs of size 2 to represent coordinates in the plane. The values in the array are
paired up to define the two endpoints of each segment, and the worklet instance will receive a Vec-2 of Vec-2’s
representing the two endpoints. In practice, it is generally easier to use a vtkm::cont::ArrayHandleGroupVec
(see Section 10.2.11), but this is a simple example for demonstration purposes. Plus, we will use this special
worklet argument for our example of a custom worklet type in Chapter 24.

23.1 Type Checks

Before attempting to move data from the control to the execution environment, the VTK-m dispatchers check
the input types to ensure that they are compatible with the associated ControlSignature concept. This is done
with the vtkm::cont::arg::TypeCheck struct.

The TypeCheck struct is templated with two parameters. The first parameter is a tag that identifies which
check to perform. The second parameter is the type of the control argument (after any dynamic casts). The
TypeCheck class contains a static constant Boolean named value that is true if the type in the second parameter
is compatible with the tag in the first or false otherwise.

Type checks are implemented with a defined type check tag (which, by convention, is defined in the vtkm::-
cont::arg namespace and starts with TypeCheckTag) and a partial specialization of the vtkm::cont::arg::-
TypeCheck structure. The following type checks (identified by their tags) are provided in VTK-m.

vtkm::cont::arg::TypeCheckTagExecObject True if the type is an execution object. All execution objects
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must derive from vtkm::exec::ExecutionObjectBase and must be copyable through memcpy or similar
mechanism.

vtkm::cont::arg::TypeCheckTagArray True if the type is a vtkm::cont::ArrayHandle. TypeCheckTagArray
also has a template parameter that is a type list. The ArrayHandle must also have a value type contained
in this type list.

vtkm::cont::arg::TypeCheckTagAtomicArray Similar to TypeCheckTagArray except it only returns true for
array types with values that are supported for atomic arrays.

vtkm::cont::arg::TypeCheckTagCellSet True if and only if the object is a vtkm::cont::CellSet or one of
its subclasses.

vtkm::cont::arg::TypeCheckTagKeys True if and only if the object is a vtkm::worklet::Keys class.

Here are some trivial examples of using TypeCheck. Typically these checks are done internally in the base
VTK-m dispatcher code, so these examples are for demonstration only.

Example 23.1: Behavior of vtkm::cont::arg::TypeCheck.
1 struct MyExecObject : vtkm :: exec :: ExecutionObjectBase { vtkm :: Id Value ; };
2
3 void DoTypeChecks ()
4 {
5 using vtkm :: cont :: arg :: TypeCheck ;
6 using vtkm :: cont :: arg :: TypeCheckTagArray ;
7 using vtkm :: cont :: arg :: TypeCheckTagExecObject ;
8
9 bool check1 = TypeCheck < TypeCheckTagExecObject , MyExecObject >:: value ; // true

10 bool check2 = TypeCheck < TypeCheckTagExecObject , vtkm ::Id >:: value ; // false
11
12 using ArrayType = vtkm :: cont :: ArrayHandle <vtkm :: Float32 >;
13
14 bool check3 = // true
15 TypeCheck < TypeCheckTagArray <vtkm :: TypeListTagField >, ArrayType >:: value ;
16 bool check4 = // false
17 TypeCheck < TypeCheckTagArray <vtkm :: TypeListTagIndex >, ArrayType >:: value ;
18 bool check5 = TypeCheck < TypeCheckTagExecObject , ArrayType >:: value ; // false
19 }

A type check is created by first defining a type check tag object, which by convention is placed in the vtkm::-
cont::arg namespace and whose name starts with TypeCheckTag. Then, create a specialization of the vtkm::-
cont::arg::TypeCheck template class with the first template argument matching the aforementioned tag. As
stated previously, the TypeCheck class must contain a value static constant Boolean representing whether the
type is acceptable for the corresponding Invoke argument.

This example of a TypeCheck returns true for control objects that are ArrayHandles with a value type that is a
floating point vtkm::Vec of size 2.

Example 23.2: Defining a custom TypeCheck.
1 namespace vtkm {
2 namespace cont {
3 namespace arg {
4
5 struct TypeCheckTag2DCoordinates { };
6
7 template < typename ArrayType >
8 struct TypeCheck < TypeCheckTag2DCoordinates , ArrayType >
9 {

10 static const bool value = vtkm :: cont :: arg :: TypeCheck <
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11 vtkm :: cont :: arg :: TypeCheckTagArray <vtkm :: TypeListTagFieldVec2 >, ArrayType
12 >:: value ;
13 };
14
15 }
16 }
17 } // namespace vtkm :: cont :: arg

The type check defined in Example 23.2 could actually be replaced by the more general TypeCheckTagArray
that already comes with VTK-m (and, in fact, the implementation uses this type check internally for
simplicity). This example is mostly provided for demonstrative purposes. In practice, it is often useful to
use std::is same or std::is base of, which are provided by the standard template library starting with
C++11, to determine value in a TypeCheck.

Did you know?

23.2 Transport

After all the argument types are checked, the base dispatcher must load the data into the execution environment
before scheduling a job to run there. This is done with the vtkm::cont::arg::Transport struct.

The Transport struct is templated with three parameters. The first parameter is a tag that identifies which
transport to perform. The second parameter is the type of the control parameter (after any dynamic casts). The
third parameter is a device adapter tag for the device on which the data will be loaded.

A Transport contains a type named ExecObjectType that is the type used after data is moved to the execution
environment. A Transport also has a const parenthesis operator that takes 4 arguments: the control-side object
that is to be transported to the execution environment, the control-side object that represents the input domain,
the size of the input domain, and the size of the output domain and returns an execution-side object. This
operator is called in the control environment, and the operator returns an object that is ready to be used in the
execution environment.

Transports are implemented with a defined transport tag (which, by convention, is defined in the vtkm::cont::-
arg namespace and starts with TransportTag) and a partial specialization of the vtkm::cont::arg::Transport
structure. The following transports (identified by their tags) are provided in VTK-m.

vtkm::cont::arg::TransportTagExecObject Simply returns the given execution object, which should be ready
to load onto the device.

vtkm::cont::arg::TransportTagArrayIn Loads data from a vtkm::cont::ArrayHandle onto the specified
device using the array handle’s PrepareForInput method. The size of the array must be the same as the
input domain. The returned execution object is an array portal.

vtkm::cont::arg::TransportTagArrayOut Allocates data onto the specified device for a vtkm::cont::Ar-
rayHandle using the array handle’s PrepareForOutput method. The array is allocated to the size of the
output domain. The returned execution object is an array portal.

vtkm::cont::arg::TransportTagArrayInOut Loads data from a vtkm::cont::ArrayHandle onto the specified
device using the array handle’s PrepareForInPlace method. The size of the array must be the same size
as the output domain (which is not necessarily the same size as the input domain). The returned execution
object is an array portal.
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vtkm::cont::arg::TransportTagWholeArrayIn Loads data from a vtkm::cont::ArrayHandle onto the spec-
ified device using the array handle’s PrepareForInput method. This transport is designed to be used with
random access whole arrays, so unlike TransportTagArrayIn the array size can be unassociated with the
input domain. The returned execution object is an array portal.

vtkm::cont::arg::TransportTagWholeArrayOut Readies data from a vtkm::cont::ArrayHandle onto the
specified device using the array handle’s PrepareForOutput method. This transport is designed to be
used with random access whole arrays, so unlike TransportTagArrayOut the array size can be unasso-
ciated with the input domain. Thus, the array must be pre-allocated and its size is not changed. The
returned execution object is an array portal.

vtkm::cont::arg::TransportTagWholeArrayInOut Loads data from a vtkm::cont::ArrayHandle onto the
specified device using the array handle’s PrepareForInPlace method. This transport is designed to be used
with random access whole arrays, so unlike TransportTagArrayInOut the array size can be unassociated
with the input domain. The returned execution object is an array portal.

vtkm::cont::arg::TransportTagAtomicArray Loads data from a vtkm::cont::ArrayHandle and creates a
vtkm::exec::AtomicArray.

vtkm::cont::arg::TransportTagCellSetIn Loads data from a vtkm::cont::CellSet object. The Trans-
portTagCellSetIn it a templated class with two parameters: the “from” topology and the “to” topology.
(See Section 14.5.2 for a description of “from” and “to” topologies.) The returned execution object is a
connectivity object (as described in Section 14.8).

vtkm::cont::arg::TransportTagTopologyFieldIn Similar to TransportTagArrayIn except that the size is
checked against the “from” topology of a cell set for the input domain. The input domain object is
assumed to be a vtkm::cont::CellSet.

vtkm::cont::arg::TransportTagKeysIn Loads data from a vtkm::worklet::Keys object. This transport is
intended to be used for the input domain of a vtkm::worklet::WorkletReduceByKey. The returned
execution object is of type vtkm::exec::internal::ReduceByKeyLookup.

vtkm::cont::arg::TransportTagKeyedValuesIn Loads data from a vtkm::cont::ArrayHandle onto the spec-
ified device using the array handle’s PrepareForInput method. This transport uses the input domain
object, which is expected to be a vtkm::worklet::Keys object, and groups the entries in the array by
unique keys. The returned execution object is an array portal of grouped values.

vtkm::cont::arg::TransportTagKeyedValuesOut Loads data from a vtkm::cont::ArrayHandle onto the
specified device using the array handle’s PrepareForOutput method. This transport uses the input domain
object, which is expected to be a vtkm::worklet::Keys object, and groups the entries in the array by
unique keys. The returned execution object is an array portal of grouped values.

vtkm::cont::arg::TransportTagKeyedValuesInOut Loads data from a vtkm::cont::ArrayHandle onto the
specified device using the array handle’s PrepareForInPlace method. This transport uses the input
domain object, which is expected to be a vtkm::worklet::Keys object, and groups the entries in the
array by unique keys. The returned execution object is an array portal of grouped values.

Here are some trivial examples of using Transport. Typically this movement is done internally in the base
VTK-m dispatcher code, so these examples are for demonstration only.

Example 23.3: Behavior of vtkm::cont::arg::Transport.
1 struct MyExecObject : vtkm :: exec :: ExecutionObjectBase { vtkm :: Id Value ; };
2
3 using ArrayType = vtkm :: cont :: ArrayHandle <vtkm ::Id >;
4
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5 void DoTransport ( const MyExecObject & inExecObject ,
6 const ArrayType &inArray ,
7 const ArrayType & outArray )
8 {
9 using Device = VTKM_DEFAULT_DEVICE_ADAPTER_TAG ;

10
11 using vtkm :: cont :: arg :: Transport ;
12 using vtkm :: cont :: arg :: TransportTagArrayIn ;
13 using vtkm :: cont :: arg :: TransportTagArrayOut ;
14 using vtkm :: cont :: arg :: TransportTagExecObject ;
15
16 // The executive object transport just passes the object through .
17 using ExecObjectTransport = Transport < TransportTagExecObject , MyExecObject ,Device >;
18 MyExecObject passedExecObject =
19 ExecObjectTransport ()( inExecObject , inArray , 10, 10);
20
21 // The array in transport returns a read -only array portal .
22 using ArrayInTransport = Transport < TransportTagArrayIn ,ArrayType ,Device >;
23 ArrayInTransport :: ExecObjectType inPortal =
24 ArrayInTransport ()( inArray , inArray , 10, 10);
25
26 // The array out transport returns an allocated array portal .
27 using ArrayOutTransport = Transport < TransportTagArrayOut ,ArrayType ,Device >;
28 ArrayOutTransport :: ExecObjectType outPortal =
29 ArrayOutTransport ()( outArray , inArray , 10, 10);
30 }

A transport is created by first defining a transport tag object, which by convention is placed in the vtkm::-
cont::arg namespace and whose name starts with TransportTag. Then, create a specialization of the vtkm::-
cont::arg::Transport template class with the first template argument matching the aforementioned tag. As
stated previously, the Transport class must contain an ExecObjectType type and a parenthesis operator turning
the associated control argument into an execution environment object.

This example internally uses a vtkm::cont::ArrayHandleGroupVec to take values from an input ArrayHandle
and pair them up to represent line segments. The resulting execution object is an array portal containing Vec-2
values of Vec-2’s.

Example 23.4: Defining a custom Transport.
1 namespace vtkm {
2 namespace cont {
3 namespace arg {
4
5 struct TransportTag2DLineSegmentsIn { };
6
7 template < typename ContObjectType , typename Device >
8 struct Transport <
9 vtkm :: cont :: arg :: TransportTag2DLineSegmentsIn , ContObjectType , Device >

10 {
11 VTKM_IS_ARRAY_HANDLE ( ContObjectType );
12
13 using GroupedArrayType = vtkm :: cont :: ArrayHandleGroupVec < ContObjectType ,2 >;
14
15 using ExecObjectType =
16 typename GroupedArrayType :: template ExecutionTypes <Device >:: PortalConst ;
17
18 template < typename InputDomainType >
19 VTKM_CONT
20 ExecObjectType operator ()( const ContObjectType &object ,
21 const InputDomainType &,
22 vtkm :: Id inputRange ,
23 vtkm :: Id) const
24 {
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25 if ( object . GetNumberOfValues () != inputRange *2)
26 {
27 throw vtkm :: cont :: ErrorBadValue (
28 "2D line segment array size does not agree with input size .");
29 }
30
31 GroupedArrayType groupedArray ( object );
32 return groupedArray . PrepareForInput ( Device ());
33 }
34 };
35
36 }
37 }
38 } // namespace vtkm :: cont :: arg

It is fair to assume that the Transport’s control object type matches whatever the associated TypeCheck
allows. However, it is good practice to provide a secondary compile-time check in the Transport class
for debugging purposes in case there is a problem with the TypeCheck or this Transport is used with an
unexpected TypeCheck.

Common Errors

23.3 Fetch

Before the function of a worklet is invoked, the VTK-m internals pull the appropriate data out of the execution
object and pass it to the worklet function. A class named vtkm::exec::arg::Fetch is responsible for pulling
this data out and putting computed data in to the execution objects.

The Fetch struct is templated with four parameters. The first parameter is a tag that identifies which type of
fetch to perform. The second parameter is a different tag that identifies the aspect of the data to fetch.

The third template parameter to a Fetch struct is a type of thread indices object, which manages the indices
and other metadata associated with the thread for which the Fetch operator gets called. The specific type of
the thread indices object depends on the type of worklet begin invoked, but all thread indices classes implement
methods named GetInputIndex, GetOutputIndex, and GetVisitIndex to get those respective indices. The
thread indices object may also contain other methods to get information pertinent to the associated worklet’s
execution. For example a thread indices object associated with a topology map has methods to get the shape
identifier and incident from indices of the current input object. Thread indices objects are discussed in more
detail in Section 24.2.

The fourth template parameter to a Fetch struct is the type of the execution object that is created by the
Transport (as described in Section 23.2). This is generally where the data are fetched from.

A Fetch contains a type named ValueType that is the type of data that is passed to and from the worklet
function. A Fetch also has a pair of methods named Load and Store that get data from and add data to the
execution object at a given domain or thread index.

