
DRAFT
The VTK-m
User’s Guide
VTK-m version 1.4.0-158-g10a64a4c

Kenneth Moreland

With contributions from:
Nickolas Davis, Mark Kim, James Kress,
Matthew Letter, La-ti Lo, Robert Maynard,
Sujin Philip, David Pugmire, Allison Vacanti,
Abhishek Yenpure, and the VTK-m community

August 7, 2019

http://m.vtk.org
http://kitware.com

http://m.vtk.org
http://kitware.com

DRAFT
Published by Kitware Inc. c©2019

All product names mentioned herein are the trademarks of their respective owners.
This document is available under a Creative Commons Attribution 4.0 International license available at

http://creativecommons.org/licenses/by/4.0/.

This project has been funded in whole or in part with Federal funds from the Department of Energy, including
from Sandia National Laboratories, Los Alamos National Laboratory, Advanced Simulation and Computing,

and Oak Ridge National Laboratory.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
SAND 2019-8008 B

Printed and produced in the United States of America.
[ISBN number 978-1-930934-33-7

] [UPDATE ISBN NUMBERS HERE FOR EACH EDITION]

http://creativecommons.org/licenses/by/4.0/

DRAFTCONTRIBUTORS

This book includes contributions from the VTK-m community including the VTK-m development team and the
user community. We would like to thank the following people for their significant contributions to this text:

Nickolas Davis and Matthew Letter for their help keeping the user’s guide up to date with the VTK-m
source code.

Sujin Philip, Robert Maynard, James Kress, Abhishek Yenpure, and Mark Kim for their descriptions
of numerous filters.

Allison Vacanti for her documentation of several VTK-m features in Sections 7.4.10 and 7.4.11 and select
filters.

David Pugmire for his documentation of multi-block data sets (Section 11.5) and select filters.

Abhishek Yenpure and La-ti Lo for their documentation of locator structures (Chapter 15).

ABOUT THE COVER

The cover image is a visualization of the temperature field computed by the Nek5000 thermal hydraulics simu-
lator. In the simulation twin inlets pump air into a box with a temperature difference between the 2 inlets. The
visualization is provided by Matthew Larsen at Lawrence Livermore National Laboratory.

The interior cover image represents seismic wave propagation through the Earth. The visualization is provided
by Matthew Larsen at Lawrence Livermore National Laboratory.

The cover design was done by Steve Jordan.