Fetches are specified with a pair of fetch and aspect tags. Fetch tags are by convention defined in the vtkm::-
exec::arg namespace and start with FetchTag. Likewise, aspect tags are also defined in the vtkm::exec::arg
namespace and start with AspectTag. The Fetch class is partially specialized on these two tags.
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The most common aspect tag is vtkm::exec::arg::AspectTagDefault, and all fetch tags should have a spe-
cialization of vtkm::exec::arg::Fetch with this tag. The following list of fetch tags describes the execution
objects they work with and the data they pull for each aspect tag they support.

vtkm::exec::arg::FetchTagExecObject Simply returns an execution object. This fetch only supports the
AspectTagDefault aspect. The Load returns the executive object in the associated parameter. The Store
does nothing.

vtkm::exec::arg::FetchTagWholeCellSetIn Loads data from a cell set. The Load simply returns the execu-
tion object created with a TransportTagCellSetIn and the Store does nothing.

vtkm::exec::arg::FetchTagArrayDirectIn Loads data from an array portal. This fetch only supports the
AspectTagDefault aspect. The Load gets data directly from the domain (thread) index. The Store does
nothing.

vtkm::exec::arg::FetchTagArrayDirectOut Stores data to an array portal. This fetch only supports the
AspectTagDefault aspect. The Store sets data directly to the domain (thread) index. The Load does
nothing.

vtkm::exec::arg::FetchTagCellSetIn Load data from a cell set. This fetch is used with the worklet topology
maps to pull topology information from a cell set. The Load simply returns the cell shape of the given input
cells and the Store method does nothing. This tag is typically used with the input domain object, and as-
pects like vtkm::exec::arg::AspectTagFromCount and vtkm::exec::arg::AspectTagFromIndices are
used to get more detailed information.

vtkm::exec::arg::FetchTagArrayTopologyMapIn Loads data from the “from” topology in a topology map.
For example, in a point to cell topology map, this fetch will get the field values for all points attached to
the cell being visited. The Load returns a Vec-like object containing all the incident field values whereas
the Store method does nothing. This fetch is designed for use in topology maps and expects the input
domain to be a cell set.

A fetch is created by first defining a fetch tag object, which by convention is placed in the vtkm::exec::arg
namespace and whose name starts with FetchTag. Then, create a specialization of the vtkm::exec::arg::-
Fetch template class with the first template argument matching the aforementioned tag. As stated previously,
the Fetch class must contain a ValueType type and a pair of Load and Store methods that get a value out of
the data and store a value in the data, respectively.

Example 23.5: Defining a custom Fetch.
1 namespace vtkm {
2 namespace exec {
3 namespace arg {
4
5 struct FetchTag2DLineSegmentsIn { };
6
7 template < typename ThreadIndicesType , typename ExecObjectType >
8 struct Fetch <
9 vtkm :: exec :: arg :: FetchTag2DLineSegmentsIn ,

10 vtkm :: exec :: arg :: AspectTagDefault ,
11 ThreadIndicesType ,
12 ExecObjectType >
13 {
14 using ValueType = typename ExecObjectType :: ValueType ;
15
16 VTKM_SUPPRESS_EXEC_WARNINGS
17 VTKM_EXEC
18 ValueType Load( const ThreadIndicesType &indices ,
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19 const ExecObjectType & arrayPortal ) const
20 {
21 return arrayPortal .Get( indices . GetInputIndex ());
22 }
23
24 VTKM_EXEC
25 void Store ( const ThreadIndicesType &,
26 const ExecObjectType &,
27 const ValueType &) const
28 {
29 // Store is a no -op for this fetch .
30 }
31 };
32
33 }
34 }
35 } // namespace vtkm :: exec :: arg

The fetch defined in Example 23.5 could actually be replaced by the more general FetchTagArrayDirectIn
that already comes with VTK-m. This example is mostly provided for demonstrative purposes.

Did you know?

In addition to the aforementioned aspect tags that are explicitly paired with fetch tags, VTK-m also provides
some aspect tags that either modify the behavior of a general fetch or simply ignore the type of fetch.

vtkm::exec::arg::AspectTagDefault Performs the “default” fetch. Every fetch tag should have an implemen-
tation of vtkm::exec::arg::Fetch with that tag and AspectTagDefault.

vtkm::exec::arg::AspectTagWorkIndex Simply returns the domain (or thread) index ignoring any associated
data. This aspect is used to implement the WorkIndex execution signature tag.

vtkm::exec::arg::AspectTagInputIndex Returns the index of the element being used from the input domain.
This is often the same as the work index but can be different if a scatter is being used. (See Section 14.10
for information on scatters in worklets.)

vtkm::exec::arg::AspectTagOutputIndex Returns the index of the element being written to the output. This
is generally the same as the work index.

vtkm::exec::arg::AspectTagVisitIndex Returns the visit index corresponding to the current input. Together
the pair of input index and visit index are unique.

vtkm::exec::arg::AspectTagCellShape Returns the cell shape from the input domain. This aspect is designed
to be used with topology maps.

vtkm::exec::arg::AspectTagFromCount Returns the number of elements associated with the “from” topology
that are incident to the input element of the “to” topology. This aspect is designed to be used with topology
maps.

vtkm::exec::arg::AspectTagFromIndices Returns a Vec-like object containing the indices to the elements
associated with the “from” topology that are incident to the input element of the “to” topology. This
aspect is designed to be used with topology maps.

vtkm::exec::arg::AspectTagValueCount Returns the number of times the key associated with the current
input. This aspect is designed to be used with reduce by key maps.
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An aspect is created by first defining an aspect tag object, which by convention is placed in the vtkm::exec::arg
namespace and whose name starts with AspectTag. Then, create specializations of the vtkm::exec::arg::-
Fetch template class where appropriate with the second template argument matching the aforementioned tag.

This example creates a specialization of a Fetch to retrieve the first point of a line segment.

Example 23.6: Defining a custom Aspect.
1 namespace vtkm {
2 namespace exec {
3 namespace arg {
4
5 struct AspectTagFirstPoint { };
6
7 template < typename ThreadIndicesType , typename ExecObjectType >
8 struct Fetch <
9 vtkm :: exec :: arg :: FetchTag2DLineSegmentsIn ,

10 vtkm :: exec :: arg :: AspectTagFirstPoint ,
11 ThreadIndicesType ,
12 ExecObjectType >
13 {
14 using ValueType = typename ExecObjectType :: ValueType :: ComponentType ;
15
16 VTKM_SUPPRESS_EXEC_WARNINGS
17 VTKM_EXEC
18 ValueType Load( const ThreadIndicesType &indices ,
19 const ExecObjectType & arrayPortal ) const
20 {
21 return arrayPortal .Get( indices . GetInputIndex ())[0];
22 }
23
24 VTKM_EXEC
25 void Store ( const ThreadIndicesType &,
26 const ExecObjectType &,
27 const ValueType &) const
28 {
29 // Store is a no -op for this fetch .
30 }
31 };
32
33 }
34 }
35 } // namespace vtkm :: exec :: arg

23.4 Creating New ControlSignature Tags

The type checks, transports, and fetches defined in the previous sections of this chapter conspire to interpret the
arguments given to a dispatcher’s Invoke method and provide data to an instance of a worklet. What remains
to be defined are the tags used in the ControlSignature and ExecutionSignature that bring these three items
together. These two types of tags are defined differently. In this section we discuss the ControlSignature tags.

A ControlSignature tag is defined by a struct (or equivocally a class). This struct is typically defined inside
a worklet (or, more typically, a worklet superclass) so that it can be used without qualifying its namespace.
VTK-m has requirements for every defined ControlSignature tag.

The first requirement of a ControlSignature tag is that it must inherit from vtkm::cont::arg::ControlSig-
natureTagBase. You will get a compile error if you attempt to use a type that is not a subclass of ControlSig-
natureTagBase in a ControlSignature.

The second requirement of a ControlSignature tag is that it must contain the following three types: TypeCheck-
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Tag, TransportTag, and FetchTag. As the names would imply, these specify tags for TypeCheck, Transport,
and Fetch classes, respectively, which were discussed earlier in this chapter.

The following example defines a ControlSignature tag for an array that represents 2D line segments using the
classes defined in previous examples.

Example 23.7: Defining a new ControlSignature tag.
1 struct LineSegment2DCoordinatesIn : vtkm :: cont :: arg :: ControlSignatureTagBase
2 {
3 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTag2DCoordinates ;
4 using TransportTag = vtkm :: cont :: arg :: TransportTag2DLineSegmentsIn ;
5 using FetchTag = vtkm :: exec :: arg :: FetchTag2DLineSegmentsIn ;
6 };

Once defined, this tag can be used like any other ControlSignature tag.

Example 23.8: Using a custom ControlSignature tag.
1 typedef void ControlSignature ( LineSegment2DCoordinatesIn coordsIn ,
2 FieldOut <Vec2 > vecOut ,
3 FieldIn <Index > index );

23.5 Creating New ExecutionSignature Tags

An ExecutionSignature tag is defined by a struct (or equivocally a class). This struct is typically defined
inside a worklet (or, more typically, a worklet superclass) so that it can be used without qualifying its namespace.
VTK-m has requirements for every defined ExecutionSignature tag.

The first requirement of an ExecutionSignature tag is that it must inherit from vtkm::exec::arg::Execu-
tionSignatureTagBase. You will get a compile error if you attempt to use a type that is not a subclass of
ExecutionSignatureTagBase in an ExecutionSignature.

The second requirement of an ExecutionSignature tag is that it must contain a type named AspectTag, which
is set to an aspect tag. As discussed in Section 23.3, the aspect tag is passed as a template argument to the
vtkm::exec::arg::Fetch class to modify the data it loads and stores. The numerical ExecutionSignature
tags (i.e. 1, 2, etc.) operate by setting the AspectTag to vtkm::exec::arg::AspectTagDefault, effectively
engaging the default fetch.

The third requirement of an ExecutionSignature tag is that it contains an INDEX member that is a static
const vtkm::IdComponent. The number that INDEX is set to refers to the ControlSignature argument from
which that data come from (indexed starting at 1). The numerical ExecutionSignature tags (i.e. 1, 2, etc.)
operate by setting their INDEX values to the corresponding number (i.e. 1, 2, etc.). An ExecutionSignature tag
might take another tag as a template argument and copy the INDEX from one to another. This allows you to use
a tag to modify the aspect of another tag. Most often this is used to apply a particular aspect to a numerical
ExecutionSignature tag (i.e. 1, 2, etc.). Still other ExecutionSignature tags might not need direct access
to any ControlSignature arguments (such as those that pull information from thread indices). If the INDEX
does not matter (because the execution object parameter to the Fetch Load and Store is ignored). In this case,
the ExecutionSignature tag can set the INDEX to 1, because there is guaranteed to be at least one control
argument.

The following example defines an ExecutionSignature tag to get the coordinates for only the first point in a
2D line segment. The defined tag takes as an argument another tag (generally one of the numeric tags), which
is expected to point to a ControlSignature argument with a LineSegment2DCoordinatesIn (as defined in
Example 23.7).
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Example 23.9: Defining a new ExecutionSignature tag.
1 template < typename ArgTag >
2 struct FirstPoint : vtkm :: exec :: arg :: ExecutionSignatureTagBase
3 {
4 static const vtkm :: IdComponent INDEX = ArgTag :: INDEX ;
5 using AspectTag = vtkm :: exec :: arg :: AspectTagFirstPoint ;
6 };

Once defined, this tag can be used like any other ExecutionSignature tag.

Example 23.10: Using a custom ExecutionSignature tag.
1 typedef void ControlSignature ( LineSegment2DCoordinatesIn coordsIn ,
2 FieldOut <Vec2 > vecOut ,
3 FieldIn <Index > index );
4 typedef void ExecutionSignature ( FirstPoint <_1 >, SecondPoint <_1 >, _2 );
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CHAPTER

TWENTYFOUR

NEW WORKLET TYPES

The basic building block for an algorithm in VTK-m is the worklet. Chapter 14 describes the different types of
worklet types provided by VTK-m and how to use them to create algorithms. However, it is entirely possible that
this set of worklet types does not directly cover what is needed to implement a particular algorithm. One way
around this problem is to use some of the numerous back doors provided by VTK-m to provide less restricted
access in the execution environment such as using whole arrays for random access.

However, it make come to pass that you encounter a particular pattern of execution that you find useful for
implementing several algorithms. If such is the case, it can be worthwhile to create a new worklet type that
directly supports such a pattern. Creating a new worklet type can provide two key advantages. First, it
makes implementing algorithms of this nature easier, which saves developer time. Second, it can make the
implementation of such algorithms safer. By encapsulating the management of structures and regulating the
data access, users of the worklet type can be more assured of correct behavior.

This chapter documents the process for creating new worklet types. The operation of a worklet requires the
coordination of several different object types such as dispatchers, argument handlers, and thread indices. This
chapter will provide examples of all these required components. To tie all these features together, we start this
chapter with a motivating example for an implementation of a custom worklet type. The chapter then discusses
the individual components of the worklet, which in the end come together for the worklet type that is then
demonstrated.

24.1 Motivating Example

For our motivation to create a new worklet type, let us consider the use case of building fractals. Fractals are
generally not a primary concern of visualization libraries like VTK-m, but building a fractal (or approximations
of fractals) has similarities the the computational geometry problems in scientific visualization. In particular,
we consider the class of fractals that is generated by replacing each line in a shape with some collection of lines.
These types of fractals are interesting because, in addition to other reasons, the right parameters result in a
shape that has infinite length confined to a finite area.

A simple but well known example of a line fractal is the Koch Snowflake. The Koch Snowflake starts as a line
or triangle that gets replaced with the curve shown in Figure 24.1.

The fractal is formed by iteratively replacing the curve’s lines with this basic shape. Figure 24.2 shows the
second iteration and then several subsequent iterations that create a “fuzzy” curve. The curve is confined to a
limited area regardless of how many iterations are performed, but the length of the curve approaches infinity as
the number of iterations approaches infinity.

In our finite world we want to estimate the curve of the Koch Snowflake by performing a finite amount of
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Figure 24.1: Basic shape for the Koch Snowflake.

Figure 24.2: The Koch Snowflake after the second iteration (left image) and after several more iterations (right
image).

iterations. This is similar to a Lindenmayer system but with less formality. The size of the curve grows quickly
and in practice it takes few iterations to make close approximations.

The Koch Snowflake is just one example of many line fractals we can make with this recursive line sub-
stitution, which is why it is fruitful to create a worklet type to implement such fractals. We use the Koch
Snowflake to set up the example here. Section 24.6 provides several more examples.

Did you know?

To implement line fractals of this nature, we want to be able to define the lines of the base shape in terms of
parametric coordinates and then transform the coordinates to align with a line segment. For example, the Koch
Snowflake base shape could be defined with parametric coordinates shown in Figure 24.3.

(0,0) (0.33,0)

(0.5,0.29)

(0.67,0) (1,0)

Figure 24.3: Parametric coordinates for the Koch Snowflake shape.

Given these parametric coordinates, for each line we define an axis with the main axis along the line segment
and the secondary axis perpendicular to that. Given this definition, we can perform each fractal iteration by
applying this transform for each line segment as shown in Figure 24.4.