Join the VTK-m Community at http://m.vtk.org

iii

http://m.vtk.org

DRAFT

DRAFT
CONTENTS

I Getting Started 1

1 Introduction 3

1.1 How to Use This Guide . 3

1.2 Conventions Used in This Guide . 4

2 Build and Install VTK-m 7

2.1 Getting VTK-m . 7

2.2 Configure VTK-m . 8

2.3 Building VTK-m . 10

2.4 Linking to VTK-m . 11

3 File I/O 15

3.1 Readers . 15

3.1.1 Legacy VTK File Reader . 15

3.2 Writers . 16

3.2.1 Legacy VTK File Writer . 16

4 Running Filters 17

4.1 Field Filters . 17

4.1.1 Cell Average . 18

4.1.2 Coordinate System Transforms . 19

Cylindrical Coordinate System Transform . 19

Spherical Coordinate System Transform . 19

4.1.3 Cross Product . 20

4.1.4 Dot Product . 21

4.1.5 Connected Components . 21

Cell Connectivity . 21

DRAFT

CONTENTS

Image Field . 22

4.1.6 Field to Colors . 23

4.1.7 Gradients . 24

4.1.8 Histogram . 25

4.1.9 Point Average . 26

4.1.10 Point Elevation . 27

4.1.11 Point Transform . 27

4.1.12 Surface Normals . 28

4.1.13 Vector Magnitude . 29

4.1.14 Warp Scalar . 30

4.1.15 Warp Vector . 31

4.1.16 ZFP Compression . 31

4.2 Data Set Filters . 32

4.2.1 Clean Grid . 33

4.2.2 Clip with Implicit Function . 34

4.2.3 External Faces . 35

4.2.4 Ghost Cell Classification . 36

4.2.5 Vertex Clustering . 36

4.3 Data Set with Field Filters . 37

4.3.1 Clip with Field . 37

4.3.2 Ghost Cell Removal . 38

4.3.3 Marching Cubes . 39

4.3.4 Threshold . 40

4.3.5 Streamlines . 41

4.3.6 Pathlines . 41

4.4 Advanced Field Management . 42

4.4.1 Input Fields . 42

4.4.2 Passing Fields from Input to Output . 43

5 Rendering 45

5.1 Scenes and Actors . 45

5.2 Canvas . 46

5.3 Mappers . 46

5.4 Views . 47

5.5 Changing Rendering Modes . 48

5.6 Manipulating the Camera . 49

5.6.1 2D Camera Mode . 49

vi CONTENTS

DRAFT

CONTENTS

View Range . 49

Pan . 50

Zoom . 50

5.6.2 3D Camera Mode . 50

Position and Orientation . 51

Movement . 52

Pan . 53

Zoom . 53

Reset . 53

5.7 Interactive Rendering . 54

5.7.1 Rendering Into a GUI . 54

5.7.2 Camera Movement . 55

Rotate . 55

Pan . 56

Zoom . 57

5.8 Color Tables . 57

II Using VTK-m 59

6 Basic Provisions 61

6.1 General Approach . 61

6.2 Package Structure . 62

6.3 Function and Method Environment Modifiers . 63

6.4 Initialization . 64

6.5 Core Data Types . 66

6.5.1 Single Number Types . 66

6.5.2 Vector Types . 66

6.5.3 Pair . 69

6.5.4 Range . 69

6.5.5 Bounds . 70

6.6 Traits . 71

6.6.1 Type Traits . 71

6.6.2 Vector Traits . 73

6.7 List Tags . 75

6.7.1 Building List Tags . 76

6.7.2 Type Lists . 77

6.7.3 Operating on Lists . 78

CONTENTS vii

DRAFT

CONTENTS

6.8 Error Handling . 79

6.9 VTK-m Version . 81

6.10 Logging . 82

6.10.1 Initializing Logging . 82

6.10.2 Logging Levels . 83

6.10.3 Log Entries . 84

Basic Log Entries . 85

Conditional Log Entries . 85

Scoped Log Entries . 85

Error Context . 86

6.10.4 Helper Functions . 86

7 Array Handles 89

7.1 Creating Array Handles . 90

7.2 Array Portals . 92

7.3 Allocating and Populating Array Handles . 94

7.4 Fancy Arrays . 95

7.4.1 Constant Arrays . 95

7.4.2 ArrayHandleView . 96

7.4.3 Counting Arrays . 96

7.4.4 Cast Arrays . 97

7.4.5 Discard Arrays . 98

7.4.6 Permuted Arrays . 98

7.4.7 Zipped Arrays . 100

7.4.8 Coordinate System Arrays . 100

7.4.9 Composite Vector Arrays . 102

7.4.10 Extract Component Arrays . 103

7.4.11 Swizzle Arrays . 104

7.4.12 Grouped Vector Arrays . 104

7.5 Virtual Arrays . 106

7.6 Deep Array Copies . 109

7.7 Compute Array Range . 109

7.8 Interface to Execution Environment . 110

8 Device Adapters 113

8.1 Device Adapter Tag . 113

8.2 Device Adapter Traits . 115

8.3 Runtime Device Tracker . 117

viii CONTENTS

DRAFT

CONTENTS

8.4 Predicates and Operators . 119

8.4.1 Unary Predicates . 119

8.4.2 Binary Predicates . 119

8.4.3 Binary Operators . 120

8.4.4 Creating Custom Comparators . 121

8.5 Device Adapter Algorithms . 121

8.5.1 Copy . 122

8.5.2 CopyIf . 122

8.5.3 CopySubRange . 123

8.5.4 LowerBounds . 123

8.5.5 Reduce . 124

8.5.6 ReduceByKey . 124

8.5.7 ScanExclusive . 125

8.5.8 ScanExclusiveByKey . 125

8.5.9 ScanInclusive . 126

8.5.10 ScanInclusiveByKey . 126

8.5.11 Schedule . 127

8.5.12 Sort . 127

8.5.13 SortByKey . 127

8.5.14 Synchronize . 128

8.5.15 Unique . 128

8.5.16 UpperBounds . 128

8.5.17 Specifying the Device Adapter . 129

9 Timers 131

10 Variant Array Handles 133

10.1 Querying and Casting . 133

10.2 Casting to Unknown Types . 135

10.3 Specifying Cast Lists . 136

11 Data Sets 139

11.1 Building Data Sets . 139

11.1.1 Creating Uniform Grids . 140

11.1.2 Creating Rectilinear Grids . 140

11.1.3 Creating Explicit Meshes . 141

11.1.4 Add Fields . 143

11.2 Cell Sets . 144

CONTENTS ix

DRAFT

CONTENTS

11.2.1 Structured Cell Sets . 145

11.2.2 Explicit Cell Sets . 146

11.2.3 Cell Set Permutations . 147

11.2.4 Dynamic Cell Sets . 147

11.2.5 Blocks and Assemblies . 148

11.2.6 Zero Cell Sets . 148

11.3 Fields . 148

11.4 Coordinate Systems . 149

11.5 Multi-Block Data . 149

III Developing with VTK-m 151

12 Worklets 153

12.1 Worklet Types . 153

12.2 Dispatchers . 154

12.3 Provided Worklets . 155

12.4 Creating Worklets . 155

12.4.1 Control Signature . 156

12.4.2 Execution Signature . 156

12.4.3 Input Domain . 157

12.4.4 Worklet Operator . 157

12.5 Worklet Type Reference . 158

12.5.1 Field Map . 158

12.5.2 Topology Map . 161

Point to Cell Map . 161

Cell To Point Map . 165

General Topology Maps . 168

12.5.3 Point Neighborhood . 171

Neighborhood Information . 173

Convolving Small Kernels . 174

12.5.4 Reduce by Key . 176

12.6 Whole Arrays . 181

12.7 Atomic Arrays . 184

12.8 Whole Cell Sets . 185

12.9 Execution Objects . 189

12.10 Scatter . 191

12.11 Error Handling . 195

x CONTENTS

DRAFT

CONTENTS

13 Math 197

13.1 Basic Math . 197

13.2 Vector Analysis . 200

13.3 Matrices . 201

13.4 Newton’s Method . 202

14 Working with Cells 205

14.1 Cell Shape Tags and Ids . 205

14.1.1 Converting Between Tags and Identifiers . 205

14.1.2 Cell Traits . 207

14.2 Parametric and World Coordinates . 208

14.3 Interpolation . 209

14.4 Derivatives . 209

14.5 Edges and Faces . 210

15 Locators 215

15.1 Cell Locators . 215

15.1.1 Building a Cell Locator . 216

15.1.2 Using Cell Locators in a Worklet . 216

15.2 Point Locators . 218

15.2.1 Building Point Locators . 218

15.2.2 Using Point Locators in a Worklet . 219

16 Generating Cell Sets 221

16.1 Single Cell Type . 221

16.2 Combining Like Elements . 224

16.3 Faster Combining Like Elements with Hashes . 228

16.4 Variable Cell Types . 234

17 Creating Filters 241

17.1 Field Filters . 241

17.2 Field Filters Using Cell Connectivity . 244

17.3 Data Set Filters . 246

17.4 Data Set with Field Filters . 249

18 Custom Array Storage 253

18.1 Basic Storage . 254

18.2 Implementing Fancy Arrays . 254

18.2.1 Implicit Array Handles . 254

CONTENTS xi

DRAFT

CONTENTS

18.2.2 Transformed Arrays . 256

18.2.3 Derived Storage . 258

18.3 Adapting Data Structures . 265

19 Try Execute 273

IV Advanced Development 275

20 Implementing Device Adapters 279

20.1 Tag . 279

20.2 Runtime Detector . 280

20.3 Array Manager Execution . 281

20.3.1 ArrayManagerExecution . 281

20.3.2 ExecutionPortalFactoryBasic . 283

20.3.3 ExecutionArrayInterfaceBasic . 284

20.4 Virtual Object Transfer . 286

20.5 Atomic Interface Execution . 288

20.6 Algorithms . 288

20.7 Timer Implementation . 293

21 Function Interface Objects 295

21.1 Declaring and Creating . 295

21.2 Parameters . 296

21.3 Invoking . 297

21.4 Modifying Parameters . 299

21.5 Transformations . 300

21.6 For Each . 303

22 Worklet Arguments 305

22.1 Type Checks . 305

22.2 Transport . 307

22.3 Fetch . 310

22.4 Creating New ControlSignature Tags . 313

22.5 Creating New ExecutionSignature Tags . 314

23 New Worklet Types 317

23.1 Motivating Example . 317

23.2 Thread Indices . 320

23.3 Signature Tags . 323

xii CONTENTS

DRAFT

CONTENTS

23.4 Worklet Superclass . 325

23.5 Dispatcher . 327

23.6 Using the Worklet . 331

23.6.1 Quadratic Type 2 Curve . 331

23.6.2 Tree Fractal . 333

23.6.3 Dragon Fractal . 335

23.6.4 Hilbert Curve . 337

V Appendix 341

Index 343

CONTENTS xiii

DRAFT

DRAFT
LIST OF FIGURES

1.1 Comparison of Marching Cubes implementations. 4

2.1 The CMake GUI configuring the VTK-m project. 9

5.1 Example output of VTK-m’s rendering system. 48

5.2 Alternate rendering modes. 49

5.3 The view range bounds to give a Camera. 50

5.4 The position and orientation parameters for a Camera. 51

5.5 Camera movement functions relative to position and orientation. 52

6.1 Diagram of the VTK-m framework. 62

6.2 VTK-m package hierarchy. 63

11.1 An example explicit mesh. 141

11.2 The relationship between a cell shape and its topological elements (points, edges, and faces). 145

11.3 The arrangement of points and cells in a 3D structured grid. 145

11.4 Example of cells in a CellSetExplict and the arrays that define them. 146

12.1 Annotated example of a worklet declaration. 156

12.2 The collection of values for a reduce by key worklet. 176

12.3 The angles incident around a point in a mesh. 187

14.1 Basic Cell Shapes . 206

14.2 The constituent elements (points, edges, and faces) of cells. 210

16.1 Duplicate lines from extracted edges. 224

18.1 Array handles, storage objects, and the underlying data source. 253

DRAFT

List of Figures

23.1 Basic shape for the Koch Snowflake. 318

23.2 The Koch Snowflake after multiple iterations. 318

23.3 Parametric coordinates for the Koch Snowflake shape. 318

23.4 Applying the line fractal transform for the Koch Snowflake. 319

23.5 The quadratic type 2 curve fractal. 332

23.6 The tree fractal. 333

23.7 The first four iterations of the dragon fractal. 335

23.8 The dragon fractal after 12 iterations. 336

23.9 Hilbert curve fractal. 337

xvi List of Figures

DRAFT
LIST OF EXAMPLES

2.1 Cloning the main VTK-m git repository. 7

2.2 Updating a git repository with the pull command. 7

2.3 Running CMake on a cloned VTK-m repository. 8

2.4 Using make to build VTK-m. 10

2.5 Loading VTK-m configuration from an external CMake project. 11

2.6 Linking VTK-m code into an external program. 12

2.7 Using an optional component of VTK-m. 13

3.1 Reading a legacy VTK file. 16

3.2 Writing a legacy VTK file. 16

4.1 Using PointElevation, which is a field filter. 18

4.2 Using VertexClustering, which is a data set filter. 33

4.3 Using ClipWithImplicitFunction. 35

4.4 Using MarchingCubes, which is a data set with field filter. 37

4.5 Using ClipWithField. 38

4.6 Using Streamline, which is a data set with field filter. 41

4.7 Using Pathline, which is a data set with field filter. 42

4.8 Setting a field’s active filter with an association. 43

4.9 Turning off the passing of all fields when executing a filter. 43

4.10 Setting one field to pass by name. 43

4.11 Using a list of fields for a filter to pass. 43

4.12 Excluding a list of fields for a filter to pass. 43

4.13 Using vtkm::filter::FieldSelection. 44

4.14 Selecting one field and its association for a filter to pass. 44

4.15 Selecting a list of fields and their associations for a filter to pass. 44

5.1 Creating an Actor and adding it to a Scene. 46

5.2 Creating a canvas for rendering. 46

DRAFT

LIST OF EXAMPLES

5.3 Constructing a View. 47

5.4 Changing the background and foreground colors of a View. 47

5.5 Using Canvas::Paint in a display callback. 47

5.6 Saving the result of a render as an image file. 48

5.7 Creating a mapper for a wireframe representation. 48

5.8 Creating a mapper for point representation. 48

5.9 Panning the camera. 50

5.10 Zooming the camera. 50

5.11 Directly setting vtkm::rendering::Camera position and orientation. 52

5.12 Moving the camera around the look at point. 52

5.13 Panning the camera. 53

5.14 Zooming the camera. 53

5.15 Resetting a Camera to view geometry. 54

5.16 Resetting a Camera to be axis aligned. 54

5.17 Rendering a View and pasting the result to an active OpenGL context. 55

5.18 Interactive rotations through mouse dragging with Camera::TrackballRotate. 56

5.19 Pan the view based on mouse movements. 56

5.20 Zoom the view based on mouse movements. 57

5.21 Specifying a ColorTable for an Actor. 57

6.1 Usage of an environment modifier macro on a function. 64

6.2 Suppressing warnings about functions from mixed environments. 64

6.3 Calling Initialize. 65

6.4 Creating vector types. 67

6.5 Vector operations. 67

6.6 Repurposing a vtkm::Vec. 67

6.7 Using vtkm::VecCConst with a constant array. 68

6.8 Using vtkm::VecVariable. 69

6.9 Using vtkm::Range. 70

6.10 Using vtkm::Bounds. 71

6.11 Definition of vtkm::TypeTraits <vtkm::Float32 >. 72

6.12 Using TypeTraits for a generic remainder. 72

6.13 Definition of vtkm::VecTraits <vtkm::Id3 >. 74

6.14 Using VecTraits for less functors. 74

6.15 Creating list tags. 76

6.16 Defining new type lists. 78

6.17 Converting dynamic types to static types with ListForEach. 78

6.18 Simple error reporting. 79

xviii LIST OF EXAMPLES

DRAFT

LIST OF EXAMPLES

6.19 Using VTKM ASSERT. 80

6.20 Using VTKM STATIC ASSERT. 81

6.21 Initializing logging. 84

6.22 Basic logging. 85

6.23 Conditional logging. 85

6.24 Scoped logging. 85

6.25 Scoped logging in a function. 86

6.26 Providing an error context for logging. 86

6.27 Helper log functions. 87

7.1 Declaration of the vtkm::cont::ArrayHandle templated class. 90

7.2 Creating an ArrayHandle for output data. 90

7.3 Creating an ArrayHandle that points to a provided C array. 90

7.4 Creating an ArrayHandle that points to a provided std::vector. 90

7.5 Invalidating an ArrayHandle by letting the source std::vector leave scope. 91

7.6 A simple array portal implementation. 92

7.7 Using ArrayPortalToIterators. 93

7.8 Using ArrayPortalToIteratorBegin and ArrayPortalToIteratorEnd. 93

7.9 Using portals from an ArrayHandle. 94

7.10 Allocating an ArrayHandle. 94

7.11 Populating a newly allocated ArrayHandle. 95

7.12 Using ArrayHandleConstant. 96

7.13 Using make ArrayHandleConstant. 96

7.14 Using ArrayHandleView. 96

7.15 Using make ArrayHandleView. 96

7.16 Using ArrayHandleIndex. 97

7.17 Using ArrayHandleCounting. 97

7.18 Using make ArrayHandleCounting. 97

7.19 Counting backwards with ArrayHandleCounting. 97

7.20 Using ArrayHandleCounting with vtkm::Vec objects. 97

7.21 Using ArrayHandleCast. 98

7.22 Using make ArrayHandleCast. 98

7.23 Using ArrayHandleDiscard. 98

7.24 Using ArrayHandlePermutation. 99

7.25 Using make ArrayHandlePermutation. 99

7.26 Using ArrayHandleZip. 100

7.27 Using make ArrayHandleZip. 100

7.28 Using ArrayHandleUniformPointCoordinates. 101

LIST OF EXAMPLES xix

DRAFT

LIST OF EXAMPLES

7.29 Using a ArrayHandleCartesianProduct. 101

7.30 Using make ArrayHandleCartesianProduct. 102

7.31 Using ArrayHandleCompositeVector. 102

7.32 Using make ArrayHandleCompositeVector. 103

7.33 Extracting components of Vecs in an array with ArrayHandleExtractComponent. 103

7.34 Using make ArrayHandleExtractComponent. 104

7.35 Swizzling components of Vecs in an array with ArrayHandleSwizzle. 104

7.36 Using make ArrayHandleSwizzle. 104

7.37 Using ArrayHandleGroupVec. 105

7.38 Using make ArrayHandleGroupVec. 105

7.39 Using ArrayHandleGroupVecVariable. 105

7.40 Using MakeArrayHandleGroupVecVariable. 106

7.41 Using templates for generic array handles. 106

7.42 A problem that can occur when an array handle type is not known. 107

7.43 Using an ArrayHandleVirtual. 107

7.44 Casting a ArrayHandleVirtual to a known type. 108

7.45 Using ArrayCopy. 109

7.46 Using ArrayRangeCompute. 109

8.1 Specifying a device using a device adapter tag. 114

8.2 Specifying a device using template parameters. 114

8.3 Using DeviceAdapterTraits. 115

8.4 Managing invalid devices without compile time errors. 116

8.5 Disabling a device with RuntimeDeviceTracker. 118

8.6 Resetting the Thread Local RuntimeDeviceTracker. 118

8.7 Restricting which devices VTK-m uses per thread. 118

8.8 Basic Unary Predicate. 119

8.9 Basic Binary Predicate. 120

8.10 Basic Binary Operator. 120

8.11 Custom Unary Predicate Implementation. 121

8.12 Custom Unary Predicate Usage. 121

8.13 Prototype for vtkm::cont::Algorithm. 121

8.14 Using the Copy algorithm. 122

8.15 Using the CopyIf algorithm. 122

8.16 Using the CopySubRange algorithm. 123

8.17 Using the LowerBounds algorithm. 123

8.18 Using the Reduce algorithm. 124

8.19 Using the ReduceByKey algorithm. 124

xx LIST OF EXAMPLES

DRAFT

LIST OF EXAMPLES

8.20 Using the ScanExclusive algorithm. 125

8.21 Using ScanExclusiveByKey algorithm. 125

8.22 Using the ScanInclusive algorithm. 126

8.23 Using the ScanInclusiveByKey algorithm. 126

8.24 Using the Sort algorithm. 127

8.25 Using the SortByKey algorithm. 127

8.26 Using the Unique algorithm. 128

8.27 Using the UpperBounds algorithm. 129

8.28 Using the DeviceAdapter with vtkm::cont::Algorithm. 129

9.1 Using vtkm::cont::Timer. 131

10.1 Creating a VariantArrayHandle. 133

10.2 Non type-specific queries on VariantArrayHandle. 134

10.3 Using NewInstance. 134

10.4 Querying the component and storage types of a VariantArrayHandle. 134

10.5 Casting a VariantArrayHandle to a virtual ArrayHandle. 135

10.6 Casting a VariantArrayHandle to a concrete ArrayHandle. 135

10.7 Operating on VariantArrayHandle with CastAndCall. 135

10.8 Trying all component types in a VariantArrayHandle. 137

10.9 Specifying a single component type in a VariantArrayHandle. 137

10.10 Using VariantArrayHandleBase to accept generic variant array handles. 137

11.1 Creating a uniform grid. 140

11.2 Creating a uniform grid with custom origin and spacing. 140

11.3 Creating a rectilinear grid. 140

11.4 Creating an explicit mesh with DataSetBuilderExplicit. 142

11.5 Creating an explicit mesh with DataSetBuilderExplicitIterative. 142

11.6 Adding fields to a DataSet. 143

11.7 Subsampling a data set with CellSetPermutation. 147

11.8 Creating a MultiBlock. 149

11.9 Queries on a MultiBlock. 150

11.10 Applying a filter to multi block data. 150

12.1 Using the provided PointElevation worklet. 155

12.2 A ControlSignature. 156

12.3 An ExecutionSignature. 156

12.4 An InputDomain declaration. 157

12.5 An overloaded parenthesis operator of a worklet. 157

12.6 Implementation and use of a field map worklet. 159

12.7 Leveraging field maps and field maps for general processing. 160

LIST OF EXAMPLES xxi

DRAFT

LIST OF EXAMPLES

12.8 Implementation and use of a map point to cell worklet. 164

12.9 Implementation and use of a map cell to point worklet. 167

12.10 Retrieve neighborhood field value. 173

12.11 Iterating over the valid portion of a neighborhood. 174

12.12 Implementation and use of a point neighborhood worklet. 174

12.13 A helper class to manage histogram bins. 178

12.14 A simple map worklet to identify histogram bins, which will be used as keys. 178

12.15 Creating a vtkm::worklet::Keys object. 179

12.16 A reduce by key worklet to write histogram bin counts. 179

12.17 A worklet that averages all values with a common key. 179

12.18 Using a reduce by key worklet to average values falling into the same bin. 180

12.19 Using WholeArrayIn to access a lookup table in a worklet. 182

12.20 Using AtomicArrayInOut to count histogram bins in a worklet. 185

12.21 Using WholeCellSetIn to sum the angles around each point. 187

12.22 Using ExecObject to access a lookup table in a worklet. 189

12.23 Declaration of a scatter type in a worklet. 192

12.24 Constructing a dispatcher that requires a custom scatter. 192

12.25 Using ScatterUniform. 192

12.26 Using ScatterCounting. 193

12.27 Using ScatterPermutation. 194

12.28 Raising an error in the execution environment. 196

13.1 Creating a Matrix. 201

13.2 Using NewtonsMethod to solve a small system of nonlinear equations. 203

14.1 Using CellShapeIdToTag. 206

14.2 Using CellTraits to implement a polygon normal estimator. 207

14.3 Interpolating field values to a cell’s center. 209

14.4 Computing the derivative of the field at cell centers. 209

14.5 Using cell edge functions. 211

14.6 Using cell face functions. 212

15.1 Constructing a CellLocator. 216

15.2 Using a CellLocator in a worklet. 217

15.3 Constructing a PointLocator. 218

15.4 Using a PointLocator in a worklet. 219

16.1 A simple worklet to count the number of edges on each cell. 221

16.2 A worklet to generate indices for line cells. 222

16.3 Invoking worklets to extract edges from a cell set. 223

16.4 Converting cell fields using a simple permutation. 223

xxii LIST OF EXAMPLES

DRAFT

LIST OF EXAMPLES

16.5 A simple worklet to count the number of edges on each cell. 224

16.6 Worklet generating canonical edge identifiers. 225

16.7 A worklet to generate indices for line cells from combined edges. 225

16.8 Invoking worklets to extract unique edges from a cell set. 227

16.9 Converting cell fields that average collected values. 228

16.10 A simple worklet to count the number of edges on each cell. 228

16.11 Worklet generating hash values. 229

16.12 Worklet to resolve hash collisions occurring on edge identifiers. 229

16.13 A worklet to generate indices for line cells from combined edges and potential collisions. 231

16.14 Invoking worklets to extract unique edges from a cell set using hash values. 232

16.15 A worklet to average values with the same key, resolving for collisions. 233

16.16 Invoking the worklet to process cell fields, resolving for collisions. 234

16.17 A worklet to count the points in the final cells of extracted faces . 235

16.18 Converting counts of connectivity groups to offsets for ArrayHandleGroupVecVariable. 236

16.19 A worklet to generate indices for polygon cells of different sizes from combined edges and potential collisions.236