To implement the application of the line fractal demonstrated in Figure 24.4, let us define a class named Line-
FractalTransform that takes as its constructor the coordinates of two ends of the original line. As its operator,
LineFractalTransform takes a point in parametric space and returns the coordinates in world space in respect
to the original line segment. We define this class in the vtkm::exec namespace because the intended use case is
by worklets of the type we are making. A definition of LineFractalTransform is given in Example 24.1

Example 24.1: A support class for a line fractal worklet.
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Figure 24.4: Applying the line fractal transform for the Koch Snowflake.

1 namespace vtkm {
2 namespace exec {
3
4 class LineFractalTransform
5 {
6 using VecType = vtkm ::Vec <vtkm :: FloatDefault ,2 >;
7
8 public :
9 template < typename T>

10 VTKM_EXEC
11 LineFractalTransform ( const vtkm ::Vec <T,2> &point0 ,
12 const vtkm ::Vec <T,2> & point1 )
13 {
14 this -> Offset = point0 ;
15 this -> UAxis = point1 - point0 ;
16 this -> VAxis = vtkm :: make_Vec (-this -> UAxis [1] , this -> UAxis [0]);
17 }
18
19 template < typename T>
20 VTKM_EXEC
21 vtkm ::Vec <T,2> operator ()( const vtkm ::Vec <T,2> & ppoint ) const
22 {
23 VecType ppointCast ( ppoint );
24 VecType transform =
25 ppointCast [0]* this -> UAxis + ppointCast [1]* this -> VAxis + this -> Offset ;
26 return vtkm ::Vec <T ,2 >( transform );
27 }
28
29 template < typename T>
30 VTKM_EXEC
31 vtkm ::Vec <T,2> operator ()(T x, T y) const
32 {
33 return (* this )( vtkm ::Vec <T ,2 >(x,y));
34 }
35
36 private :
37 VecType Offset ;
38 VecType UAxis ;
39 VecType VAxis ;
40 };
41
42 }
43 } // namespace vtkm :: exec

The definition of LineFractalTransform (or something like it) is not strictly necessary for implementing
a worklet type. However, it is common to implement such supporting classes that operate in the execution
environment in support of the operations typically applied by the worklet type.

Did you know?
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The remainder of this chapter is dedicated to defining a WorkletLineFractal class and supporting objects that
allow you to easily make line fractals. Example 24.2 demonstrates how we intend to use this worklet type.

Example 24.2: Demonstration of how we want to use the line fractal worklet.
1 struct KochSnowflake
2 {
3 struct FractalWorklet : vtkm :: worklet :: WorkletLineFractal
4 {
5 typedef void ControlSignature ( SegmentsIn , SegmentsOut <4 >);
6 typedef void ExecutionSignature (Transform , _2 );
7 using InputDomain = _1;
8
9 template < typename SegmentsOutVecType >

10 void operator ()( const vtkm :: exec :: LineFractalTransform &transform ,
11 SegmentsOutVecType & segmentsOutVec ) const
12 {
13 segmentsOutVec [0][0] = transform (0.00f, 0.00f);
14 segmentsOutVec [0][1] = transform (0.33f, 0.00f);
15
16 segmentsOutVec [1][0] = transform (0.33f, 0.00f);
17 segmentsOutVec [1][1] = transform (0.50f, 0.29f);
18
19 segmentsOutVec [2][0] = transform (0.50f, 0.29f);
20 segmentsOutVec [2][1] = transform (0.67f, 0.00f);
21
22 segmentsOutVec [3][0] = transform (0.67f, 0.00f);
23 segmentsOutVec [3][1] = transform (1.00f, 0.00f);
24 }
25 };
26
27 template < typename Device >
28 VTKM_CONT
29 static vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault ,2> >
30 Run(vtkm :: IdComponent numIterations , Device )
31 {
32 using VecType = vtkm ::Vec <vtkm :: Float32 ,2 >;
33
34 vtkm :: cont :: ArrayHandle <VecType > points ;
35
36 // Initialize points array with a single line
37 points . Allocate (2);
38 points . GetPortalControl (). Set (0, VecType (0.0f, 0.0f));
39 points . GetPortalControl (). Set (1, VecType (1.0f, 0.0f));
40
41 vtkm :: worklet :: DispatcherLineFractal < KochSnowflake :: FractalWorklet , Device >
42 dispatcher ;
43
44 for (vtkm :: IdComponent i = 0; i < numIterations ; ++i)
45 {
46 vtkm :: cont :: ArrayHandle <VecType > outPoints ;
47 dispatcher . Invoke (points , outPoints );
48 points = outPoints ;
49 }
50
51 return points ;
52 }
53 };
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24.2 Thread Indices

The first internal support class for implementing a worklet type is a class that manages indices for a thread.
As the name would imply, the thread indices class holds a reference to an index identifying work to be done
by the current thread. This includes indices to the current input element and the current output element.
The thread indices object can also hold other information (that may not strictly be index data) about the
input and output data. For example, the thread indices object for topology maps (named vtkm::exec::arg::-
ThreadIndicesTopologyMap) maintains cell shape and connection indices for the current input object.

As is discussed briefly in Section 23.3, a thread indices object is given to the vtkm::exec::arg::Fetch class to
retrieve data from the execution object. The thread indices object serves two important functions for the Fetch.
The first function is to cache information about the current thread that is likely to be used by multiple objects
retrieving information. For example, in a point to cell topology map data from point fields must be retrieved by
looking up indices in the topology connections. It is more efficient to retrieve the topology connections once and
store them in the thread indices than it is to look them up independently for each field.

The second function of thread indices is to make it easier to find information about the input domain when
fetching data. Once again, getting point data in a point to cell topology map requires looking up connectivity
information in the input domain. However, the Fetch object for the point field does not have direct access to
the data for the input domain. Instead, it gets this information from the thread indices.

All worklet classes have a method named GetThreadIndices that constructs a thread indices object for a given
thread. GetThreadIndices is called with 5 parameters: a unique index for the thread (i.e. worklet instance), an
array portal that maps output indices to input indices (which might not be one-to-one if a scatter is being used),
an array portal that gives the visit index for each output index, the execution object for the input domain, and
an offset of the current index of the local invoke to a global indexing (used for streaming).

The base worklet implementation provides an implementation of GetThreadIndices that creates a vtkm::-
exec::arg::ThreadIndicesBasic object. This provides the minimum information required in a thread indices
object, but non-trivial worklet types are likely to need to provide their own thread indices type. This following
example shows the implementation of GetThreadIndices we will use in our worklet type superclass (discussed
in more detail in Section 24.4).

Example 24.3: Implementation of GetThreadIndices in a worklet superclass.
1 VTKM_SUPPRESS_EXEC_WARNINGS
2 template < typename OutToInPortalType ,
3 typename VisitPortalType ,
4 typename InputDomainType >
5 VTKM_EXEC
6 vtkm :: exec :: arg :: ThreadIndicesLineFractal
7 GetThreadIndices (vtkm :: Id threadIndex ,
8 const OutToInPortalType &outToIn ,
9 const VisitPortalType &visit ,

10 const InputDomainType & inputPoints ,
11 vtkm :: Id globalThreadIndexOffset ) const
12 {
13 return vtkm :: exec :: arg :: ThreadIndicesLineFractal (
14 threadIndex ,
15 outToIn ,
16 visit ,
17 inputPoints ,
18 globalThreadIndexOffset );
19 }

As we can see in Example 24.3, our new worklet type needs a custom thread indices class. Specifically, we want
the thread indices class to manage the coordinate information of the input line segment.
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The implementation of a thread indices object we demonstrate here stores point coordinate information in
addition to actual indices. It is acceptable for a thread indices object to store data that are not strictly
indices. That said, the thread indices object should only load data (index or not) that is almost certain to
be used by any worklet implementation. The thread indices object is created before any time that the worklet
operator is called. If the thread indices object loads data that is never used by a worklet, that is a waste.

Did you know?

An implementation of a thread indices object usually derives from vtkm::exec::arg::ThreadIndicesBasic (or
some other existing thread indices class) and adds to it information specific to a particular worklet type.

Example 24.4: Implementation of a thread indices class.
1 namespace vtkm {
2 namespace exec {
3 namespace arg {
4
5 class ThreadIndicesLineFractal : public vtkm :: exec :: arg :: ThreadIndicesBasic
6 {
7 using Superclass = vtkm :: exec :: arg :: ThreadIndicesBasic ;
8
9 public :

10 using CoordinateType = vtkm ::Vec <vtkm :: FloatDefault ,2 >;
11
12 VTKM_SUPPRESS_EXEC_WARNINGS
13 template < typename OutToInPortalType ,
14 typename VisitPortalType ,
15 typename InputPointPortal >
16 VTKM_EXEC
17 ThreadIndicesLineFractal (vtkm :: Id threadIndex ,
18 const OutToInPortalType &outToIn ,
19 const VisitPortalType &visit ,
20 const InputPointPortal & inputPoints ,
21 vtkm :: Id globalThreadIndexOffset =0)
22 : Superclass ( threadIndex ,
23 outToIn .Get( threadIndex ),
24 visit .Get( threadIndex ),
25 globalThreadIndexOffset )
26 {
27 this -> Point0 = inputPoints .Get(this -> GetInputIndex ())[0];
28 this -> Point1 = inputPoints .Get(this -> GetInputIndex ())[1];
29 }
30
31 VTKM_EXEC
32 const CoordinateType & GetPoint0 () const
33 {
34 return this -> Point0 ;
35 }
36
37 VTKM_EXEC
38 const CoordinateType & GetPoint1 () const
39 {
40 return this -> Point1 ;
41 }
42
43 private :
44 CoordinateType Point0 ;
45 CoordinateType Point1 ;
46 };
47
48 }
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49 }
50 } // namespace vtkm :: exec :: arg

24.3 Signature Tags

It is common that when defining a new worklet type, the new worklet type is associated with new types of data.
Thus, it is common that implementing new worklet types involves defining custom tags for ControlSignatures
and ExecutionSignatures. This in turn typically requires creating custom TypeCheck, Transport, and Fetch
classes.

Chapter 23 describes in detail the process of defining new worklet types and the associated code to manage data
from an argument to the dispatcher’s Invoke to the data that are passed to the worklet operator. Rather than
repeat the discussion, readers should review Chapter 23 for details on how custom arguments are defined for a
new worklet type. In particular, we use the code from Examples 23.2 (page 252), 23.4 (page 255), and 23.5 (page
257) to implement an argument representing 2D line segments (which is our input domain). All these examples
culminate in the definition of a ControlSignature tag in our worklet superclass.

Example 24.5: Custom ControlSignature tag for the input domain of our example worklet type.
1 struct SegmentsIn : vtkm :: cont :: arg :: ControlSignatureTagBase
2 {
3 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTag2DCoordinates ;
4 using TransportTag = vtkm :: cont :: arg :: TransportTag2DLineSegmentsIn ;
5 using FetchTag = vtkm :: exec :: arg :: FetchTag2DLineSegmentsIn ;
6 };

As you have worked with different existing worklet types, you have likely noticed that different worklet types
have special ExecutionSignature tags to point to information in the input domain. For example, a point to cell
topology map has special ExecutionSignature tags for getting the input cell shape and the indices to all points
incident on the current input cell. We described in the beginning of the chapter that we wanted our worklet
type to provide worklet implementations an object named LineFractalTransform (Example 24.1), so it makes
sense to define our own custom ExecutionSignature tag to provide this object.

Chapter 23 gives an example of a custom ExecutionSignature tag that modifies what information is fetched
from an argument (Examples 23.6 and 23.9). However, ExecutionSignature tags that only pull data from input
domain behave a little differently because they only get information from the thread indices object and ignore
the associated data object. This is done by providing a partial specialization of vtkm::exec::arg::Fetch that
specializes on the aspect tag but not on the fetch tag.

Example 24.6: A Fetch for an aspect that does not depend on any control argument.
1 namespace vtkm {
2 namespace exec {
3 namespace arg {
4
5 struct AspectTagLineFractalTransform { };
6
7 template < typename FetchTag , typename ExecObjectType >
8 struct Fetch <
9 FetchTag ,

10 vtkm :: exec :: arg :: AspectTagLineFractalTransform ,
11 vtkm :: exec :: arg :: ThreadIndicesLineFractal ,
12 ExecObjectType >
13 {
14 using ValueType = LineFractalTransform ;
15
16 VTKM_SUPPRESS_EXEC_WARNINGS
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17 VTKM_EXEC
18 ValueType Load( const vtkm :: exec :: arg :: ThreadIndicesLineFractal &indices ,
19 const ExecObjectType &) const
20 {
21 return ValueType ( indices . GetPoint0 (), indices . GetPoint1 ());
22 }
23
24 VTKM_EXEC
25 void Store ( const vtkm :: exec :: arg :: ThreadIndicesLineFractal &,
26 const ExecObjectType &,
27 const ValueType &) const
28 {
29 // Store is a no -op for this fetch .
30 }
31 };
32
33 }
34 }
35 } // namespace vtkm :: exec :: arg

The definition of an associated ExecutionSignature tag simply has to use the define aspect as its AspectTag.
The tag also has to define a INDEX member (which is required of all ExecutionSignature tags). This is problem-
atic as this execution argument does not depend on any particular control argument. Thus, it is customary to
simply set the INDEX to 1. There is guaranteed to be at least one ControlSignature argument for any worklet
implementation. Thus, the first argument is sure to exist and can then be ignored.

Example 24.7: Custom ExecutionSignature tag that only relies on input domain information in the thread
indices.

1 struct Transform : vtkm :: exec :: arg :: ExecutionSignatureTagBase
2 {
3 static const vtkm :: IdComponent INDEX = 1;
4 using AspectTag = vtkm :: exec :: arg :: AspectTagLineFractalTransform ;
5 };

So far we have discussed how to get input line segments into our worklet. We also need a ControlSignature
tag to represent the output line segments created by instances of our worklet. The motivating example has each
worklet outputting a fixed number (greater than 1) of line segments for each input line segment. To manage
this, we will define another ControlSignature tag that outputs these line segments (as two Vec-2 coordinates).
This is defined as a Vec of Vec-2’s. The tag takes the number of line segments as a template argument.

Example 24.8: Output ControlSignature tag for our motivating example.
1 template <vtkm :: IdComponent NumSegments >
2 struct SegmentsOut : vtkm :: cont :: arg :: ControlSignatureTagBase
3 {
4 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTag2DCoordinates ;
5 using TransportTag =
6 vtkm :: cont :: arg :: TransportTag2DLineSegmentsOut < NumSegments >;
7 using FetchTag = vtkm :: exec :: arg :: FetchTagArrayDirectOut ;
8 };

You can see that the tag in Example 24.8 relies on a custom transport named TransportTag2DLineSegmentsOut.
There is nothing particularly special about this transport, but we provide the implementation here for complete-
ness.