16.20 Invoking worklets to extract unique faces froma cell set. 237

17.1 Header declaration for a field filter. 242

17.2 Implementation of a field filter. 243

17.3 Header declaration for a field filter using cell topology. 244

17.4 Implementation of a field filter using cell topology. 245

17.5 Header declaration for a data set filter. 247

17.6 Implementation of the DoExecute method of a data set filter. 248

17.7 Implementation of the DoMapField method of a data set filter. 248

17.8 Header declaration for a data set with field filter. 250

17.9 Implementation of the DoExecute method of a data set with field filter. 251

17.10 Implementation of the DoMapField method of a data set with field filter. 251

18.1 Declaration of the vtkm::cont::ArrayHandle templated class (again). 254

18.2 Specifying the storage type for an ArrayHandle. 254

18.3 Functor that doubles an index. 255

18.4 Declaring a ArrayHandleImplicit. 255

18.5 Using make ArrayHandleImplicit. 255

18.6 Custom implicit array handle for even numbers. 255

18.7 Functor to scale and bias a value. 256

18.8 Using make ArrayHandleTransform. 257

18.9 Custom transform array handle for scale and bias. 257

18.10 Derived array portal for concatenated arrays. 258

18.11 Storage for derived container of concatenated arrays. 259

LIST OF EXAMPLES xxiii

DRAFT

LIST OF EXAMPLES

18.12 Prototype for vtkm::cont::internal::ArrayTransfer. 261

18.13 Prototype for ArrayTransfer constructor. 262

18.14 ArrayTransfer for derived storage of concatenated arrays. 263

18.15 ArrayHandle for derived storage of concatenated arrays. 265

18.16 Fictitious field storage used in custom array storage examples. 266

18.17 Array portal to adapt a third-party container to VTK-m. 266

18.18 Prototype for vtkm::cont::internal::Storage. 267

18.19 Storage to adapt a third-party container to VTK-m. 268

18.20 Array handle to adapt a third-party container to VTK-m. 269

18.21 Using an ArrayHandle with custom container. 270

18.22 Redefining the default array handle storage. 270

19.1 A function to find the average value of an array in parallel. 273

19.2 Using TryExecute. 273

20.1 Contents of the base header for a device adapter. 279

20.2 Implementation of a device adapter tag. 280

20.3 Prototype for DeviceAdapterRuntimeDetector. 280

20.4 Implementation of DeviceAdapterRuntimeDetector specialization . 280

20.5 Prototype for vtkm::cont::internal::ArrayManagerExecution. 281

20.6 Specialization of ArrayManagerExecution. 282

20.7 Prototype for vtkm::cont::internal::ExecutionPortalFactoryBasic. 283

20.8 Specialization of ExecutionPortalFactoryBasic. 284

20.9 Prototype for vtkm::cont::internal::ExecutionArrayInterfaceBasic. 284

20.10 Specialization of ExecutionArrayInterfaceBasic. 285

20.11 Prototype for vtkm::cont::internal::VirtualObjectTransfer. 286

20.12 Specialization of VirtualObjectTransfer. 287

20.13 Specialization of AtomicInterfaceExecution. 288

20.14 Minimal specialization of DeviceAdapterAlgorithm. 289

20.15 Specialization of DeviceAdapterTimerImplementation. 293

21.1 Declaring vtkm::internal::FunctionInterface. 295

21.2 Using vtkm::internal::make FunctionInterface. 295

21.3 Getting the arity of a FunctionInterface. 296

21.4 Using FunctionInterface::GetParameter(). 296

21.5 Using FunctionInterface::SetParameter(). 296

21.6 Invoking a FunctionInterface. 297

21.7 Invoking a FunctionInterface with a transform. 297

21.8 Getting return value from FunctionInterface safely. 298

21.9 Appending parameters to a FunctionInterface. 299

xxiv LIST OF EXAMPLES

DRAFT

LIST OF EXAMPLES

21.10 Replacing parameters in a FunctionInterface. 299

21.11 Chaining Replace and Append with a FunctionInterface. 299

21.12 Using a static transform of function interface class. 300

21.13 Using a dynamic transform of a function interface. 301

21.14 Using DynamicTransform to cast dynamic arrays in a function interface. 302

21.15 Using the ForEach feature of FunctionInterface. 303

22.1 Behavior of vtkm::cont::arg::TypeCheck. 306

22.2 Defining a custom TypeCheck. 306

22.3 Behavior of vtkm::cont::arg::Transport. 309

22.4 Defining a custom Transport. 309

22.5 Defining a custom Fetch. 311

22.6 Defining a custom Aspect. 313

22.7 Defining a new ControlSignature tag. 314

22.8 Using a custom ControlSignature tag. 314

22.9 Defining a new ExecutionSignature tag. 315

22.10 Using a custom ExecutionSignature tag. 315

23.1 A support class for a line fractal worklet. 318

23.2 Demonstration of how we want to use the line fractal worklet. 320

23.3 Implementation of GetThreadIndices in a worklet superclass. 321

23.4 Implementation of a thread indices class. 322

23.5 Custom ControlSignature tag for the input domain of our example worklet type. 323

23.6 A Fetch for an aspect that does not depend on any control argument. 323

23.7 Custom ExecutionSignature tag that only relies on input domain information in the thread indices. . . 324

23.8 Output ControlSignature tag for our motivating example. 324

23.9 Implementation of Transport for the output in our motivating example. 324

23.10 Implementing a FieldIn tag. 325

23.11 Superclass for a new type of worklet. 326

23.12 Standard template arguments for a dispatcher class. 327

23.13 Subclassing DispatcherBase. 328

23.14 Typical constructor for a dispatcher. 328

23.15 Declaration of DoInvoke of a dispatcher. 329

23.16 Checking the input domain tag and type. 329

23.17 Calling BasicInvoke from a dispatcher’s DoInvoke. 330

23.18 Implementation of a dispatcher for a new type of worklet. 330

23.19 A worklet to generate a quadratic type 2 curve fractal. 331

23.20 A worklet to generate a tree fractal. 333

23.21 A worklet to generate the dragon fractal. 335

LIST OF EXAMPLES xxv

DRAFT

LIST OF EXAMPLES

23.22 A worklet to generate the Hilbert curve. 338

xxvi LIST OF EXAMPLES

DRAFTPart I

Getting Started

DRAFT

DRAFT
CHAPTER

ONE

INTRODUCTION

High-performance computing relies on ever finer threading. Advances in processor technology include ever greater
numbers of cores, hyperthreading, accelerators with integrated blocks of cores, and special vectorized instructions,
all of which require more software parallelism to achieve peak performance. Traditional visualization solutions
cannot support this extreme level of concurrency. Extreme scale systems require a new programming model and
a fundamental change in how we design algorithms. To address these issues we created VTK-m: the visualization
toolkit for multi-/many-core architectures.

VTK-m supports a number of algorithms and the ability to design further algorithms through a top-down design
with an emphasis on extreme parallelism. VTK-m also provides support for finding and building links across
topologies, making it possible to perform operations that determine manifold surfaces, interpolate generated
values, and find adjacencies. Although VTK-m provides a simplified high-level interface for programming, its
template-based code removes the overhead of abstraction.

VTK-m simplifies the development of parallel scientific visualization algorithms by providing a framework of
supporting functionality that allows developers to focus on visualization operations. Consider the listings in
Figure 1.1 that compares the size of the implementation for the Marching Cubes algorithm in VTK-m with
the equivalent reference implementation in the CUDA software development kit. Because VTK-m internally
manages the parallel distribution of work and data, the VTK-m implementation is shorter and easier to maintain.
Additionally, VTK-m provides data abstractions not provided by other libraries that make code written in VTK-
m more versatile.

VTK-m is written in C++ and makes extensive use of templates. The toolkit is implemented as a header
library, meaning that all the code is implemented in header files (with extension .h) and completely included
in any code that uses it. This allows the compiler to inline and specialize code for better performance.

Did you know?

1.1 How to Use This Guide

This user’s guide is organized into four parts to help guide novice to advanced users and to provide a convenient
reference. Part I, Getting Started, provides everything needed to get up and running with VTK-m. In this part
we learn the basics of reading and writing data files, using filters to process data, and performing basic rendering
to view the results.

Part II, Using VTK-m, dives deeper into the VTK-m library and provides all the information needed to customize
VTK-m’s data structures and support multiple devices.

DRAFT

1.2. Conventions Used in This Guide

CUDA SDK VTK-m
431 LOC 265 LOC

Figure 1.1: Comparison of the Marching Cubes algorithm in VTK-m and the reference implementation in the
CUDA SDK. Implementations in VTK-m are simpler, shorter, more general, and easier to maintain. (Lines of
code (LOC) measurements come from cloc.)

Part III, Developing with VTK-m, documents how to use VTK-m’s framework to develop new or custom visu-
alization algorithms. This part describes the concept of a worklet, how they are used to implement and execute
algorithms, and how to use worklets to implement new filters.

Part IV, Advanced Development, exposes the inner workings of VTK-m. These concepts allow you to design
new algorithmic structures not already available in VTK-m.

1.2 Conventions Used in This Guide

When documenting the VTK-m API, the following conventions are used.

• Filenames are printed in a sans serif font.

• C++ code is printed in a monospace font.

4 Chapter 1. Introduction

DRAFT

1.2. Conventions Used in This Guide

• Macros and namespaces from VTK-m are printed in red.

• Identifiers from VTK-m are printed in blue.

• Signatures, described in Chapter 12, and the tags used in them are printed in green.

This guide provides actual code samples throughout its discussions to demonstrate their use. These examples
are all valid code that can be compiled and used although it is often the case that code snippets are provided.
In such cases, the code must be placed in a larger context.

In this guide we periodically use these Did you know? boxes to provide additional information related to
the topic at hand.

Did you know?

Common Errors blocks are used to highlight some of the common problems or complications you might
encounter when dealing with the topic of discussion.

Common Errors

Chapter 1. Introduction 5

DRAFT

DRAFT
CHAPTER

TWO

BUILD AND INSTALL VTK-M

Before we begin describing how to develop with VTK-m, we have a brief overview of how to build VTK-m,
optionally install it on your system, and start your own programs that use VTK-m.

2.1 Getting VTK-m

VTK-m is an open source software product where the code is made freely available. To get the latest released
version of VTK-m, go to the VTK-m releases page:

http://m.vtk.org/index.php/VTK-m_Releases

For access to the most recent work, the VTK-m development team provides public anonymous read access to
their main source code repository. The main VTK-m repository on a gitlab instance hosted at Kitware, Inc. The
repository can be browsed from its project web page:

https://gitlab.kitware.com/vtk/vtk-m

The source code in the VTK-m repository is access through the git version control tool. If you have not used
git before, there are several resources available to help you get familiar with it. Github has a nice setup guide
(https://help.github.com/articles/set-up-git) to help you get up and running quickly. For more complete
documentation, we recommend the Pro Git book (https://git-scm.com/book).

To get a copy of the VTK-m repository, issue a git clone command.

Example 2.1: Cloning the main VTK-m git repository.
1 git clone https :// gitlab . kitware .com/vtk/vtk -m.git

The git clone command will create a copy of all the source code to your local machine. As time passes and you
want to get an update of changes in the repository, you can do that with the git pull command.

Example 2.2: Updating a git repository with the pull command.
1 git pull

http://m.vtk.org/index.php/VTK-m_Releases
https://gitlab.kitware.com/vtk/vtk-m
https://help.github.com/articles/set-up-git
https://git-scm.com/book

DRAFT

2.2. Configure VTK-m

The proceeding examples for using git are based on the git command line tool, which is particularly prevalent
on Unix-based and Mac systems. There also exist several GUI tools for accessing git repositories. These
tools each have their own interface and they can be quite different. However, they all should have roughly
equivalent commands named “clone” to download a repository given a url and “pull” to update an existing
repository.

Did you know?

2.2 Configure VTK-m

VTK-m uses a cross-platform configuration tool named CMake to simplify the configuration and building across
many supported platforms. CMake is available from many package distribution systems and can also be down-
loaded for many platforms from http://cmake.org.

Most distributions of CMake come with a convenient GUI application (cmake-gui) that allows you to browse
all of the available configuration variables and run the configuration. Many distributions also come with an
alternative terminal-based version (ccmake), which is helpful when accessing remote systems where creating GUI
windows is difficult.

One helpful feature of CMake is that it allows you to establish a build directory separate from the source directory,
and the VTK-m project requires that separation. Thus, when you run CMake for the first time, you want to set
the build directory to a new empty directory and the source to the downloaded or cloned files. The following
example shows the steps for the case where the VTK-m source is cloned from the git repository. (If you extracted
files from an archive downloaded from the VTK-m web page, the instructions are the same from the second line
down.)

Example 2.3: Running CMake on a cloned VTK-m repository.
1 git clone https :// gitlab . kitware .com/vtk/vtk -m.git
2 mkdir vtkm - build
3 cd vtkm - build
4 cmake -gui ../ vtk -m

The first time the CMake GUI runs, it initially comes up blank as shown at left in Figure 2.1. Verify that the
source and build directories are correct (located at the top of the GUI) and then click the “Configure” button
near the bottom. The first time you run configure, CMake brings up a dialog box asking what generator you
want for the project. This allows you to select what build system or IDE to use (e.g. make, ninja, Visual Studio).
Once you click “Finish,” CMake will perform its first configuration. Don’t worry if CMake gives an error about
an error in this first configuration process.

Most options in CMake can be reconfigured at any time, but not the compiler and build system used. These
must be set the first time configure is run and cannot be subsequently changed. If you want to change the
compiler or the project file types, you will need to delete everything in the build directory and start over.

Common Errors

After the first configuration, the CMake GUI will provide several configuration options as shown in Figure 2.1
on the right. You now have a chance to modify the configuration of VTK-m, which allows you to modify both

8 Chapter 2. Build and Install VTK-m

http://cmake.org

DRAFT

2.2. Configure VTK-m

Figure 2.1: The CMake GUI configuring the VTK-m project. At left is the initial blank configuration. At right
is the state after a configure pass.

the behavior of the compiled VTK-m code as well as find components on your system. Using the CMake GUI is
usually an iterative process where you set configuration options and re-run “Configure.” Each time you configure,
CMake might find new options, which are shown in red in the GUI.

It is often the case during this iterative configuration process that configuration errors occur. This can occur
after a new option is enabled but CMake does not automatically find the necessary libraries to make that feature
possible. For example, to enable TBB support, you may have to first enable building TBB, configure for TBB
support, and then tell CMake where the TBB include directories and libraries are.

Once you have set all desired configuration variables and resolved any CMake errors, click the “Generate”
button. This will create the build files (such as makefiles or project files depending on the generator chosen at
the beginning). You can then close the CMake GUI.

There are a great number of configuration parameters available when running CMake on VTK-m. The following
list contains the most common configuration parameters.

BUILD SHARED LIBS Determines whether static or shared libraries are built.

CMAKE BUILD TYPE Selects groups of compiler options from categories like Debug and Release. Debug
builds are, obviously, easier to debug, but they run much slower than Release builds. Use Release builds
whenever releasing production software or doing performance tests.

CMAKE INSTALL PREFIX The root directory to place files when building the install target.

VTKm ENABLE EXAMPLES The VTK-m repository comes with an examples directory. This macro deter-
mines whether they are built.

VTKm ENABLE BENCHMARKS If on, the VTK-m build includes several benchmark programs. The bench-
marks are regression tests for performance.

Chapter 2. Build and Install VTK-m 9

DRAFT

2.3. Building VTK-m

VTKm ENABLE CUDA Determines whether VTK-m is built to run on CUDA GPU devices.

VTKm CUDA Architecture Specifies what GPU architecture(s) to build CUDA for. The options include
native, fermi, kepler, maxwell, pascal, and volta.

VTKm ENABLE OPENMP Determines whether VTK-m is built to run on multi-core devices using OpenMP
pragmas provided by the C++ compiler.

VTKm ENABLE RENDERING Determines whether to build the rendering library.

VTKm ENABLE TBB Determines whether VTK-m is built to run on multi-core x86 devices using the Intel
Threading Building Blocks library.

VTKm ENABLE TESTING If on, the VTK-m build includes building many test programs. The VTK-m
source includes hundreds of regression tests to ensure quality during development.

VTKm USE 64BIT IDS If on, then VTK-m will be compiled to use 64-bit integers to index arrays and other
lists. If off, then VTK-m will use 32-bit integers. 32-bit integers take less memory but could cause failures
on larger data.

VTKm USE DOUBLE PRECISION If on, then VTK-m will use double precision (64-bit) floating point num-
bers for calculations where the precision type is not otherwise specified. If off, then single precision (32-bit)
floating point numbers are used. Regardless of this setting, VTK-m’s templates will accept either type.

2.3 Building VTK-m

Once CMake successfully configures VTK-m and generates the files for the build system, you are ready to build
VTK-m. As stated earlier, CMake supports generating configuration files for several different types of build tools.
Make and ninja are common build tools, but CMake also supports building project files for several different types
of integrated development environments such as Microsoft Visual Studio and Apple XCode.

The VTK-m libraries and test files are compiled when the default build is invoked. For example, if Makefiles
were generated, the build is invoked by calling make in the build directory. Expanding on Example 2.3

Example 2.4: Using make to build VTK-m.
1 git clone https :// gitlab . kitware .com/vtk/vtk -m.git
2 mkdir vtkm - build
3 cd vtkm - build
4 cmake -gui ../ vtk -m
5 make -j
6 make test
7 make install

The Makefiles and other project files generated by CMake support parallel builds, which run multiple com-
pile steps simultaneously. On computers that have multiple processing cores (as do almost all modern
computers), this can significantly speed up the overall compile. Some build systems require a special flag to
engage parallel compiles. For example, make requires the -j flag to start parallel builds as demonstrated in
Example 2.4.

Did you know?

10 Chapter 2. Build and Install VTK-m

DRAFT

2.4. Linking to VTK-m

CMake allows you to switch between several types of builds including default, Debug, and Release. Programs
and libraries compiled as release builds can run much faster than those from other types of builds. Thus,
it is important to perform Release builds of all software released for production or where runtime is a
concern. Some integrated development environments such as Microsoft Visual Studio allow you to specify
the different build types within the build system. But for other build programs, like make, you have to
specify the build type in the CMAKE BUILD TYPE CMake configuration variable, which is described in
Section 2.2.

Common Errors

CMake creates several build “targets” that specify the group of things to build. The default target builds all
of VTK-m’s libraries as well as tests, examples, and benchmarks if enabled. The test target executes each of
the VTK-m regression tests and verifies they complete successfully on the system. The install target copies the
subset of files required to use VTK-m to a common installation directory. The install target may need to be run
as an administrator user if the installation directory is a system directory.

A good portion of VTK-m is a header-only library, which does not need to be built in a traditional sense.
However, VTK-m contains a significant amount of tests to ensure that the header code does compile and
run correctly on a given system. If you are not concerned with testing a build on a given system, you can
turn off building the testing, benchmarks, and examples using the CMake configuration variables described
in Section 2.2. This can shorten the VTK-m compile time.

Did you know?

2.4 Linking to VTK-m

Ultimately, the value of VTK-m is the ability to link it into external projects that you write. The header files and
libraries installed with VTK-m are typical, and thus you can link VTK-m into a software project using any type
of build system. However, VTK-m comes with several CMake configuration files that simplify linking VTK-m
into another project that is also managed by CMake. Thus, the documentation in this section is specifically for
finding and configuring VTK-m for CMake projects.

VTK-m can be configured from an external project using the find package CMake function. The behavior and
use of this function is well described in the CMake documentation. The first argument to find package is the
name of the package, which in this case is VTKm. CMake configures this package by looking for a file named
VTKmConfig.cmake, which will be located in the lib/cmake/vtkm-X.X directory of the install or build of VTK-m.
The configurable CMake variable VTKm DIR can be set to the directory that contains this file.

Example 2.5: Loading VTK-m configuration from an external CMake project.
1 find_package (VTKm REQUIRED)

Chapter 2. Build and Install VTK-m 11

DRAFT

2.4. Linking to VTK-m

The CMake find package function also supports several features not discussed here including specifying
a minimum or exact version of VTK-m and turning off some of the status messages. See the CMake
documentation for more details.

Did you know?

When you load the VTK-m package in CMake, several libraries are defined. Projects building with VTK-m
components should link against one or more of these libraries as appropriate, typically with the target link -
libraries command.

Example 2.6: Linking VTK-m code into an external program.
1 find_package (VTKm REQUIRED)
2
3 add_executable (myprog myprog .cxx)
4 target_link_libraries (myprog vtkm_filter)

Several library targets are provided, but most projects will need to link in one or more of the following.

vtkm cont Contains the base objects used to control VTK-m. This library should always be linked in.

vtkm filter Contains VTK-m’s filtering code. Most applications will need to link this library in.

vtkm rendering Contains VTK-m’s rendering components. This library is only available if VTKm EN-
ABLE RENDERING is set to true.

The “libraries” made available in the VTK-m do more than add a library to the linker line. These libraries
are actually defined as external targets that establish several compiler flags, like include file directories.
Many CMake packages require you to set up other target options to compile correctly, but for VTK-m it is
sufficient to simply link against the library.

Did you know?

Because the VTK-m CMake libraries do more than set the link line, correcting the link libraries can do more
than fix link problems. For example, if you are getting compile errors about not finding VTK-m header
files, then you probably need to link to one of VTK-m’s libraries to fix the problem rather than try to add
the include directories yourself.

Common Errors

The following is a list of all the CMake variables defined when the find package function completes.

VTKm FOUND Set to true if the VTK-m CMake package is successfully loaded. If find package was not
called with the REQUIRED option, then this variable should be checked before attempting to use VTK-m.

VTKm VERSION The version number of the loaded VTK-m package. The package also sets VTKm VER-
SION MAJOR, VTKm VERSION MINOR, and VTKm VERSION PATCH to get the individual compo-
nents of the version. There is also a VTKm VERSION FULL that is augmented with a partial git SHA to
identify snapshots in between releases.

12 Chapter 2. Build and Install VTK-m

DRAFT

2.4. Linking to VTK-m

VTKm ENABLE CUDA Set to true if VTK-m was compiled for CUDA.

VTKm ENABLE OPENMP Set to true if VTK-m was compiled for OpenMP.

VTKm ENABLE TBB Set to true if VTK-m was compiled for TBB.

VTKm ENABLE RENDERING Set to true if the VTK-m rendering library was compiled.

VTKm ENABLE MPI Set to true if VTK-m was compiled with MPI support.

These package variables can be used to query whether optional components are supported before they are used
in your CMake configuration.

Example 2.7: Using an optional component of VTK-m.
1 find_package (VTKm REQUIRED)
2
3 if (NOT VTKm_ENABLE_RENDERING)
4 message (SEND_ERROR "VTK -m must be built with rendering on .")
5 endif ()
6
7 add_executable (myprog myprog .cxx)
8 target_link_libraries (myprog vtkm_cont vtkm_rendering)

Chapter 2. Build and Install VTK-m 13

DRAFT

DRAFT
CHAPTER

THREE

FILE I/O

Before VTK-m can be used to process data, data need to be loaded into the system. VTK-m comes with a basic
file I/O package to get started developing very quickly. All the file I/O classes are declared under the vtkm::io
namespace.

Files are just one of many ways to get data in and out of VTK-m. In Part II we explore efficient ways to
define VTK-m data structures. In particular, Section 11.1 describes how to build VTK-m data set objects
and Section 18.3 documents how to adapt data structures defined in other libraries to be used directly in
VTK-m.

Did you know?

3.1 Readers

All reader classes provided by VTK-m are located in the vtkm::io::reader namespace. The general interface
for each reader class is to accept a filename in the constructor and to provide a ReadDataSet method to load
the data from disk.

The data in the file are returned in a vtkm::cont::DataSet object. Chapter 11 provides much more details
about the contents of a data set object, but for now we treat DataSet as an opaque object that can be passed
around readers, writers, filters, and rendering units.

3.1.1 Legacy VTK File Reader

Legacy VTK files are a simple open format for storing visualization data. These files typically have a .vtk
extension. Legacy VTK files are popular because they are simple to create and read and are consequently
supported by a large number of tools. The format of legacy VTK files is well documented in The VTK User’s
Guide1. Legacy VTK files can also be read and written with tools like ParaView and VisIt.