Example 24.9: Implementation of Transport for the output in our motivating example.
1 namespace vtkm {
2 namespace cont {
3 namespace arg {
4

270 Chapter 24. New Worklet Types



DRAFT

24.4. Worklet Superclass

5 template <vtkm :: IdComponent NumOutputPerInput >
6 struct TransportTag2DLineSegmentsOut { };
7
8 template <vtkm :: IdComponent NumOutputPerInput ,
9 typename ContObjectType ,

10 typename Device >
11 struct Transport <
12 vtkm :: cont :: arg :: TransportTag2DLineSegmentsOut < NumOutputPerInput >,
13 ContObjectType ,
14 Device >
15 {
16 VTKM_IS_ARRAY_HANDLE ( ContObjectType );
17
18 using GroupedArrayType =
19 vtkm :: cont :: ArrayHandleGroupVec <
20 vtkm :: cont :: ArrayHandleGroupVec < ContObjectType ,2>, NumOutputPerInput >;
21
22 using ExecObjectType =
23 typename GroupedArrayType :: template ExecutionTypes <Device >:: Portal ;
24
25 template < typename InputDomainType >
26 VTKM_CONT
27 ExecObjectType operator ()( const ContObjectType &object ,
28 const InputDomainType &,
29 vtkm ::Id ,
30 vtkm :: Id outputRange ) const
31 {
32 GroupedArrayType groupedArray (
33 vtkm :: cont :: make_ArrayHandleGroupVec <2 >( object ));
34 return groupedArray . PrepareForOutput ( outputRange , Device ());
35 }
36 };
37
38 }
39 }
40 } // namespace vtkm :: cont :: arg

In addition to these special ControlSignature tags that are specific to the nature of our worklet type, it is
common to need to replicate some more common or general ControlSignature tags. One such tag, which is
appropriate for our worklet type, is a “field” type that takes an array with exactly one value associated with
each input or output element. We can build these field tags using existing type checks, transports, and fetches.
The following example defines a FieldIn tag for our fractal worklet type. A FieldOut tag can be made in a
similar manner.

Example 24.10: Implementing a FieldIn tag.
1 template < typename TypeList = AllTypes >
2 struct FieldIn : vtkm :: cont :: arg :: ControlSignatureTagBase {
3 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTagArray <TypeList >;
4 using TransportTag = vtkm :: cont :: arg :: TransportTagArrayIn ;
5 using FetchTag = vtkm :: exec :: arg :: FetchTagArrayDirectIn ;
6 };

24.4 Worklet Superclass

The penultimate step in defining a new worklet type is to define a class that will serve as the superclass of
all implementations of worklets of this type. This class itself must inherit from vtkm::worklet::internal::-
WorkletBase. By convention the worklet superclass is placed in the vtkm::worklet namespace and its name
starts with Worklet.
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Within the worklet superclass we define the signature tags (as discussed in Section 24.3) and the Get-
ThreadIndices method (as discussed in Section 24.2. The worklet superclass can also override other default
behavior of the WorkletBase (such as special scatter). And the worklet superclass can provide other items that
might be particularly useful to its subclasses (such as commonly used tags).

Example 24.11: Superclass for a new type of worklet.
1 namespace vtkm {
2 namespace worklet {
3
4 class WorkletLineFractal : public vtkm :: worklet :: internal :: WorkletBase
5 {
6 public :
7 /// Control signature tag for line segments in the plane . Used as the input
8 /// domain .
9 ///

10 struct SegmentsIn : vtkm :: cont :: arg :: ControlSignatureTagBase
11 {
12 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTag2DCoordinates ;
13 using TransportTag = vtkm :: cont :: arg :: TransportTag2DLineSegmentsIn ;
14 using FetchTag = vtkm :: exec :: arg :: FetchTag2DLineSegmentsIn ;
15 };
16
17 /// Control signature tag for a group of output line segments . The template
18 /// argument specifies how many line segments are outputted for each input .
19 /// The type is a Vec -like (of size NumSegments ) of Vec -2’s.
20 ///
21 template <vtkm :: IdComponent NumSegments >
22 struct SegmentsOut : vtkm :: cont :: arg :: ControlSignatureTagBase
23 {
24 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTag2DCoordinates ;
25 using TransportTag =
26 vtkm :: cont :: arg :: TransportTag2DLineSegmentsOut < NumSegments >;
27 using FetchTag = vtkm :: exec :: arg :: FetchTagArrayDirectOut ;
28 };
29
30 /// Control signature tag for input fields . There is one entry per input line
31 /// segment . This tag takes a template argument that is a type list tag that
32 /// limits the possible value types in the array .
33 ///
34 template < typename TypeList = AllTypes >
35 struct FieldIn : vtkm :: cont :: arg :: ControlSignatureTagBase {
36 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTagArray <TypeList >;
37 using TransportTag = vtkm :: cont :: arg :: TransportTagArrayIn ;
38 using FetchTag = vtkm :: exec :: arg :: FetchTagArrayDirectIn ;
39 };
40
41 /// Control signature tag for input fields . There is one entry per input line
42 /// segment . This tag takes a template argument that is a type list tag that
43 /// limits the possible value types in the array .
44 ///
45 template < typename TypeList = AllTypes >
46 struct FieldOut : vtkm :: cont :: arg :: ControlSignatureTagBase {
47 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTagArray <TypeList >;
48 using TransportTag = vtkm :: cont :: arg :: TransportTagArrayOut ;
49 using FetchTag = vtkm :: exec :: arg :: FetchTagArrayDirectOut ;
50 };
51
52 /// Execution signature tag for a LineFractalTransform from the input .
53 ///
54 struct Transform : vtkm :: exec :: arg :: ExecutionSignatureTagBase
55 {
56 static const vtkm :: IdComponent INDEX = 1;
57 using AspectTag = vtkm :: exec :: arg :: AspectTagLineFractalTransform ;
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58 };
59
60 VTKM_SUPPRESS_EXEC_WARNINGS
61 template < typename OutToInPortalType ,
62 typename VisitPortalType ,
63 typename InputDomainType >
64 VTKM_EXEC
65 vtkm :: exec :: arg :: ThreadIndicesLineFractal
66 GetThreadIndices (vtkm :: Id threadIndex ,
67 const OutToInPortalType &outToIn ,
68 const VisitPortalType &visit ,
69 const InputDomainType & inputPoints ,
70 vtkm :: Id globalThreadIndexOffset ) const
71 {
72 return vtkm :: exec :: arg :: ThreadIndicesLineFractal (
73 threadIndex ,
74 outToIn ,
75 visit ,
76 inputPoints ,
77 globalThreadIndexOffset );
78 }
79 };
80
81 }
82 } // namespace vtkm :: worklet

Be wary of creating worklet superclasses that are templated. The C++ compiler rules for superclass tem-
plates that are only partially specialized are non-intuitive. If a subclass does not fully resolve the template,
features of the superclass such as signature tags will have to be qualified with typename keywords, which
reduces the usability of the class.

Common Errors

24.5 Dispatcher

The final element required for a new worklet type is an associated dispatcher class for invoking the worklet.
As documented in Chapter 14, each worklet type has its own associated dispatcher object. By convention,
the dispatcher is placed in the vtkm::worklet and has the same name as the worklet superclass with the
Worklet replaced with Dispatcher. So since the worklet superclass for our motivating example is named
WorkletLineFractal, we name the associated dispatcher DispatcherLineFractal.

Also by convention, a dispatcher is a templated class. The first template argument should be the type of the
worklet (which should be a subclass of the associated worklet superclass). The last template argument should be a
device adapter tag with a default value set to VTKM DEFAULT DEVICE ADAPTER TAG. Other template arguments
that the dispatcher might need should be placed in between these two.

Example 24.12: Standard template arguments for a dispatcher class.
1 template < typename WorkletType ,
2 typename Device = VTKM_DEFAULT_DEVICE_ADAPTER_TAG >
3 class DispatcherLineFractal

A dispatcher implementation inherits from vtkm::worklet::internal::DispatcherBase. DispatcherBase is
itself a templated class with the following three templated arguments.
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1. The dispatcher class that is subclassing DispatcherBase. All template arguments must be given.

2. The type of the worklet being dispatched (which by convention is the first argument of the dispatcher’s
template).

3. The expected superclass of the worklet, which is associated with the dispatcher implementation. Dis-
patcherBase will check that the worklet has the appropriate superclass and provide a compile error if
there is a mismatch.

The convention of having a subclass be templated on the derived class’ type is known as the Curiously
Recurring Template Pattern (CRTP). In the case of DispatcherBase, VTK-m uses this CRTP behavior
to allow the general implementation of Invoke to run DoInvoke in the subclass, which as we see in a
moment is itself templated.

Did you know?

Example 24.13: Subclassing DispatcherBase.
1 template < typename WorkletType ,
2 typename Device = VTKM_DEFAULT_DEVICE_ADAPTER_TAG >
3 class DispatcherLineFractal
4 : public vtkm :: worklet :: internal :: DispatcherBase <
5 DispatcherLineFractal < WorkletType , Device >,
6 WorkletType ,
7 vtkm :: worklet :: WorkletLineFractal
8 >

The constructor for the dispatcher should take as an argument an instance of the worklet to be invoked. For
convenience, this worklet argument should default to a new instance of the worklet.

Example 24.14: Typical constructor for a dispatcher.
1 VTKM_CONT
2 DispatcherLineFractal ( const WorkletType & worklet = WorkletType ())
3 : Superclass ( worklet )
4 { }

Finally, the dispatcher must implement a const method named DoInvoke. The DoInvoke method should take a
single argument. The argument will be an object of type vtkm::internal::Invocation although it is usually
more convenient to just express the argument type as a single template parameter. The Invocation could
contain several data items, so it is best to pass this argument as a constant reference.

Example 24.15: Declaration of DoInvoke of a dispatcher.
1 template < typename Invocation >
2 VTKM_CONT
3 void DoInvoke ( const Invocation & invocation ) const

Invocation is an object that encapsulates the state and data relevant to the invoke. Invocation contains
multiple types and data items. For brevity only the ones most likely to be used in a DoInvoke method are
documented here. We discuss these briefly before getting back to the implementation of DoInvoke.

vtkm::internal::Invocation contains a data member named Parameters that contains the data passed to
the Invoke method of the dispatcher (with some possible transformations applied). Parameters is stored in a
vtkm::internal::FunctionInterface template object. (FunctionInterface is described in Chapter 22.) The
specific type of Parameters is defined as type ParameterInterface in the Invoke object.
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The Invoke object also contains the types ControlInterface and ExecutionInterface that are FunctionIn-
terface classes built from the ControlSignature and ExecutionSignature of the worklet. These Function-
Interface classes provide a simple mechanism for introspecting the arguments of the worklet’s signatures.

All worklets must also define an input domain index, which points to one of the ControlSignature/Invoke
arguments. This number is also captured in the vtkm::internal::Invocation object in a field named In-
putDomainIndex. For convenience, Invocation also has the type InputDomainTag set to be the same as the
ControlSignature argument corresponding to the input domain. Likewise, Invocation has the type InputDo-
mainType set to be the same type as the (transformed) input domain argument to Invoke. Invocation also has
a method name GetInputDomain that returns the invocation object passed to Invoke.

Getting back to the implementation of a dispatcher, the DoInvoke should first verify that the ControlSignature
argument associated with the input domain is of the expected type. This can be done by comparing the
Invocation::InputDomainTag with the expected signature tag using a tool like std::is same. This step
is not strictly necessary, but is invaluable to users diagnosing issues with using the dispatcher. It does not
hurt to also check that the Invoke argument for the input domain is also the same as expected (by checking
Invocation::InputDomainType). It is additionally helpful to have a descriptive comment near these checks.

Example 24.16: Checking the input domain tag and type.
1 // Get the control signature tag for the input domain .
2 using InputDomainTag = typename Invocation :: InputDomainTag ;
3
4 // If you get a compile error on this line , then you have set the input
5 // domain to something that is not a SegmentsIn parameter , which is not
6 // valid .
7 VTKM_STATIC_ASSERT (( std :: is_same <
8 InputDomainTag ,
9 vtkm :: worklet :: WorkletLineFractal :: SegmentsIn

10 >:: value ));
11
12 // This is the type for the input domain
13 using InputDomainType = typename Invocation :: InputDomainType ;
14
15 // If you get a compile error on this line , then you have tried to use
16 // something that is not a vtkm :: cont :: ArrayHandle as the input domain to a
17 // topology operation (that operates on a cell set connection domain ).
18 VTKM_IS_ARRAY_HANDLE ( InputDomainType );

Next, DoInvoke must determine the size in number of elements of the input domain. When the default identity
scatter is used, the input domain size corresponds to the number of instances the worklet is executed. (Other scat-
ters will transform the input domain size to an output domain size, and that output domain size will determine the
number of instances.) The input domain size is generally determined by using Invocation::::GetInputDomain
and querying the input domain argument. In our motivating example, the input domain is an ArrayHandle and
the input domain size is half the size of the array (since array entries are paired up into line segments).

The final thing DoInvoke does is call BasicInvoke on its DispatcherBase superclass. BasicInvoke does the
complicated work of transferring arguments, scheduling the parallel job, and calling the worklet’s operator.
BasicInvoke takes three arguments: the Invocation object, the size of the input domain, and the device
adapter tag to run on.

Example 24.17: Calling BasicInvoke from a dispatcher’s DoInvoke.
1 // We can pull the input domain parameter (the data specifying the input
2 // domain ) from the invocation object .
3 const InputDomainType & inputDomain = invocation . GetInputDomain ();
4
5 // Now that we have the input domain , we can extract the range of the
6 // scheduling and call BasicInvoke .
7 this -> BasicInvoke ( invocation ,
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8 inputDomain . GetNumberOfValues ()/2 ,
9 Device ());

Putting this all together, the following example demonstrates the full implementation of the dispatcher for our
motivating example.

Example 24.18: Implementation of a dispatcher for a new type of worklet.
1 namespace vtkm {
2 namespace worklet {
3
4 template < typename WorkletType ,
5 typename Device = VTKM_DEFAULT_DEVICE_ADAPTER_TAG >
6 class DispatcherLineFractal
7 : public vtkm :: worklet :: internal :: DispatcherBase <
8 DispatcherLineFractal < WorkletType , Device >,
9 WorkletType ,

10 vtkm :: worklet :: WorkletLineFractal
11 >
12 {
13 using Superclass =
14 vtkm :: worklet :: internal :: DispatcherBase <
15 DispatcherLineFractal < WorkletType , Device >,
16 WorkletType ,
17 vtkm :: worklet :: WorkletLineFractal
18 >;
19
20 public :
21 VTKM_CONT
22 DispatcherLineFractal ( const WorkletType & worklet = WorkletType ())
23 : Superclass ( worklet )
24 { }
25
26 template < typename Invocation >
27 VTKM_CONT
28 void DoInvoke ( const Invocation & invocation ) const
29 {
30 // Get the control signature tag for the input domain .
31 using InputDomainTag = typename Invocation :: InputDomainTag ;
32
33 // If you get a compile error on this line , then you have set the input
34 // domain to something that is not a SegmentsIn parameter , which is not
35 // valid .
36 VTKM_STATIC_ASSERT (( std :: is_same <
37 InputDomainTag ,
38 vtkm :: worklet :: WorkletLineFractal :: SegmentsIn
39 >:: value ));
40
41 // This is the type for the input domain
42 using InputDomainType = typename Invocation :: InputDomainType ;
43
44 // If you get a compile error on this line , then you have tried to use
45 // something that is not a vtkm :: cont :: ArrayHandle as the input domain to a
46 // topology operation (that operates on a cell set connection domain ).
47 VTKM_IS_ARRAY_HANDLE ( InputDomainType );
48
49 // We can pull the input domain parameter (the data specifying the input
50 // domain ) from the invocation object .
51 const InputDomainType & inputDomain = invocation . GetInputDomain ();
52
53 // Now that we have the input domain , we can extract the range of the
54 // scheduling and call BasicInvoke .
55 this -> BasicInvoke ( invocation ,
56 inputDomain . GetNumberOfValues ()/2 ,
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57 Device ());
58 }
59 };
60
61 }
62 } // namespace vtkm :: worklet

24.6 Using the Worklet

Now that we have our full implementation of a worklet type that generates line fractals, let us have some fun
with it. The beginning of this chapter shows an implementation of the Koch Snowflake. The remainder of this
chapter demonstrates other fractals that are easily implemented with our worklet type.