Legacy VTK files can be read using the vtkm::io::reader::VTKDataSetReader class. The constructor for
this class takes a string containing the filename. The ReadDataSet method reads the data from the previously
indicated file and returns a vtkm::cont::DataSet object, which can be used with filters and rendering.

1A free excerpt describing the file format is available at http://www.vtk.org/Wiki/File:VTK-File-Formats.pdf.

http://www.vtk.org/Wiki/File:VTK-File-Formats.pdf

DRAFT

3.2. Writers

Example 3.1: Reading a legacy VTK file.
1 # include <vtkm/io/ reader / VTKDataSetReader .h>
2
3 vtkm :: cont :: DataSet OpenDataFromVTKFile ()
4 {
5 vtkm :: io :: reader :: VTKDataSetReader reader (" data.vtk ");
6
7 return reader . ReadDataSet ();
8 }

3.2 Writers

All writer classes provided by VTK-m are located in the vtkm::io::writer namespace. The general interface for
each writer class is to accept a filename in the constructor and to provide a WriteDataSet method to save data
to the disk. The WriteDataSet method takes a vtkm::cont::DataSet object as an argument, which contains
the data to write to the file.

3.2.1 Legacy VTK File Writer

Legacy VTK files can be written using the vtkm::io::writer::VTKDataSetWriter class. The constructor for
this class takes a string containing the filename. The WriteDataSet method takes a vtkm::cont::DataSet
object and writes its data to the previously indicated file.

Example 3.2: Writing a legacy VTK file.
1 # include <vtkm/io/ writer / VTKDataSetWriter .h>
2
3 void SaveDataAsVTKFile (vtkm :: cont :: DataSet data)
4 {
5 vtkm :: io :: writer :: VTKDataSetWriter writer (" data.vtk ");
6
7 writer . WriteDataSet (data);
8 }

16 Chapter 3. File I/O

DRAFT
CHAPTER

FOUR

RUNNING FILTERS

Filters are functional units that take data as input and write new data as output. Filters operate on vtkm::-
cont::DataSet objects, which are introduced with the file I/O operations in Chapter 3 and are described in
more detail in Chapter 11. For now we treat DataSet mostly as an opaque object that can be passed around
readers, writers, filters, and rendering units.

The structure of filters in VTK-m is significantly simpler than their counterparts in VTK. VTK filters
are arranged in a dataflow network (a.k.a. a visualization pipeline) and execution management is handled
automatically. In contrast, VTK-m filters are simple imperative units, which are simply called with input
data and return output data.

Did you know?

VTK-m comes with several filters ready for use, and in this chapter we will give a brief overview of these filters.
All VTK-m filters are currently defined in the vtkm::filter namespace. We group filters based on the type of
operation that they do and the shared interfaces that they have. Later Part III describes the necessary steps in
creating new filters in VTK-m.

4.1 Field Filters

Every vtkm::cont::DataSet object contains a list of fields. A field describes some numerical value associated
with different parts of the data set in space. Fields often represent physical properties such as temperature,
pressure, or velocity. Field filters are a class of filters that generate a new field. These new fields are typically
derived from one or more existing fields or point coordinates on the data set. For example, mass, volume, and
density are interrelated, and any one can be derived from the other two.

Before a filter is run, it is important to set up the state of the filter object to the parameters of the algorithm.
The state parameters will vary from one filter to the next, but one state parameter that all field filters share
is the “active” field for the operation. The active field is set with a call to the SetActiveField method. The
argument to SetActiveField is a string that names this input field. Alternatively, you can call the SetUseCo-
ordinateSystemAsField with an argument of true to use the point coordinates as the input field rather than
a specified field. See Sections 11.3 and 11.4 for more information on fields and coordinate systems, respectively.
Finally, SetOutputFieldName, specifies the name assigned to the generated field. If not specified, then the filter
will use a default name.

All field filters contain an Execute method. When calling Execute a vtkm::cont::DataSet or vtkm::cont::-
MultiBlock object with the input data is provided as an argument. The Execute method returns a DataSet or

DRAFT

4.1. Field Filters

MultiBlock object (matching the type of the input to Execute), which contains the data generated.

The following example provides a simple demonstration of using a field filter. It specifically uses the point
elevation filter, which is one of the field filters.

Example 4.1: Using PointElevation, which is a field filter.
1 VTKM_CONT
2 vtkm :: cont :: DataSet ComputeAirPressure (vtkm :: cont :: DataSet dataSet)
3 {
4 vtkm :: filter :: PointElevation elevationFilter ;
5
6 // Use the elevation filter to estimate atmospheric pressure based on the
7 // height of the point coordinates . Atmospheric pressure is 101325 Pa at
8 // sea level and drops about 12 Pa per meter .
9 elevationFilter . SetOutputFieldName (" pressure ");

10 elevationFilter . SetLowPoint (0.0 , 0.0 , 0.0);
11 elevationFilter . SetHighPoint (0.0 , 0.0 , 2000.0);
12 elevationFilter . SetRange (101325.0 , 77325.0);
13
14 elevationFilter . SetUseCoordinateSystemAsField (true);
15
16 vtkm :: cont :: DataSet result = elevationFilter . Execute (dataSet);
17
18 return result ;
19 }

4.1.1 Cell Average

vtkm::filter::CellAverage is the cell average filter. It will take a data set with a collection of cells and a field
defined on the points of the data set and create a new field defined on the cells. The values of this new derived
field are computed by averaging the values of the input field at all the incident points. This is a simple way to
convert a point field to a cell field.

The default name for the output cell field is the same name as the input point field. The name can be overridden
as always using the SetOutputFieldName method.

CellAverage provides the following methods.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

18 Chapter 4. Running Filters

DRAFT

4.1. Field Filters

4.1.2 Coordinate System Transforms

VTK-m provides multiple filters to translate between different coordiante systems.

Cylindrical Coordinate System Transform

vtkm::filter::CylindricalCoordinateSystemTransform is a coordinate system transformation filter. The
filter will take a data set and transform the points of the coordinate system. By default, the filter will transform
the coordinates from a cartesian coordinate system to a cylindrical coordinate system. The order for cylindrical
coordinates is (R,θ,Z)

The default name for the output field is “cylindricalCoordinateSystemTransform”, but that can be overridden
as always using the SetOutputFieldName method.

In addition the standard SetOutputFieldName and Execute methods, CylindricalCoordinateSystemTrans-
form provides the following methods.

SetCartesianToCylindrical This method specifies a transformation from cartesian to cylindrical coordinates.

SetCylindricalToCartesian This method specifies a transformation from cylindrical to cartesian coordinates.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

Spherical Coordinate System Transform

vtkm::filter::SphericalCoordinateSystemTransform is a coordinate system transformation filter. The filter
will take a data set and transform the points of the coordinate system. By default, the filter will transform
the coordinates from a cartesian coordinate system to a spherical coordinate system. The order for spherical
coordinates is (R,θ,φ)

The default name for the output field is “sphericalCoordinateSystemTransform”, but that can be overridden as
always using the SetOutputFieldName method.

In addition the standard SetOutputFieldName and Execute methods, CylindricalCoordinateSystemTrans-
form provides the following methods.

SetCartesianToSpherical This method specifies a transformation from cartesian to spherical coordinates.

Chapter 4. Running Filters 19

DRAFT

4.1. Field Filters

SetSphericalToCartesian This method specifies a transformation from spherical to cartesian coordinates.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.3 Cross Product

vtkm::filter::CrossProduct computes the cross product of two vector fields for every element in the input
data set. The cross product filter computes (PrimaryField × SecondaryField), where both the primary and
secondary field are specified using methods on the CrossProduct class. The cross product computation works
for both point and cell centered vector fields.

CrossProduct provides the following methods.

SetPrimaryField/GetPrimaryFieldName Specifies the name of the field to use as input for the primary (first)
value of the cross product.

SetUseCoordinateSystemAsPrimaryField/GetUseCoordinateSystemAsPrimaryField Specifies a Boolean
flag that determines whether to use point coordinates as the primary input field. Set to false by default.
When true, the name for the primary field is ignored.

SetPrimaryCoordinateSystem/GetPrimaryCoordinateSystemIndex Specifies the index of which coordinate
system to use as the primary input field. The default index is 0, which is the first coordinate system.

SetSecondaryField/GetSecondaryFieldName Specifies the name of the field to use as input for the secondary
(second) value of the cross product.

SetUseCoordinateSystemAsSecondaryField/GetUseCoordinateSystemAsSecondaryField Specifies a
Boolean flag that determines whether to use point coordinates as the secondary input field. Set to
false by default. When true, the name for the secondary field is ignored.

SetSecondaryCoordinateSystem/GetSecondaryCoordinateSystemIndex Specifies the index of which coordi-
nate system to use as the secondary input field. The default index is 0, which is the first coordinate
system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

20 Chapter 4. Running Filters

DRAFT

4.1. Field Filters

4.1.4 Dot Product

vtkm::filter::DotProduct computes the dot product of two vector fields for every element in the input data
set. The dot product filter computes (PrimaryField · SecondaryField), where both the primary and secondary
field are specified using methods on the DotProduct class. The dot product computation works for both point
and cell centered vector fields.

DotProduct provides the following methods.

SetPrimaryField/GetPrimaryFieldName Specifies the name of the field to use as input for the primary (first)
value of the dot product.

SetUseCoordinateSystemAsPrimaryField/GetUseCoordinateSystemAsPrimaryField Specifies a Boolean
flag that determines whether to use point coordinates as the primary input field. Set to false by default.
When true, the name for the primary field is ignored.

SetPrimaryCoordinateSystem/GetPrimaryCoordinateSystemIndex Specifies the index of which coordinate
system to use as the primary input field. The default index is 0, which is the first coordinate system.

SetSecondaryField/GetSecondaryFieldName Specifies the name of the field to use as input for the secondary
(second) value of the dot product.

SetUseCoordinateSystemAsSecondaryField/GetUseCoordinateSystemAsSecondaryField Specifies a
Boolean flag that determines whether to use point coordinates as the secondary input field. Set to
false by default. When true, the name for the secondary field is ignored.

SetSecondaryCoordinateSystem/GetSecondaryCoordinateSystemIndex Specifies the index of which coordi-
nate system to use as the secondary input field. The default index is 0, which is the first coordinate
system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.5 Connected Components

Connected components in a mesh are groups of mesh elements that are connected together in some way. For
example, if two cells are neighbors, then they are in the same component. Likewise, a cell is also in the same
component as its neighbor’s neighbors as well as their neighbors and so on. Connected components help identify
when features in a simulation fragment or meld.