24.6.1 Quadratic Type 2 Curve

There are multiple variants of the Koch Snowflake. One simple but interesting version is the quadratic type 1
curve. This fractal has a shape similar to what we used for Koch but has right angles and goes both up and
down as shown in Figure 24.5.

Figure 24.5: The quadratic type 2 curve fractal. The left image gives the first iteration. The middle image gives
the second iteration. The right image gives the result after a few iterations.

The quadratic type 2 curve is implemented exactly like the Koch Snowflake except we output 8 lines to every
input instead of 4, and, of course, the positions of the lines we generate are different.

Example 24.19: A worklet to generate a quadratic type 2 curve fractal.
1 struct QuadraticType2
2 {
3 struct FractalWorklet : vtkm :: worklet :: WorkletLineFractal
4 {
5 typedef void ControlSignature ( SegmentsIn , SegmentsOut <8 >);
6 typedef void ExecutionSignature (Transform , _2 );
7 using InputDomain = _1;
8
9 template < typename SegmentsOutVecType >

10 void operator ()( const vtkm :: exec :: LineFractalTransform &transform ,
11 SegmentsOutVecType & segmentsOutVec ) const
12 {
13 segmentsOutVec [0][0] = transform (0.00f, 0.00f);
14 segmentsOutVec [0][1] = transform (0.25f, 0.00f);
15
16 segmentsOutVec [1][0] = transform (0.25f, 0.00f);
17 segmentsOutVec [1][1] = transform (0.25f, 0.25f);
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18
19 segmentsOutVec [2][0] = transform (0.25f, 0.25f);
20 segmentsOutVec [2][1] = transform (0.50f, 0.25f);
21
22 segmentsOutVec [3][0] = transform (0.50f, 0.25f);
23 segmentsOutVec [3][1] = transform (0.50f, 0.00f);
24
25 segmentsOutVec [4][0] = transform (0.50f, 0.00f);
26 segmentsOutVec [4][1] = transform (0.50f, -0.25f);
27
28 segmentsOutVec [5][0] = transform (0.50f, -0.25f);
29 segmentsOutVec [5][1] = transform (0.75f, -0.25f);
30
31 segmentsOutVec [6][0] = transform (0.75f, -0.25f);
32 segmentsOutVec [6][1] = transform (0.75f, 0.00f);
33
34 segmentsOutVec [7][0] = transform (0.75f, 0.00f);
35 segmentsOutVec [7][1] = transform (1.00f, 0.00f);
36 }
37 };
38
39 template < typename Device >
40 VTKM_CONT
41 static vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault ,2> >
42 Run(vtkm :: IdComponent numIterations , Device )
43 {
44 using VecType = vtkm ::Vec <vtkm :: Float32 ,2 >;
45
46 vtkm :: cont :: ArrayHandle <VecType > points ;
47
48 // Initialize points array with a single line
49 points . Allocate (2);
50 points . GetPortalControl (). Set (0, VecType (0.0f, 0.0f));
51 points . GetPortalControl (). Set (1, VecType (1.0f, 0.0f));
52
53 vtkm :: worklet :: DispatcherLineFractal < QuadraticType2 :: FractalWorklet , Device >
54 dispatcher ;
55
56 for (vtkm :: IdComponent i = 0; i < numIterations ; ++i)
57 {
58 vtkm :: cont :: ArrayHandle <VecType > outPoints ;
59 dispatcher . Invoke (points , outPoints );
60 points = outPoints ;
61 }
62
63 return points ;
64 }
65 };

24.6.2 Tree Fractal

Another type of fractal we can make is a tree fractal. We will make a fractal similar to a Pythagoras tree except
using lines instead of squares. Our fractal will start with a vertical line that will be replaced with the off-center
“Y” shape shown in Figure 24.6. Iterative replacing using this “Y” shape produces a bushy tree shape.

One complication of implementing this tree fractal is that we really only want to apply the “Y” shape to the
“leaves” of the tree. For example, once we apply the “Y” to the trunk, we do not want to apply it to the trunk
again. If we were to apply it to the trunk again, we would create duplicates of the first layer of branches.

We can implement this feature in our worklet by using a count scatter. (Worklet scatters are described in
Section 14.10.) Instead of directing the fractal worklet to generate 3 output line segments for every input line
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Figure 24.6: The tree fractal replaces each line with the “Y” shape shown at left. An iteration grows branches
at the end (middle). After several iterations the tree branches out to the bushy shape at right.

segment, we tell the fractal worklet to generate just 1 output line segment. We then use a scatter counting to
generate 3 line segments for the leaves and 1 line segment for all other line segments. The count array for the
initial iteration is initialized to a single 3. Each iteration then creates the count array for the next iteration by
writing a 1 for the base line segment and a 3 from the other two line segments.

Example 24.20: A worklet to generate a tree fractal.
1 struct TreeFractal
2 {
3 struct FractalWorklet : vtkm :: worklet :: WorkletLineFractal
4 {
5 typedef void ControlSignature ( SegmentsIn ,
6 SegmentsOut <1>,
7 FieldOut <> countNextIteration );
8 typedef void ExecutionSignature (Transform , VisitIndex , _2 , _3 );
9 using InputDomain = _1;

10
11 using ScatterType = vtkm :: worklet :: ScatterCounting ;
12 VTKM_CONT
13 ScatterType GetScatter () const { return this -> Scatter ; }
14
15 template < typename Storage , typename Device >
16 VTKM_CONT
17 FractalWorklet (
18 const vtkm :: cont :: ArrayHandle <vtkm :: IdComponent ,Storage > &count ,
19 Device )
20 : Scatter (count , Device ())
21 { }
22
23 template < typename SegmentsOutVecType >
24 void operator ()( const vtkm :: exec :: LineFractalTransform &transform ,
25 vtkm :: IdComponent visitIndex ,
26 SegmentsOutVecType & segmentsOutVec ,
27 vtkm :: IdComponent & countNextIteration ) const
28 {
29 switch ( visitIndex )
30 {
31 case 0:
32 segmentsOutVec [0][0] = transform (0.0f, 0.0f);
33 segmentsOutVec [0][1] = transform (1.0f, 0.0f);
34 countNextIteration = 1;
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35 break ;
36 case 1:
37 segmentsOutVec [0][0] = transform (1.0f, 0.0f);
38 segmentsOutVec [0][1] = transform (1.5f, -0.25f);
39 countNextIteration = 3;
40 break ;
41 case 2:
42 segmentsOutVec [0][0] = transform (1.0f, 0.0f);
43 segmentsOutVec [0][1] = transform (1.5f, 0.35f);
44 countNextIteration = 3;
45 break ;
46 default :
47 this -> RaiseError (" Unexpected visit index .");
48 }
49 }
50
51 private :
52 ScatterType Scatter ;
53 };
54
55 template < typename Device >
56 VTKM_CONT
57 static vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault ,2> >
58 Run(vtkm :: IdComponent numIterations , Device )
59 {
60 using VecType = vtkm ::Vec <vtkm :: Float32 ,2 >;
61
62 vtkm :: cont :: ArrayHandle <VecType > points ;
63
64 // Initialize points array with a single line
65 points . Allocate (2);
66 points . GetPortalControl (). Set (0, VecType (0.0f, 0.0f));
67 points . GetPortalControl (). Set (1, VecType (0.0f, 1.0f));
68
69 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > count ;
70
71 // Initialize count array with 3 ( meaning iterate )
72 count . Allocate (1);
73 count . GetPortalControl (). Set (0, 3);
74
75 for (vtkm :: IdComponent i = 0; i < numIterations ; ++i)
76 {
77 vtkm :: worklet :: DispatcherLineFractal < TreeFractal :: FractalWorklet , Device >
78 dispatcher ( FractalWorklet (count , Device ()));
79
80 vtkm :: cont :: ArrayHandle <VecType > outPoints ;
81 dispatcher . Invoke (points , outPoints , count );
82 points = outPoints ;
83 }
84
85 return points ;
86 }
87 };

24.6.3 Dragon Fractal

The next fractal we will implement is known as the dragon fractal. The dragon fractal is also sometimes known
as the Heighway dragon or the Harter-Heighway dragon after creators John Heighway, Bruce Banks, and William
Harter. It is also sometimes colloquially referred to as the Jurassic Park dragon as the fractal was prominently
featured in the Jurassic Park novel by Michael Crichton.
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The basic building block is simple. Each line segment is replaced by two line segments bent at 90 degrees and
attached to the original segments endpoints as shown in Figure 24.7. As you can see by the fourth iteration a
more complicated pattern starts to emerge. Figure 24.8 shows the twelfth iteration a demonstrates a repeating
spiral.

Figure 24.7: The first four iterations of the dragon fractal. The cyan lines give the previous iteration for reference.

What makes the dragon fractal different than the Koch Snowflake and similar fractals like the the quadratic
curves implementation-wise is that the direction shape flips from one side to another. Note in the second image
of Figure 24.7 the first bend is under the its associated line segment whereas the second is above its line segment.
The easiest way for us to control the bend is to alternate the direction of the line segments. In Figure 24.7 each
line segment has an arrowhead indicating the orientation of the first and second point with the arrowhead at the
second point. Note that the shape is defined such that the first point of both line segments meet at the right
angle. With the shape defined this way, each iteration is applied to put the bend to the left of the segment with
respect to an observer at the first point looking at the second point.

Other than reversing the direction of half the line segments, the implementation of the dragon fractal is nearly
identical to the Koch Snowflake.

Example 24.21: A worklet to generate the dragon fractal.
1 struct DragonFractal
2 {
3 struct FractalWorklet : vtkm :: worklet :: WorkletLineFractal
4 {
5 typedef void ControlSignature ( SegmentsIn , SegmentsOut <2 >);
6 typedef void ExecutionSignature (Transform , _2 );
7 using InputDomain = _1;
8
9 template < typename SegmentsOutVecType >

10 void operator ()( const vtkm :: exec :: LineFractalTransform &transform ,
11 SegmentsOutVecType & segmentsOutVec ) const
12 {
13 segmentsOutVec [0][0] = transform (0.5f, 0.5f);
14 segmentsOutVec [0][1] = transform (0.0f, 0.0f);
15
16 segmentsOutVec [1][0] = transform (0.5f, 0.5f);
17 segmentsOutVec [1][1] = transform (1.0f, 0.0f);
18 }
19 };
20
21 template < typename Device >
22 VTKM_CONT
23 static vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault ,2> >
24 Run(vtkm :: IdComponent numIterations , Device )
25 {
26 using VecType = vtkm ::Vec <vtkm :: Float32 ,2 >;
27
28 vtkm :: cont :: ArrayHandle <VecType > points ;
29
30 // Initialize points array with a single line
31 points . Allocate (2);
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Figure 24.8: The dragon fractal after 12 iterations.

32 points . GetPortalControl (). Set (0, VecType (0.0f, 0.0f));
33 points . GetPortalControl (). Set (1, VecType (1.0f, 0.0f));
34
35 vtkm :: worklet :: DispatcherLineFractal < DragonFractal :: FractalWorklet , Device >
36 dispatcher ;
37
38 for (vtkm :: IdComponent i = 0; i < numIterations ; ++i)
39 {
40 vtkm :: cont :: ArrayHandle <VecType > outPoints ;
41 dispatcher . Invoke (points , outPoints );
42 points = outPoints ;
43 }
44
45 return points ;
46 }
47 };

24.6.4 Hilbert Curve

For our final example we will look into using our fractal worklet to construct a space-filling curve. A space-filling
curve is a type of fractal that defines a curve that, when iterated to its infinite length, completely fills a space.
Space-filling curves have several practical uses by allowing you to order points in a 2 dimensional or higher space
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in a 1 dimensional array in such a way that points close in the higher dimensional space are usually close in the
1 dimensional ordering. For this fractal we will be generating the well-known Hilbert curve. (Specifically, we
will be generating the 2D Hilbert curve.)

The 2D Hilbert curve fills in a rectangular region in space. (Our implementation will fill a unit square in the [0,1]
range, but a simple scaling can generalize it to any rectangle.) Without loss of generality, we will say that the
curve starts in the lower left corner of the region and ends in the lower right corner. The Hilbert curve starts by
snaking around the lower-left corner then into the upper-left followed by the upper-right and then lower-right.
The curve is typically generated by recursively dividing and orienting these quadrants.

To generate the Hilbert curve in our worklet system, we will define our line segments as the connection from
the lower left of (entrance to) the region to the lower right of (exit from) the region. The fractal generation
breaks this line to a 4 segment curve that moves up, then right, then back down. Figure 24.9 demonstrates
the Hilbert curve. (Readers familiar with the Hilbert curve might notice the shape is a bit different than other
representations. Where many derivations derive the Hilbert curve by connecting the center of oriented boxes,
our derivation uses a line segment along one edge of these boxes. The result is a more asymmetrical shape in
early iterations, but the two approaches are equivalent as the iterations approach infinity.)

Figure 24.9: The first, second, third, and sixth iterations, respectively, of the Hilbert curve fractal.

Like the dragon fractal, the Hilbert curve needs to flip the shape in different directions. For example, the first
iteration, shown at left in Figure 24.9, is drawn to the “left” of the initial line along the horizontal axis. The
next iteration, the second image in Figure 24.9, is created by drawing the shape to the “right” of the vertical
line segments but to the left of the horizontal segments.

Section 24.6.3 solved this problem for the dragon fractal by flipping the direction of some of the line segments.
Such an approach would work for the Hilbert curve, but it results in line segments being listed out of order and
with inconsistent directions with respect to the curve. For the dragon fractal, the order and orientation of line
segments is of little consequence. But for many applications of a space-filling curve the distance along the curve
is the whole point, so we want the order of the line segments to be consistent with the curve.

To support this flipped shape while preserving the line segment order, we will use a data field attached to the
line segments. That is, each line segment will have a value to represent which way to draw the shape. If the field
value is set to 1 (represented by the blue line segments in Figure 24.9), then the shape is drawn to the “left.” If
the field value is set to -1 (represented by the red line segments in Figure 24.9), then the shape is inverted and
drawn to the “right.” This field is passed in and out of the worklet using the FieldIn and FieldOut tags.