VTK-m provides two types of connected components filters. The first filter follows topological connections to
find cells that are literally connected together. The second filter takes a structured cell set and a field that
classifies each cell and finds connected components where all the cells have the same field value.

Cell Connectivity

The vtkm::filter::CellSetConnectivity filter finds groups of cells that are connected together through their
topology. Two cells are considered connected if they share an edge. CellSetConnectivity identifies some
number of components and assigns each component a unique integer.

Chapter 4. Running Filters 21

DRAFT

4.1. Field Filters

The result of the filter is a cell field of type vtkm::Id. Each entry in the cell field will be a number that identifies
to which component the cell belongs. By default, this output cell field is named “component”. Although an
input field can be specified, it is ignored.

CellSetConnectivity provides the following methods.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

Image Field

The vtkm::filter::ImageConnectivity filter finds groups of points that have the same field value and are
connected together through their topology. Any point is considered to be connected to its Moore neighborhood:
8 neighboring points for 2D and 27 neighboring points for 3D. As the name implies, ImageConnectivity only
works on data with a structured cell set. You will get an error if you use any other type of cell set.

The active field passed to the filter must be associated with the points.

The result of the filter is a point field of type vtkm::Id. Each entry in the point field will be a number that
identifies to which component the cell belongs. By default, this output point field is named “component”.

ImageConnectivity provides the following methods.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

22 Chapter 4. Running Filters

DRAFT

4.1. Field Filters

4.1.6 Field to Colors

vtkm::filter::FieldToColors takes a field in a data set, looks up each value in a color table, and writes the
resulting colors to a new field. The color to be used for each field value is specified using a vtkm::cont::-
ColorTable object. ColorTable objects are also used with VTK-m’s rendering module and are described in
Section 5.8.

FieldToColors has three modes it can use to select how it should treat the input field.

FieldToColors::SCALAR Treat the field as a scalar field. It is an error to a field of any type that cannot be
directly converted to a basic floating point number (such as a vector).

FieldToColors::MAGNITUDE Given a vector field, take the magnitude of each field value before looking it up in
the color table.

FieldToColors::COMPONENT Select a particular component of the vectors in a field to map to colors.

Additionally, FieldToColors has different modes in which it can represent colors in its output.

FieldToColors::RGB Output colors are represented as RGB values with each component represented by an
unsigned byte. Specifically, these are vtkm::Vec <vtkm::UInt8,3> values.

FieldToColors::RGBA Output colors are represented as RGBA values with each component represented by an
unsigned byte. Specifically, these are vtkm::Vec <vtkm::UInt8,4> values.

FieldToColors provides the following methods.

SetColorTable/GetColorTable Specifies the vtkm::cont::ColorTable object to use to map field values to
colors.

SetMappingMode/GetMappingMode Specifies the input mapping mode. The value is one of the FieldToCol-
ors::SCALAR, FieldToColors::MAGNITUDE, or FieldToColors::COMPONENT selectors described previously.

SetMappingToScalar Sets the input mapping mode to scalar. Shortcut for SetMappingMode(vtkm::filter::-
FieldToColors::SCALAR).

SetMappingToMagnitude Sets the input mapping mode to vector. Shortcut for SetMappingMode(vtkm::fil-
ter::FieldToColors::MAGNITUDE).

SetMappingToComponent Sets the input mapping mode to component. Shortcut for SetMappingMode(vtkm::-
filter::FieldToColors::COMPONENT).

IsMappingScalar Returns true if the input mapping mode is scalar (FieldToColorsSCALAR).

IsMappingMagnitude Returns true if the input mapping mode is magnitude (FieldToColors::MAGNITUDE).

IsMappingComponent Returns true if the input mapping mode is component (FieldToColors::COMPONENT).

SetMappingComponent/GetMappingComponent Specifies the component of the vector to use in the mapping.
This only has an effect if the input mapping mode is set to FieldToColors::COMPONENT.

SetOutputMode/GetOutputMode Specifies the output representation of colors. The value is one of the Field-
ToColors::RGB or FieldToColors::RGBA selectors described previously.

SetOutputToRGB Sets the output representation to 8-bit RGB. Shortcut for SetOutputMode(vtkm::filter::-
FieldToColors::RGB).

Chapter 4. Running Filters 23

DRAFT

4.1. Field Filters

SetOutputToRGBA Sets the output representation to 8-bit RGBA. Shortcut for SetOutputMode(vtkm::fil-
ter::FieldToColors::RGBA).

IsOutputRGB Returns true if the output representation is 8-bit RGB (FieldToColors::RGB).

IsOutputRGBA Returns true if the output representation is 8-bit RGBA (FieldToColors::RGBA).

SetNumberOfSamplingPoints/GetNumberOfSamplingPoints Specifies how many samples to use when looking
up color values. The implementation of FieldToColors first builds an array of color samples to quickly
look up colors for particular values. The size of this lookup array can be adjusted with this parameter. By
default, an array of 256 colors is used.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.7 Gradients

vtkm::filter::Gradients computes the gradient of a point based input field for every element in the input data
set. The gradient computation can either generate cell center based gradients, which are fast but less accurate,
or more accurate but slower point based gradients. The default for the filter is output as cell centered gradients,
but can be changed by using the SetComputePointGradient method. The default name for the output fields is
“Gradients”, but that can be overriden as always using the SetOutputFieldName method.

Gradients provides the following methods.

SetComputePointGradient/GetComputePointGradient Specifies whether we are computing point or cell based
gradients. The output field(s) of this filter will be point based if this is enabled.

SetComputeDivergence/GetComputeDivergence Specifies whether the divergence field will be generated. By
default the name of the array will be “Divergence” but can be changed by using SetDivergenceName. The
field will be a cell field unless ComputePointGradient is enabled. The input array must have 3 components
in order to compute this. The default is off.

SetComputeVorticity/GetComputeVorticity Specifies whether the vorticity field will be generated. By default
the name of the array will be “Vorticity” but can be changed by using SetVorticityName. The field will
be a cell field unless ComputePointGradient is enabled. The input array must have 3 components in order
to compute this. The default is off.

SetComputeQCriterion/GetComputeQCriterion Specifies whether the Q-Criterion field will be generated. By
default the name of the array will be “QCriterion” but can be changed by using SetQCriterionName. The
field will be a cell field unless ComputePointGradient is enabled. The input array must have 3 components
in order to compute this. The default is off.

24 Chapter 4. Running Filters

DRAFT

4.1. Field Filters

SetComputeGradient/GetComputeGradient Specifies whether the actual gradient field is written to the output.
When processing fields that have 3 components it is desirable to compute information such as Divergence,
Vorticity, or Q-Criterion without incurring the cost of also having to write out the 3x3 gradient result. The
default is on.

SetColumnMajorOrdering/SetRowMajorOrdering When processing input fields that have 3 components, the
output will be a a 3x3 gradient. By default VTK-m outputs all matrix like arrays in Row Major ordering
(C-Ordering). The ordering can be changed when integrating with libraries like VTK or with FORTRAN
codes that use Column Major ordering. The default is Row Major. This setting is only relevant for 3
component input fields when SetComputeGradient is enabled.

SetDivergenceName/GetDivergenceName Specifies the output cell normals field name. The default is “Diver-
gence”.

SetVorticityName/GetVorticityName Specifies the output Vorticity field name. The default is “Vorticity”

SetQCriterionName/GetQCriterionName Specifies the output Q-Criterion field name. The default is “QCrite-
rion”.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.8 Histogram

vtkm::filter::Histogram computes a histogram of a given field.

The default number of bins in the output histogram is 10, but that can be overridden using the SetNumberOfBins
method.

The default name for the output fields is “histogram”. The name can be overridden as always using the SetOut-
putFieldName method.

Histogram provides the following methods.

SetRange/GetRange Specifies an explicit range to use to generate the histogram. If no range is set the fields
global range is used.

GetBinDelta Get the size of each bin from the last computed field.

GetComputedRange Get the computed local range of the histogram from the last computed field.

Chapter 4. Running Filters 25

DRAFT

4.1. Field Filters

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.9 Point Average

vtkm::filter::PointAverage is the point average filter. It will take a data set with a collection of cells and
a field defined on the cells of the data set and create a new field defined on the points. The values of this new
derived field are computed by averaging the values of the input field at all the incident cells. This is a simple
way to convert a cell field to a point field.

The default name for the output cell field is the same name as the input point field. The name can be overridden
as always using the SetOutputFieldName method.

In addition the standard SetOutputFieldName and Execute methods, PointAverage provides the following
methods.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

26 Chapter 4. Running Filters

DRAFT

4.1. Field Filters

4.1.10 Point Elevation

vtkm::filter::PointElevation computes the “elevation” of a field of point coordinates in space. The filter
will take a data set and a field of 3 dimensional vectors and compute the distance along a line defined by a low
point and a high point. Any point in the plane touching the low point and perpendicular to the line is set to the
minimum range value in the elevation whereas any point in the plane touching the high point and perpendicular
to the line is set to the maximum range value. All other values are interpolated linearly between these two
planes. This filter is commonly used to compute the elevation of points in some direction, but can be repurposed
for a variety of measures. Example 4.1 gives a demonstration of the elevation filter.

The default name for the output field is “elevation”, but that can be overridden as always using the SetOutput-
FieldName method.

PointElevation provides the following methods.

SetLowPoint/SetHighPoint This pair of methods is used to set the low and high points, respectively, of the
elevation. Each method takes three floating point numbers specifying the x, y, and z components of the
low or high point.

SetRange Sets the range of values to use for the output field. This method takes two floating point numbers
specifying the low and high values, respectively.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.11 Point Transform

vtkm::filter::PointTransform is the point transform filter. The filter will take a data set and a field of 3
dimensional vectors and perform the specified point transform operation. Multiple point transformations can be
accomplished by subsequent calls to the filter and specifying the result of the previous transform as the input
field.

The default name for the output field is “transform”, but that can be overridden as always using the SetOut-
putFieldName method.

In addition the standard SetOutputFieldName and Execute methods, PointTransform provides the following
methods.

SetTranslation This method translates, or moves, each point in the input field by a given direction. This
method takes either a three component vector of floats, or the x, y, z translation values separately.

Chapter 4. Running Filters 27

DRAFT

4.1. Field Filters

SetRotation This method is used to rotate the input field about a given axis. This method takes a single
floating point number to specify the degrees of rotation and either a vector representing the rotation axis,
or the x, y, z axis components separately.