Example 24.22: A worklet to generate the Hilbert curve.
1 struct HilbertCurve
2 {
3 struct FractalWorklet : vtkm :: worklet :: WorkletLineFractal
4 {
5 typedef void ControlSignature ( SegmentsIn ,
6 FieldIn <> directionIn ,
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7 SegmentsOut <4>,
8 FieldOut <> directionOut );
9 typedef void ExecutionSignature (Transform , _2 , _3 , _4 );

10 using InputDomain = _1;
11
12 template < typename SegmentsOutVecType >
13 void operator ()( const vtkm :: exec :: LineFractalTransform &transform ,
14 vtkm :: Int8 directionIn ,
15 SegmentsOutVecType & segmentsOutVec ,
16 vtkm ::Vec <vtkm :: Int8 ,4> & directionOut ) const
17 {
18 segmentsOutVec [0][0] = transform (0.0f, directionIn *0.0f);
19 segmentsOutVec [0][1] = transform (0.0f, directionIn *0.5f);
20 directionOut [0] = -directionIn ;
21
22 segmentsOutVec [1][0] = transform (0.0f, directionIn *0.5f);
23 segmentsOutVec [1][1] = transform (0.5f, directionIn *0.5f);
24 directionOut [1] = directionIn ;
25
26 segmentsOutVec [2][0] = transform (0.5f, directionIn *0.5f);
27 segmentsOutVec [2][1] = transform (1.0f, directionIn *0.5f);
28 directionOut [2] = directionIn ;
29
30 segmentsOutVec [3][0] = transform (1.0f, directionIn *0.5f);
31 segmentsOutVec [3][1] = transform (1.0f, directionIn *0.0f);
32 directionOut [3] = -directionIn ;
33 }
34 };
35
36 template < typename Device >
37 VTKM_CONT
38 static vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault ,2> >
39 Run(vtkm :: IdComponent numIterations , Device )
40 {
41 using VecType = vtkm ::Vec <vtkm :: Float32 ,2 >;
42
43 vtkm :: cont :: ArrayHandle <VecType > points ;
44
45 // Initialize points array with a single line
46 points . Allocate (2);
47 points . GetPortalControl (). Set (0, VecType (0.0f, 0.0f));
48 points . GetPortalControl (). Set (1, VecType (1.0f, 0.0f));
49
50 vtkm :: cont :: ArrayHandle <vtkm :: Int8 > directions ;
51
52 // Initialize direction with positive .
53 directions . Allocate (1);
54 directions . GetPortalControl (). Set (0, 1);
55
56 vtkm :: worklet :: DispatcherLineFractal < HilbertCurve :: FractalWorklet , Device >
57 dispatcher ;
58
59 for (vtkm :: IdComponent i = 0; i < numIterations ; ++i)
60 {
61 vtkm :: cont :: ArrayHandle <VecType > outPoints ;
62 vtkm :: cont :: ArrayHandle <vtkm :: Int8 > outDirections ;
63 dispatcher . Invoke (points ,
64 directions ,
65 outPoints ,
66 vtkm :: cont :: make_ArrayHandleGroupVec <4 >( outDirections ));
67 points = outPoints ;
68 directions = outDirections ;
69 }
70
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71 return points ;
72 }
73 };
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A

CODING CONVENTIONS

Several developers contribute to VTK-m and we welcome others who are interested to also contribute to the
project. To ensure readability and consistency in the code, we have adopted the following coding conventions.
Many of these conventions are adapted from the coding conventions of the VTK project. This is because many
of the developers are familiar with VTK coding and because we expect VTK-m to have continual interaction
with VTK.

• All code contributed to VTK-m must be compatible with VTK-m’s BSD license.

• Copyright notices should appear at the top of all source, configuration, and text files. The statement should
have the following form (with the year replaced with the year the file was created):

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 Sandia Corporation.
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014. Los Alamos National Security
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================

The CopyrightStatement test checks all files for a similar statement. The test will print out a suggested text
that can be copied and pasted to any file that has a missing copyright statement (with appropriate replacement of
comment prefix). Exceptions to this copyright statement (for example, third-party files with different but compatible
statements) can be added to LICENSE.txt.

• All include files should use include guards. starting right after the copyright statement. The naming convention
of the include guard macro is that it should start with vtk m be followed with the path name, starting from the
top-level source code directory under vtkm, with non alphanumeric characters, such as / and . replaced with
underscores. The #endif part of the guard at the bottom of the file should include the guard name in a comment.
For example, the vtkm/cont/ArrayHandle.h header contains the guard
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#ifndef vtk_m_cont_ArrayHandle_h
#define vtk_m_cont_ArrayHandle_h

at the top and

#endif //vtk_m_cont_ArrayHandle_h

• VTK-m has several nested namespaces. The declaration of each namespace should be on its own line, and the code
inside the namespace bracket should not be indented. The closing brace at the bottom of the namespace should be
documented with a comment identifying the namespace. Namespaces can be grouped as desired. The following is
a valid use of namespaces.

namespace vtkm {
namespace cont {

namespace detail {

class InternalClass;

} // namespace detail

class ExposedClass;

}
} // namespace vtkm::cont

• Multiple inheritance is not allowed in VTK-m classes.

• Any functional public class should be in its own header file with the same name as the class. The file should be in
a directory that corresponds to the namespace the class is in. There are several exceptions to this rule.

– Templated classes and template specialization often require the implementation of the class to be broken into
pieces. Sometimes a specialization is placed in a header with a different name.

– Many VTK-m toolkit features are not encapsulated in classes. Functions may be collected by purpose or
co-located with associated class.

– Although tags are technically classes, they behave as an enumeration for the compiler. Multiple tags that
make up this enumeration are collected together.

– Some classes, such as vtkm::Vec, are meant to behave as basic types. These are sometimes collected together
as if they were related type aliases. The vtkm/Types.h header is a good example of this.

• The indentation follows the Allman style. The curly brace (scope delimiter) for a block is placed on the line following
the prototype or control statement and is indented with the outer scope (i.e. the curly brace does not line up with
the code in the block). This differs from VTK style, but was agreed on by the developers as the more common
style. Indentations are two spaces.

• Conditional clauses (including loop conditionals such as for and while) must be in braces below the conditional.
That is, instead of

if (test) { clause; }

use

if (test)
{

clause;
}
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The rational for this requirement is to make it obvious whether the clause is executed when stepping through the
code with the debugger. The one exception to this rule is when the clause contains a control-flow statement with
obvious side effects such as return or break. However, even if the clause contains a single statement and is on the
same line, the clause should be surrounded by braces.

• Use two space indentation.

• Tabs are not allowed. Only use spaces for indentation. No one can agree on what the size of a tab stop is, so it is
better to not use them at all.

• There should be no trailing whitespace in any line.

• Use only alphanumeric characters in names. Use capitalization to demarcate words within a name (camel case).
The exception is preprocessor macros and constant numbers that are, by convention, represented in all caps and a
single underscore to demarcate words.

• Namespace names are in all lowercase. They should be a single word that designates its meaning.

• All class, method, member variable, and functions should start with a capital letter. Local variables should start
in lower case and then use camel case. Exceptions can be made when such naming would conflict with previously
established conventions in other library. (For example, make ArrayHandle corresponds to make pair in the standard
template library.)

• All class, function, and member names that have multiple words in their descriptions should be listed from general
to specific. For example, if a class is a k-d tree that is used to locate points, the preferred name would be
LocatorPointKDTree. This naming convention makes it easier to find both known and unknown classes in alphabetic
lists.

• Always spell out words in names; do not use abbreviations except in cases where the shortened form is widely
understood and a name in its own right (e.g. OpenMP).

• Always use descriptive names in all identifiers, including local variable names. Particularly avoid meaningless names
of a few characters (e.g. x, foo, or tmp) or numbered names with no meaning to the number or order (e.g. value1,
value2,. . . ). Also avoid the meaningless for loop variable names i, j, k, etc. Instead, use a name that identifies
what type of index is being referenced such as pointIndex, vertexIndex, componentIndex, etc.

• Classes are documented with Doxygen-style comments before classes, methods, and functions.

• Exposed classes should not have public instance variables outside of exceptional situations. Access is given by
convention through methods with names starting with Set and Get or through overloaded operators.

• References to classes and functions should be fully qualified with the namespace. This makes it easier to establish
classes and functions from different packages and to find source and documentation for the referenced class. As an
exception, if one class references an internal or detail class clearly associated with it, the reference can be shortened
to internal:: or detail::.

• use this-> inside of methods when accessing class methods and instance variables to distinguish between local
variables and instance variables.

• Include statements should generally be in alphabetical order. They can be grouped by package and type.

• Namespaces should not be brought into global scope or the scope of any VTK-m package namespace with the “using”
keyword. It should also be avoided in class, method, and function scopes (fully qualified namespace references are
preferred).

• All code must be valid by the C++11 specification.

• Limit all lines to 80 characters whenever possible.

• New code must include regression tests that will run on the dashboards. Generally a new class will have an
associated “UnitTest” that will test the operation of the test directly. There may be other tests necessary that
exercise the operation with different components or on different architectures.
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• All code must compile and run without error or warning messages on the nightly dashboards, which should include

Windows, Mac, and Linux.

• Use vtkm::Id in lieu of int or long for data structure indices and vtkm::IdComponent for component indices of
vtkm::Vec and related classes (like vtkm::VecVariable and vtkm::Matrix).

• Whenever possible, use templates to resolve data types like float, double, or vectors to make code as flexible as
possible. If a specific data type is required, prefer the VTK-m–provided types like vtkm::Float32 and vtkm::-
Float64 over the standard C types like float or double. vtkm::FloatDefault can be used in cases where there
is no reasonable way to specify data precision (for example, when generating coordinates for uniform grids), but
should be use sparingly.

• All functions and methods defined within VTK-m should be declared with VTKM CONT, VTKM EXEC, or VTKM EXEC -
CONT.

We should note that although these conventions impose a strict statute on VTK-m coding, these rules (other
than those involving licensing and copyright) are not meant to be dogmatic. Examples can be found in the
existing code that break these conventions, particularly when the conventions stand in the way of readability
(which is the point in having them in the first place). For example, it is often the case that it is more readable
for a complicated type definition to stretch a few characters past 80 even if it pushes past the end of a display.
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π, 181, 182
1, 144, 146, 151, 154, 158, 161, 260
2, 144, 146, 151, 154, 158, 161, 260

device , 50
host , 50

Abs, 179
absolute value, 179
ACos, 179
ACosH, 179
Actor, 33, 41
actor, 33
algorithm, 80–82, 232–236
AllCellSetList, 134
Allocate, 73, 80
AllTypes, 143
ApplyPolicy, 220
arccosine, 179
arcsine, 179
arctangent, 179
arg namespace, 251–253, 255–257, 259
arity, 242
array handle, 69–76, 85–113

adapting, 108–113
allocate, 73
Cartesian product, 92–93
cast, 88–89
composite vector arrays, 93–94
constant, 87
counting, 87–88
derived, 101–108
discard, 89
dynamic, 115–120
execution environment, 74–76
extract component, 94–95
fancy, 86–108
group vector, 96–98
implicit, 98–99
index, 87
permutation, 89–90
populate, 74
portal, 71–73

rectilinear point coordinates, 92–93
storage, 85–113

default, 86, 113
subclassing, 99, 107, 112
swizzle, 95–96
transform, 99–101
uniform point coordinates, 91–92
zip, 91

array manager execution, 226–231
array portal, 71–73
array transfer, 104–107
ArrayHandle, xvi, xvii, 18, 33, 49, 69, 70, 73, 79, 85, 86,

107, 108, 112, 134, 173, 216, 218, 252–254
ArrayHandle.h, 49, 289
ArrayHandleCartesianProduct, 92, 134
ArrayHandleCast, 88
ArrayHandleCast.h, 88
ArrayHandleCompositeVector, 93, 108, 134
ArrayHandleCompositeVector.h, 94
ArrayHandleCompositeVectorType, 93
ArrayHandleConstant, 87
ArrayHandleConstant.h, 87
ArrayHandleCounting, 87, 98
ArrayHandleCounting.h, 88
ArrayHandleDiscard, 89
ArrayHandleExtractComponent, 94
ArrayHandleExtractComponent.h, 95
ArrayHandleGroupVec, 96, 199, 202, 208, 251, 255
ArrayHandleGroupVec.h, 96
ArrayHandleGroupVecVariable, 96, 212
ArrayHandleGroupVecVariable.h, 97
ArrayHandleImplicit, 98, 99
ArrayHandleImplicit.h, 99
ArrayHandleIndex, 87
ArrayHandlePermutation, 89, 199
ArrayHandlePermutation.h, 90
ArrayHandleSwizzle, 95
ArrayHandleSwizzle.h, 96
ArrayHandleTransform, 99, 100
ArrayHandleUniformPointCoordinates, 91, 134
ArrayHandleZip, 91
ArrayHandleZip.h, 91
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ArrayManagerExecution, xx, 226
ArrayManagerExecutionShareWithControl, 227
ArrayPortalFromIterators, 71, 229
ArrayPortalToIteratorBegin, 72
ArrayPortalToIteratorEnd, 72
ArrayPortalToIterators, 72
ArrayPortalToIterators.h, 72
ArrayTransfer, xviii, 104, 105
ASin, 179
ASinH, 179
aspect, 256–260

cell shape, 258
default, 256, 258, 260
from count, 258
from indices, 258
input index, 258
output index, 258
value count, 258
visit index, 258
work index, 258

AspectTagCellShape, 258
AspectTagDefault, 257, 258, 260
AspectTagFromCount, 257, 258
AspectTagFromIndices, 257, 258
AspectTagInputIndex, 258
AspectTagOutputIndex, 258
AspectTagValueCount, 258
AspectTagVisitIndex, 258
AspectTagWorkIndex, 258
assert, 64–66, 178

static, 65–66
Assert.h, 64
ATan, 179
ATan2, 179
ATanH, 179
atomic array, 168–169
AtomicArray, 146, 150, 154, 158, 168, 254
AtomicArrayInOut, xix, 146, 150, 154, 158, 168
average, 19
AverageByKey, 204
azimuth, 38

Base, 12
basic execution array interface, 229–231
basic execution portal factory, 228–229
Bounds, xvi, 35, 55, 131
BUILD SHARED LIBS, 9

Camera, xv, 34, 38, 39, 41
camera, 34–41

2D, 35–36
3D, 36–41
azimuth, 38
clipping range, 37
elevation, 38
far clip plane, 37

field of view, 37
focal point, 37
look at, 37
mouse, 39
near clip plane, 37
pan, 35–36, 40
pinhole, 36
position, 37
reset, 41
up, 37
view range, 35
view up, 37
zoom, 36, 40–41

Canvas, 27, 32
canvas, 27–33

EGL, 32
GLUT, 27–32
off screen, 32–33

saving, 32
OpenGL, 27–32
OSMesa, 32
ray tracing, 32

CanvasEGL, 32
CanvasGL, 27, 28
CanvasOSMesa, 32
CanvasRayTracer, 27, 32
Cartesian product array handle, 92–93
cast array handle, 88–89
Cbrt, 180
Ceil, 180
ceiling, 180
Cell, 169
cell, 187–196

derivative, 191–192
edge, 127, 192–194
face, 127, 192, 194–196
gradient, 191–192
interpolation, 191
parametric coordinates, 190–191
point, 127, 192
shape, 192
world coordinates, 190–191

cell average, 19
cell gradients, 21
cell set, 121, 126–130

dynamic, 129–130
explicit, 128–129
generate, 197–214
permutation, 129
shape, 127
single type, 128–129
structured, 127–128
whole, 169–172

cell shape, 127, 187–190
cell to point map worklet, 152–156
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cell to point worklet, 139
cell traits, 189–190
CELL SHAPE EMPTY, 187
CELL SHAPE HEXAHEDRON, 188
CELL SHAPE LINE, 188
CELL SHAPE POLYGON, 188
CELL SHAPE PYRAMID, 188
CELL SHAPE QUAD, 188
CELL SHAPE TETRA, 188
CELL SHAPE TRIANGLE, 188
CELL SHAPE VERTEX, 188
CELL SHAPE WEDGE, 188
CellAverage, 19
CellCount, 154
CellDerivative, 191
CellDerivative.h, 191
CellEdge.h, 192, 201
CellEdgeCanonicalId, 193, 201, 204, 205
CellEdgeLocalIndices, 192
CellEdgeNumberOfEdges, 192
CellFace.h, 194
CellFaceCanonicalId, 194
CellFaceLocalIndices, 194
CellFaceNumberOfFaces, 194
CellFaceNumberOfPoints, 194
CellIndices, 154
CellInterpolate, 191
CellInterpolate.h, 191
CellSet, 127, 129, 173, 197, 252, 254
CellSetExplicit, 128, 134, 169, 211

generate, 211–214
CellSetIn, 144, 149, 152, 157
CellSetListTag.h, 130
CellSetListTagStructured, 134
CellSetListTagUnstructured, 134
CellSetPermutation, 129
CellSetSingleType, 129, 134, 197, 198, 202, 208

generate, 197–211
CellSetStructured, 127, 134, 169
CellShape, 151, 158
CellShape.h, 187
CellShapeIdToTag, 187
CellShapeTagEmpty, 187
CellShapeTagGeneric, 170, 187
CellShapeTagHexahedron, 188
CellShapeTagLine, 188
CellShapeTagPolygon, 188
CellShapeTagPyramid, 188
CellShapeTagQuad, 188
CellShapeTagTetra, 188
CellShapeTagTriangle, 188
CellShapeTagVertex, 188
CellShapeTagWedge, 188
CellTopologicalDimensionsTag, 189
CellTraits, 189

CellTraits.h, 189
CellTraitsTagSizeFixed, 189
CellTraitsTagSizeVariable, 189
clean grid, 22–23
CleanGrid, 22, 23
clipping range, 37
CMake, 8–13, 66

configuration, 8–10
BUILD SHARED LIBS, 9
CMAKE BUILD TYPE, 9, 11
CMAKE INSTALL PREFIX, 9
VTKm BUILD EXAMPLES, 9
VTKm DIR, 11
VTKm ENABLE BENCHMARKS, 9
VTKm ENABLE CUDA, 10
VTKm ENABLE RENDERING, 10
VTKm ENABLE TBB, 10
VTKm ENABLE TESTING, 10
VTKM USE 64BIT IDS, 51
VTKm USE 64BIT IDS, 10
VTKM USE DOUBLE PRECISION, 51
VTKm USE DOUBLE PRECISION, 10
VTKm VERSION, 66
VTKm VERSION FULL, 66
VTKm VERSION MAJOR, 66
VTKm VERSION MINOR, 66
VTKm VERSION PATCH, 66

version, 66
VTK-m package, 11–13

Base, 12
components, 12
CUDA, 12
EGL, 12
GLFW, 12
GLUT, 12
Interop, 12
OpenGL, 12
OSMesa, 12
Rendering, 12
Serial, 12
TBB, 12
variables, 13
version, 66
VTKm COMPILE OPTIONS, 13
VTKm FOUND, 13
VTKm INCLUDE DIRS, 13
VTKm LIBRARIES, 13
VTKm <component name> FOUND, 13

CMAKE BUILD TYPE, 9, 11
CMAKE INSTALL PREFIX, 9
Color, 34
color, 34
color tables, 41–43

default, 42
ColorTable, 41
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column, 183
CommonTypes, 143
ComponentType, 58
composite vector array handle, 93–94
ConfigureFor32.h, 51
ConfigureFor64.h, 51
constant array handle, 87
constant modifier, 50
cont namespace, 48, 49
contour, 25
control environment, 48
control signature, x, xviii, xxi, 141–146, 149, 151, 152, 154,

157, 158, 160, 161, 165, 168, 169, 172, 241, 251,
259, 260, 269–271, 275

atomic array, 168–169
execution object, 172–174
tags, 259–260
type list tags, 142–143
whole array, 165–167
whole cell set, 169–172

ControlSignatureTagBase, 259
ConvertNumComponentsToOffsets, 97, 213
coordinate system, 121, 131
CoordinateStorageList, 134
CoordinateSystem, 131
CoordinateTypeList, 134
copy, 80
CopyInto, 58
CopySign, 180
Cos, 180
CosH, 180
cosine, 180
counting array handle, 87–88
Cross, 182
cross product, 182
cube root, 180
CUDA, 10, 12, 50, 77, 79
cuda namespace, 49

data set, 121–131
building, 121–126
cell set, see cell set
clean, 22–23
coordinate system, see coordinate system
field, see field
generate, 197–214

data set filter, 21–23
data set with filter, 24–26
DataSet, 15–18, 20, 22, 24, 33, 121, 122, 129, 130, 140, 197,

215, 218
DataSetBuilderExplicit, 123
DataSetBuilderExplicitIterative, 124
DataSetBuilderRectilinear, 122
DataSetBuilderUniform, 122
DataSetFieldAdd, 125
Debug, 9

DefaultPolicy, 133
DefaultPolicy.h, 133
derivative, 191–192
derived storage, 101–108
detail namespace, 49
determinant, 183
device adapter, 77–82, 225–237

algorithm, 80–82, 232–236
array manager, 226–231
basic execution array interface, 229–231
basic execution portal, 228–229
implementing, 225–237
tag, 225–226
timer, 236–237
virtual object transfer, 231–232

device adapter tag, 77–80
provided, 78–79

DeviceAdapter.h, 77
DeviceAdapterAlgorithm, xvii, 75, 80, 232
DeviceAdapterAlgorithmGeneral, 232
DeviceAdapterCuda.h, 79
DeviceAdapterId, 229
DeviceAdapterList, 134
DeviceAdapterSerial.h, 78
DeviceAdapterTag.h, 226
DeviceAdapterTagCuda, 79, 134
DeviceAdapterTagSerial, 78, 134
DeviceAdapterTagTBB, 79, 134
DeviceAdapterTBB.h, 79
DeviceAdapterTimerImplementation, 236
DimensionalityTag, 56
discard array handle, 89
dispatcher, 140

creating new, 273–277
invocation object, 274–275

DispatcherBase, 273
DispatcherMapField, 140, 145
DispatcherMapTopology, 140, 149, 152
DispatcherReduceByKey, 140, 160
dot, 52
dragon fractal, 280–282
dynamic array handle, 115–120

cast, 117–120
construct, 115
new instance, 116
query, 115, 116

dynamic cell set, 129–130
DynamicArrayHandle, 62, 63, 115, 248
DynamicArrayHandleBase, 119
DynamicCellSet, 129, 130
DynamicPointCoordinates, 248
DynamicTransform, 248

edge, 127, 192–194
EGL, 12, 32
elevation, 20, 38

296 Index



DRAFT

Index

environment, 47, 48
control, 48
execution, 47, 48

Epsilon, 180
Error, 64
ErrorBadAllocation, 64
ErrorBadType, 64
ErrorBadValue, 64
ErrorControlBadValue, 105, 106, 117
ErrorControlInternal, 106
ErrorExecution, 64, 81, 177, 233
ErrorInternal, 64
ErrorIO, 64
ErrorMessageBuffer, 233
errors, 64–66, 177–178

assert, 64–66, 178
control environment, 64
execution environment, 64, 81, 177–178
worklet, 177–178

exec namespace, 48, 49, 264
ExecObject, xix, 146, 148, 150, 154, 158, 172, 173
execution array interface, 229–231
execution array manager, 226–231
execution environment, 47, 48
execution object, 172–174
execution portal factory, 228–229
execution signature, x, xviii, xxi, 141, 142, 144–146, 151,

154, 158, 161, 175, 251, 259–261, 269, 270, 275
tags, 260–261

ExecutionArrayInterfaceBasic, xx, 226, 229
ExecutionArrayInterfaceBasicBase, 229
ExecutionArrayInterfaceBasicShareWithControl, 230
ExecutionObjectBase, 146, 150, 154, 158, 172, 252
ExecutionPortalFactoryBasic, xx, 226, 228
ExecutionPortalFactoryBasicShareWithControl, 229
ExecutionSignatureTagBase, 260
ExecutionTypes, 73
Exp, 180
Exp10, 180
Exp2, 180
explicit cell set, 128–129

single type, 128–129
explicit mesh, 123
ExplicitCellSet, 128
ExpM1, 180
exponential, 180
external faces, 23
ExternalFaces, 23
extract component array handle, 94–95

face, 127, 192, 194–196
external, 23

false type, 66
fancy array handle, 86–108
far clip plane, 37
Fetch, 256–260, 267, 269

fetch, 256–259
aspect, see aspect
cell set, 257
direct input array, 257
direct output array, 257
execution object, 257
topology map array input, 257
whole cell set, 257

FetchTagArrayDirectIn, 257
FetchTagArrayDirectOut, 257
FetchTagArrayTopologyMapIn, 257
FetchTagCellSetIn, 257
FetchTagExecObject, 257
FetchTagWholeCellSetIn, 257
Field, 18, 22, 24, 130
field, 18, 121, 130–131
field filter, 18–21, 215–218
field filter using cells, 218–220
field map worklet, 139, 145–149
field of view, 37
FieldCommon, 143
FieldIn, 144, 145, 271
FieldInCell, 149, 152, 153
FieldInFrom, 157
FieldInOut, 145, 146, 150, 153, 158
FieldInOutCell, 150
FieldInOutPoint, 153
FieldInPoint, 149, 153
FieldInTo, 157
FieldMetadata, 216, 218
FieldOut, 145, 150, 153, 157, 271
FieldOutCell, 150
FieldOutPoint, 153
FieldPointIn, 142, 191
FieldStorageList, 134
FieldTypeList, 133
file I/O, 15–16

read, 15–16
write, 16

filter, 17–26, 47, 215–220
contour, 25
data set, 21–23
data set with field, 24–26
field, 18–21, 215–218

using cells, 218–220
isosurface, 25
Marching Cubes, 25
policies, 133–135

custom, 135
default, 133

results, 17–18
threshold, 26
traits, 216–217, 219

filter namespace, 17, 49, 215
FilterCell, 218
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FilterDataSet, 220
FilterDataSetWithField, 220
FilterField, 215, 217, 218
FilterTraits, 216, 219
FilterTraits.h, 217
Float32, xvi, 50, 56, 61, 134, 143, 168, 181, 292
Float64, 50, 54, 55, 61, 134, 143, 168, 181, 292
FloatDefault, 51, 190, 292
Floor, 180
floor, 180
FMod, 180
focal point, 37
FromCount, 159
FromIndices, 159
function interface, 241–249

append parameter, 245
dynamic transform, 247–249
for each, 249
invoke, 243–244
replace parameter, 245–246
static transform, 246–247

function modifier, 49, 50, 145, 172, 173, 292
function signature, 241
functional array, 98–99
FunctionInterface, xx, 241, 274
FunctionInterfaceReturnContainer, 244
functor, 47, 98
FunctorBase, 81, 177

GetComponent, 58
GetNumberOfComponents, 58
GetPortalConstControl, 73
GetPortalControl, 73, 74
git, 7–8
GLFW, 12
GLUT, 12, 27–32

callbacks, 29
gradient, 191–192
Gradients, 21
gradients, 21
group vector array handle, 96–98

h, 93
Harter-Heighway dragon, 280
Hash, 204
Hash.h, 204
HashType, 204
HasMultipleComponents, 58
Heighway dragon, 280
hexahedron, 188
Hilbert curve, 282–285
histogram, 161, 168
hyperbolic arccossine, 179
hyperbolic arcsine, 179
hyperbolic cosine, 180
hyperbolic sine, 182

hyperbolic tangent, 179, 182

I/O, 15–16
Id, 51, 58, 61, 80–82, 87, 97, 98, 106, 143, 146, 151, 154,

159, 161, 170, 198, 201, 202, 207, 208, 292
Id2, 51, 61, 143, 193, 201, 202, 205
Id2Type, 143
Id3, xvi, 23, 51, 58, 61, 81, 91, 143, 194
Id3Type, 143
IdComponent, 51, 146, 151, 154, 159, 161, 170, 175, 187,

189, 192, 194, 246, 260, 292
identity matrix, 183
IdType, 143
image, 121
implicit array handle, 98–99
implicit storage, 98–99
Index, 143
index array handle, 87
IndexTag, 242, 246, 247
Infinity, 180
input domain, xix, 141, 144–146, 149, 152, 157, 160
input index, 175
InputIndex, 146, 151, 154, 159, 161, 175
Int16, 50
Int32, 50, 134
Int64, 50, 134
Int8, 50
Intel Threading Building Blocks, 78, 79
internal namespace, 49, 241
Interop, 12
interoperability, 49
interpolation, 191
inverse cosine, 179
inverse hyperbolic cosine, 179
inverse hyperbolic sine, 179
inverse hyperbolic tangent, 179
inverse matrix, 184
inverse sine, 179
inverse tangent, 179
Invocation, 274, 275
invocation object, 274–275
invoke, 140
io namespace, 15, 49, 121
is same, 65
IsFinite, 180
IsInf, 180
IsNan, 180
IsNegative, 180
isosurface, 25
IsSizeStatic, 58

Jurassic Park dragon, 280

kernel, 47
Keys, xix, 160, 162, 203, 204, 252, 254
KeysIn, 160
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Koch Snowflake, 263

Lerp, 182
less, 59
level of detail, 23
Lindenmayer system, 264
line, 188
linear interpolation, 182
linear system, 184
ListForEach, 63
lists, 60–63

storage, 118
types, 61–62

ListTag.h, 60, 63
ListTagBase, 61
ListTagEmpty, 60
ListTagJoin, 61
LOD, 23
Log, 181
Log10, 181
Log1P, 181
Log2, 181
logarithm, 181
look at, 37
lower bounds, 80

Magnitude, 182
MagnitudeSquared, 182
make ArrayHandle, 70
make ArrayHandleCartesianProduct, 93
make ArrayHandleCast, 88
make ArrayHandleCompositeVector, 94
make ArrayHandleConstant, 87
make ArrayHandleCounting, 88
make ArrayHandleExtractComponent, 95
make ArrayHandleGroupVec, 96
make ArrayHandleGroupVecVariable, 97
make ArrayHandleImplicit, 99
make ArrayHandlePermutation, 90
make ArrayHandleSwizzle, 96
make ArrayHandleTransform, 100
make ArrayHandleZip, 91
make FunctionInterface, xx, 241
make Pair, 54
make Vec, 51
make VecC, 52
map, 139
map cell to point, 152–156
map field, 145–149
map point to cell, 149–152
map topology, 156–159
Mapper, 33
mapper, 33
MapperGL, 33
MapperRayTracer, 33
MapperVolume, 33

Marching Cubes, 25
MarchingCubes, 25
math, 179–185
Math.h, 179
Matrix, 183, 184, 292
matrix, 183–184
Matrix.h, 183
MatrixDeterminant, 183
MatrixGetColumn, 183
MatrixGetRow, 183
MatrixIdentity, 183
MatrixInverse, 184
MatrixMultiply, 184
MatrixRow, 183
MatrixSetColumn, 184
MatrixSetRow, 184
MatrixTranspose, 184
Max, 181
maximum, 181
metaprogramming, 60
method modifier, 49, 50, 145, 172, 173, 292
Min, 181
minimum, 181
ModF, 181
modifier

constant, 50
control, 49, 50, 145, 173, 292
execution, 49, 50, 145, 172, 173, 292

mouse rotation, 39

namespace, 48
detail, 49
internal, 49
vtkm, 48, 49, 179, 187, 241
vtkm::cont, 48, 49
vtkm::cont::arg, 251–253, 255
vtkm::cont::cuda, 49
vtkm::cont::tbb, 49
vtkm::exec, 48, 49, 264
vtkm::exec::arg, 256, 257, 259
vtkm::filter, 17, 49, 215
vtkm::internal, 241
vtkm::io, 15, 49, 121
vtkm::io::reader, 15
vtkm::io::writer, 16
vtkm::opengl, 49
vtkm::rendering, 27, 49
vtkm::worklet, 49, 271, 273

Nan, 181
natural logarithm, 181
NDEBUG, 65
near clip plane, 37
negative, 180
NegativeInfinity, 181
Newton’s method, 184–185
NewtonsMethod, 184
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NewtonsMethod.h, 184
Normal, 183
Normalize, 183
normals, 20
not a number, 181
NUM COMPONENTS, 51, 58
NumericTag, 56

off screen, 32–33
saving, 32

OpenGL, 12, 27–32, 49
opengl namespace, 49
OSMesa, 12, 32
output index, 175
OutputIndex, 146, 151, 154, 159, 161, 175

packages, 48–49
Pair, 54, 91, 93
parametric coordinates, 190–191
ParametricCoordinates.h, 190
ParametricCoordinatesCenter, 190
ParametricCoordinatesPoint, 190
ParametricCoordinatesToWorldCoordinates, 191
permutation cell set, 129
permuted array handle, 89–90
pervasive parallelism, 47
Pi, 181
Pi 2, 181
Pi 3, 181
Pi 4, 181
pinhole camera, 36
PNM, 32
Point, 169
point, 127, 192
point average, 19
point elevation, 20
point gradients, 21
point to cell map worklet, 149–152
point to cell worklet, 139
PointAverage, 19
PointCount, 151
PointElevation, 20, 140
PointIndices, 151, 193, 194
policies, 133–135

custom, 135
default, 133

policy, 220
PolicyBase, 135
polygon, 188
portable anymap format, 32
portable pixel map, 32
PortalConstControl, 73
PortalControl, 73
Pow, 181
power, 181
PPM, 32

PrepareForInPlace, 74
PrepareForInput, 74
PrepareForOutput, 74, 79
pseudocolor, 41
pyramid, 188

quadrilateral, 188

RaiseError, 81
Range, xvi, 35, 54, 55, 131
ray tracing

canvas, 32
RCbrt, 181
read file, 15–16
reader namespace, 15
reciprocal cube root, 181
reciprocal square root, 182
rectilinear grid, 122
rectilinear point coordinates array handle, 92–93
reduce, 80
reduce by key, 80
reduce by key worklet, 139, 159–164, 200
ReduceByKeyLookup, 254
ReducedValuesIn, 160
ReducedValuesOut, 160
regular grid, 121
Release, 9
Remainder, 181
remainder, 180, 181
RemainderQuotient, 182
Rendering, 12
rendering, 27–41

actor, 33
camera, 34–41

2D, 35–36
3D, 36–41
azimuth, 38
clipping range, 37
elevation, 38
far clip plane, 37
field of view, 37
focal point, 37
look at, 37
mouse, 39
near clip plane, 37
pan, 35–36, 40
position, 37
reset, 41
up, 37
view range, 35
view up, 37
zoom, 36, 40–41

canvas, 27–33
color tables, 41–43
EGL, 32
GLUT, 27–32
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mapper, 33
off screen, 32–33
OpenGL, 27–32
OSMesa, 32
ray tracing, 32
scene, 33
view, 34

rendering namespace, 27, 49
Result, 17, 18, 22, 24, 217, 219
results, 17–18
RMagnitude, 183
Round, 182
round down, see floor
round up, see ceiling
row, 183
RSqrt, 182
Run method, 148

Scalar, 143
ScalarAll, 143
scan

exclusive, 81
inclusive, 80

scatter, 174–177
scatter type, 175
ScatterCounting, 174, 176, 198, 200, 204
ScatterIdentity, 174
ScatterUniform, 174, 175
Scene, 33, 41
scene, 33
schedule, 81
Serial, 12
serial, 78
SetComponent, 58
shape, 127, 187–190, 192

edge, 127, 192–194
face, 127, 192, 194–196
point, 127, 192

signature, 241
control, x, xviii, xxi, 141–146, 149, 151, 152, 154, 157,

158, 160, 161, 165, 168, 169, 172, 241, 251, 259,
260, 269–271, 275

tags, 259–260
execution, x, xviii, xxi, 141, 142, 144–146, 151, 154,

158, 161, 175, 251, 259–261, 269, 270, 275
tags, 260–261

signature tags, 142
1, 144, 146, 151, 154, 158, 161, 260
2, 144, 146, 151, 154, 158, 161, 260

AllTypes, 143
AtomicArrayInOut, xix, 146, 150, 154, 158, 168
Cell, 169
CellCount, 154
CellIndices, 154
CellSetIn, 144, 149, 152, 157
CellShape, 151, 158

CommonTypes, 143
ExecObject, xix, 146, 148, 150, 154, 158, 172, 173
FieldCommon, 143
FieldIn, 144, 145, 271
FieldInCell, 149, 152, 153
FieldInFrom, 157
FieldInOut, 145, 146, 150, 153, 158
FieldInOutCell, 150
FieldInOutPoint, 153
FieldInPoint, 149, 153
FieldInTo, 157
FieldOut, 145, 150, 153, 157, 271
FieldOutCell, 150
FieldOutPoint, 153
FieldPointIn, 142, 191
FromCount, 159
FromIndices, 159
Id2Type, 143
Id3Type, 143
IdType, 143
Index, 143
InputIndex, 146, 151, 154, 159, 161, 175
KeysIn, 160
OutputIndex, 146, 151, 154, 159, 161, 175
Point, 169
PointCount, 151
PointIndices, 151, 193, 194
ReducedValuesIn, 160
ReducedValuesOut, 160
Scalar, 143
ScalarAll, 143
ThreadIndices, 147, 151, 154, 159, 161
ValueCount, 161, 162
ValuesIn, 160, 161
ValuesInOut, 160
ValuesOut, 160
Vec2, 143
Vec3, 143
Vec4, 143
VecAll, 143
VecCommon, 143
VisitIndex, 146, 151, 154, 159, 161, 175, 198
WholeArrayIn, xix, 146, 150, 153, 158, 165
WholeArrayInOut, 146, 150, 153, 154, 158, 165
WholeArrayOut, 146, 148, 150, 153, 158, 165
WholeCellSetIn, xix, 169, 170, 201, 207
WorkIndex, 144, 146, 148, 151, 154, 159, 161, 175, 258

SignBit, 182
Sin, 182
sine, 182
single type cell set, 128–129
SinH, 182
SolveLinearSystem, 184
sort, 81

by key, 81
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Sqrt, 182
square root, 182
static assert, 65–66
StaticAssert.h, 65
Storage, xviii, 103, 105, 110, 226
storage, 85–113

adapting, 108–113
default, 86, 113
derived, 101–108
implicit, 98–99

storage lists, 118
StorageBasic.h, 86
StorageBasicBase, 229, 230
StorageListTag.h, 118
StorageListTagBasic, 118
StorageTagBasic, 86, 134
stream compact, 81
structured cell set, 127–128
StructuredCellSetList, 134
surface normals, 20
surface simplification, 23
SurfaceNormals, 20
swizzle array handle, 95–96
synchronize, 81

tag, 56
cell shape, 187–188
device adapter, 77–80

provided, 78–79
dimensionality, 56
lists, 60–63
multiple components, 58
numeric, 56
shape, 187–188
single component, 58
static vector size, 58
storage lists, 118
topology element, 157
type lists, 61–62
type traits, 56–58
variable vector size, 58
vector traits, 58–59

Tan, 182
tangent, 182
TanH, 182
TBB, 12, 78, 79
tbb namespace, 49
template metaprogramming, 60
tetrahedron, 188
thread indices, 256, 267–269
ThreadIndices, 147, 151, 154, 159, 161
ThreadIndicesBasic, 267, 268
ThreadIndicesTopologyMap, 267
Threshold, 26
threshold, 26
Timer, xvii, 83, 236

timer, 83–84, 236–237
topology element tag, 157
topology map worklet, 139, 156–159
TopologyElementTag.h, 157
TopologyElementTagCell, 157, 169
TopologyElementTagEdge, 157
TopologyElementTagFace, 157
TopologyElementTagPoint, 157, 169
traits, 56–60

filter, 216–217, 219
type, 56–58
vector, 58–60

transfer virtual object, 231–232
transformed array, 99–101
Transport, xxi, 253–255
transport, 253–256

atomic array, 254
cell set, 254
execution object, 253
input array, 253
input array keyed values, 254
input/output array, 253
input/output array keyed values, 254
keys, 254
output array, 253
output array keyed values, 254
topology mapped field, 254
whole array input, 254
whole array input/output, 254
whole array output, 254

TransportTagArrayIn, 253
TransportTagArrayInOut, 253
TransportTagArrayOut, 253
TransportTagAtomicArray, 254
TransportTagCellSetIn, 254
TransportTagExecObject, 253
TransportTagKeyedValuesIn, 254
TransportTagKeyedValuesInOut, 254
TransportTagKeyedValuesOut, 254
TransportTagKeysIn, 254
TransportTagTopologyFieldIn, 254
TransportTagWholeArrayIn, 254
TransportTagWholeArrayInOut, 254
TransportTagWholeArrayOut, 254
transpose matrix, 184
triangle, 188
TriangleNormal, 183
true type, 66
TwoPi, 182
type check, 251–253

array, 252
atomic array, 252
cell set, 252
execution object, 251
keys, 252
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type list tags, 142–143
type lists, 61–62
type traits, 56–58
type traits, 66
TypeCheck, xxi, 251, 252
TypeCheckTagArray, 252
TypeCheckTagAtomicArray, 252
TypeCheckTagCellSet, 252
TypeCheckTagExecObject, 251
TypeCheckTagKeys, 252
TypelessExecutionArray, 230
TypeListTag.h, 61, 62, 118
TypeListTagAll, 62
TypeListTagCommon, 62, 143
TypeListTagField, 62, 143
TypeListTagFieldScalar, 61, 62, 143
TypeListTagFieldVec2, 61, 62, 143
TypeListTagFieldVec3, 62, 143
TypeListTagFieldVec4, 62, 143
TypeListTagId, 61, 143
TypeListTagId2, 61, 143
TypeListTagId3, 61, 143
TypeListTagIndex, 61, 143
TypeListTagScalarAll, 62, 143
TypeListTagVecAll, 62, 143
TypeListTagVecCommon, 62, 143
Types.h, 49, 50, 52, 62, 290
TypeTraits, xvi, 56, 57
TypeTraitsIntegerTag, 56
TypeTraitsRealTag, 56
TypeTraitsScalarTag, 56
TypeTraitsVectorTag, 56

UInt16, 50
UInt32, 50
UInt64, 50
UInt8, 50
uniform grid, 121
uniform point coordinates array handle, 91–92
unique, 81
unstructured grid, 123
UnstructuredCellSetList, 134
upper bounds, 81

ValueCount, 161, 162
ValuesIn, 160, 161
ValuesInOut, 160
ValuesOut, 160
Vec, xvi, xvii, 51, 52, 55, 58, 62, 88, 93–98, 115, 134, 143,

182–184, 190–192, 198, 201, 207, 251, 252, 290,
292

Vec-like, 52–54, 58
Vec2, 143
Vec3, 143
Vec4, 143
VecAll, 143

VecC, 52, 53
VecCConst, xvi, 52, 53, 194
VecCommon, 143
VecFromPortal, 54
VecFromPortalPermute, 54
VecRectilinearPointCoordinates, 54
vector analysis, 182–183
vector traits, 58–60
VectorAnalysis.h, 182
VecTraits, xvi, 58
VecTraitsTagMultipleComponents, 58
VecTraitsTagSingleComponent, 58
VecTraitsTagSizeStatic, 58
VecTraitsTagSizeVariable, 58
VecVariable, xvi, 53, 292
version, 66–67

CMake, 66
macro, 66–67

Version.h, 66, 67
vertex, 188
vertex clustering, 23
VertexClustering, 23
View, 34, 41
view, 34
view up, 37
View2D, 34
View3D, 34
virtual object transfer, 231–232
VirtualObjectTransfer, xx, 231
VirtualObjectTransferShareWithControl, 232
visit index, 175
VisitIndex, 146, 151, 154, 159, 161, 175, 198
VTK-m CMake package, 11–13

components, 12
Base, 12
CUDA, 12
EGL, 12
GLFW, 12
GLUT, 12
Interop, 12
OpenGL, 12
OSMesa, 12
Rendering, 12
Serial, 12
TBB, 12

variables, 13
VTKm COMPILE OPTIONS, 13
VTKm FOUND, 13
VTKm INCLUDE DIRS, 13
VTKm LIBRARIES, 13
VTKm <component name> FOUND, 13

version, 66
VTKDataSetReader, 15
VTKDataSetWriter, 16
vtkm namespace, 48, 49, 179, 187, 241
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vtkm/cont/ArrayHandleCartesianProduct.h/h, 93
vtkm/cont/ArrayHandleCompositeVector.h/h, 93
vtkm/cont/cuda/DeviceAdapterCuda.h, 79
vtkm/cont/internal/DeviceAdapterTag.h, 226
vtkm/cont/tbb/DeviceAdapterTBB.h, 79
vtkm/cont/ArrayHandle.h, 49, 289
vtkm/cont/ArrayHandleCast.h, 88
vtkm/cont/ArrayHandleCompositeVector.h, 94
vtkm/cont/ArrayHandleConstant.h, 87
vtkm/cont/ArrayHandleCounting.h, 88
vtkm/cont/ArrayHandleExtractComponent.h, 95
vtkm/cont/ArrayHandleGroupVec.h, 96
vtkm/cont/ArrayHandleGroupVecVariable.h, 97
vtkm/cont/ArrayHandleImplicit.h, 99
vtkm/cont/ArrayHandlePermutation.h, 90
vtkm/cont/ArrayHandleSwizzle.h, 96
vtkm/cont/ArrayHandleZip.h, 91
vtkm/cont/ArrayPortalToIterators.h, 72
vtkm/cont/CellSetListTag.h, 130
vtkm/cont/DeviceAdapter.h, 77
vtkm/cont/DeviceAdapterSerial.h, 78
vtkm/cont/StorageBasic.h, 86
vtkm/cont/StorageListTag.h, 118
vtkm/exec/CellDerivative.h, 191
vtkm/exec/CellEdge.h, 192, 201
vtkm/exec/CellFace.h, 194
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