SetRotationX This method is used to rotate the input field about the X axis. This method takes a single
floating point number to specify the degrees of rotation.

SetRotationY This method is used to rotate the input field about the Y axis. This method takes a single
floating point number to specify the degrees of rotation.

SetRotationZ This method is used to rotate the input field about the Z axis. This method takes a single floating
point number to specify the degrees of rotation.

SetScale This method is used to scale the input field. This method takes either a single float to scale each
vector component of the field equally, or the x, y, z scaling values as separate floats, or a three component
vector.

SetTransform This is a generic transform method. This method takes a 4x4 matrix and applies this to the
input field.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.12 Surface Normals

vtkm::filter::SurfaceNormals computes the surface normals of a polygonal data set at its points and/or
cells. The filter takes a data set as input and by default, uses the active coordinate system to compute the
normals. Optionally, a coordinate system or a point field of 3d vectors can be explicitly provided to the Execute
method. The point and cell normals may be oriented to a point outside of the manifold surface by setting the
auto orient normals option (SetAutoOrientNormals), or they may point inward by also setting flip normals
(SetFlipNormals) to true. Triangle vertices will be wound counter-clockwise around the cell normals when the
consistency option (SetConsistency) is enabled. For non-polygonal cells, a zeroed vector is assigned. The point
normals are computed by averaging the cell normals of the incident cells of each point.

The default name for the output fields is “Normals”, but that can be overridden using the SetCellNormalsName
and SetPointNormalsName methods. The filter will also respect the name in SetOutputFieldName if neither of
the others are set.

SurfaceNormals provides the following methods.

28 Chapter 4. Running Filters

DRAFT

4.1. Field Filters

SetGenerateCellNormals/GetGenerateCellNormals Specifies whether the cell normals should be generated.
This is off by default.

SetGeneratePointNormals/GetGeneratePointNormals Specifies whether the point normals should be gener-
ated. This is on by default.

SetNormalizeCellNormals/GetNormalizeCellNormals Specifies whether cell normals should be normalized
(made unit length). This is on by default. The intended use case of this flag is for faster, approximate
point normals generation by skipping the normalization of the face normals. Note that when set to false,
the result cell normals will not be unit length normals and the point normals will be different.

SetAutoOrientNormals/GetAutoOrientNormals If true, any generated point and/or cell normals will be ori-
ented to point outwards from the surface. This requires a closed manifold surface or else the behavior is
undefined. This is off by default.

SetFlipNormals/GetFlipNormals When AutoOrientNormals is true, this option will reverse the point and cell
normals to point inward. This is off by default.

SetConsistency/GetConsistency When GenerateCellNormals is true, this option will ensure that the triangle
vertices in the output dataset are wound counter-clockwise around the generated cell normal. This only
affects triangles. This is on by default.

SetCellNormalsName/GetCellNormalsName Specifies the output cell normals field name. If no cell or point
normal name is specified, “Normals” is used.

SetPointNormalsName/GetPointNormalsName Specifies the output point normals field name. If no cell or point
normal name is specified, “Normals” is used.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.13 Vector Magnitude

vtkm::filter::VectorMagnitude takes a field comprising vectors and computes the magnitude for each vector.
The vector field is selected as usual with the SetActiveField method. The default name for the output field is
“magnitude”, but that can be overridden as always using the SetOutputFieldName method.

VectorMagnitude provides the following methods.

Chapter 4. Running Filters 29

DRAFT

4.1. Field Filters

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.14 Warp Scalar

vtkm::filter::WarpScalar is a specialized point transformation filter. The filter transforms points by moving
them based on a scalar field and a constant scale factor. This filter is useful for creating carpet plots.

The WarpScalar filter will take a data set, a normal field, a scalar field, and a constant scale factor. The
coordinates will be scaled based on the scalar field and the scale factor. If no explicit normal field is provided
the filter will search for a field named “normal”. If no explicit scalar field is provided the filter will search for a
field named “scalarfactor”.

The default name for the output field is “warpscalar”, but that can be overridden as always using the SetOut-
putFieldName method.

In addition to the standard SetOutputFieldName and Execute methods, WarpScalar provides the following
methods.

SetNormalField This method allows the user to select the name of the normal field. The normal field is the B
field in the warp equation of A+B×scaleAmount×scalarFactor (where A is the original position of the
point).

SetScalarFactorField This method allows the user to select the name of the scale factor field. The scale factor
field is the scalarFactor field in the warp equation of A+B× scaleAmount× scalarFactor (where A is
the original position of the point).

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

30 Chapter 4. Running Filters

DRAFT

4.1. Field Filters

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.15 Warp Vector

vtkm::filter::WarpVector is a specialized point transformation filter. The filter transforms points by moving
them based on a vector field and a constant scale factor. This filter can be used to highlight interesting features
such as flow or deformations.

The WarpScalar filter will take a data set, a vector field, and a constant scale factor. The coordinates will be
scaled based on the vector field and the scale factor. If no explicit vector field is provided the filter will search
for a field named “normal”.

The default name for the output field is “warpvector”, but that can be overridden as always using the SetOut-
putFieldName method.

In addition the standard SetOutputFieldName and Execute methods, WarpVector provides the following meth-
ods.

SetVectorField This method allows the user to select the name of the vector field. The vector field is the B
field in the warp equation of A+B (where A is the original position of the point).

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.1.16 ZFP Compression

vtkm::filter::ZFPCompressor takes a 1D, 2D, or 3D field and compresses the values using the compression
algorithm ZFP. The field is selected as usual with the SetActiveField method. The rate of compression is set
using SetRate. The default name for the output field is “compressed”

ZFPCompressor provides the following methods:

SetRate/GetRate Specifies the rate of compression.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

Chapter 4. Running Filters 31

DRAFT

4.2. Data Set Filters

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

vtkm::filter::ZFPDecompressor takes a field of compressed values and decompresses into scalar values using
the compression algorithm ZFP. The field is selected as usual with the SetActiveField method. The rate of
compression is set using SetRate. The default name for the output field is “decompressed”

ZFPDecompressor provides the following methods:

SetRate Specifies the rate of compression.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.2 Data Set Filters

Data set filters are a class of filters that generate a new data set with a new topology. This new topology is
typically derived from an existing data set. For example, a data set can be significantly altered by adding,
removing, or replacing cells.

Before a filter is run, it is important to set up the state of the filter object to the parameters of the algorithm.
The state parameters will vary from one filter to the next, but one state parameter that all data set filters share
is the “active” cell set for the operation. The active cell set is set with a call to the SetActiveCellSetIndex.
Likewise, SetActiveCoordinateSystem selects which coordinate system to operate on. By default, the filter will
operate on the first cell set and coordinate system. (See Sections 11.2 and 11.4 for more information about cell
sets and coordinate systems, respectively.)

32 Chapter 4. Running Filters

DRAFT

4.2. Data Set Filters

All data set filters contain an Execute method. When calling Execute a vtkm::cont::DataSet or vtkm::-
cont::MultiBlock object with the input data is provided as an argument. The Execute method returns a
DataSet or MultiBlock object (matching the type of the input to Execute), which contains the data generated.

The following example provides a simple demonstration of using a data set filter. It specifically uses the vertex
clustering filter, which is one of the data set filters.

Example 4.2: Using VertexClustering, which is a data set filter.
1 vtkm :: filter :: VertexClustering vertexClustering ;
2
3 vertexClustering . SetNumberOfDivisions (vtkm :: Id3 (128 , 128 , 128));
4
5 vtkm :: cont :: DataSet simplifiedSurface = vertexClustering . Execute (originalSurface);

4.2.1 Clean Grid

vtkm::filter::CleanGrid is a filter that converts a cell set to an explicit representation and potentially removes
redundant or unused data. It does this by iterating over all cells in the data set, and for each one creating the
explicit cell representation that is stored in the output. (Explicit cell sets are described in Section 11.2.2.)
One benefit of using CleanGrid is that it can optionally remove unused points and combine coincident points.
Another benefit is that the resulting cell set will be of a known specific type.

The result of vtkm::filter::CleanGrid is not necessarily smaller, memory-wise, than its input. For
example, “cleaning” a data set with a structured topology will actually result in a data set that requires
much more memory to store an explicit topology.

Common Errors

CleanGrid provides the following methods.

SetCompactPointFields/GetCompactPointFields Sets a Boolean flag that determines whether unused points
are removed from the output. If true (the default), then the output data set will have a new coordinate
system containing only those points being used by the cell set, and the indices of the cells will be adjusted
to the new ordering of points.

SetMergePoints/GetMergePoints Sets a Boolean flag that determines whether points coincident in space are
merged into a single point. If true (the default), then the output data set will have a new coordinate system
containing containing only points that are unique in space, and the indices of the cells will be adjusted to
the new set of points. The tolerance parameters control the proximity used for points to be considered
coincident.

SetTolerance/GetTolerance Defines the tolerance used when determining whether two points are considered
coincident. Because floating point parameters have limited precision, point coordinates that are essentially
the same might not be bit-wise exactly the same. Thus, the CleanGrid filter has the ability to find and
merge points that are close but perhaps not exact. The default tolerance is 10−6.

SetToleranceIsAbsolute/GetToleranceIsAbsolute Sets a Boolean flag that determines whether the tolerance
parameter should be considered relative to the size of the data set. If false (the default), then the tolerance
is multiplied by the length of the diagonal of the bounds of the data being processed. If true, then the
tolerance value is used as is.

Chapter 4. Running Filters 33

DRAFT

4.2. Data Set Filters

SetRemoveDegenerateCellsGetRemoveDegenerateCells Sets a Boolean flag that determines whether degener-
ate cells should be removed. If true (the default), then the CleanGrid filter will look for repeated points
in cells and, if the repeated points cause the cell to drop dimensionality, the cell is removed. This is
particularly useful when point merging is on as this operation can create degenerate cells.

SetFastMerge/GetFastMerge Sets a Boolean flag that determines whether to use a faster but less accurate
method for finding coincident points. If true (the default), some corners are cut when computing coincident
points. This will make the point merge step go faster but the tolerance will not be strictly followed. If
false, then extra steps will be taken to ensure that all points within tolerance are merged and that only
points within tolerance are merged. This flag has no effect if point merging is off.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.2.2 Clip with Implicit Function

Clipping is an operation that removes regions from the data set based on a user-provided value or function.
The vtkm::filter::ClipWithImplicitFunction takes an implicit function as an argument. VTK-m’s implicit
functions[, described in detail in Section [AddReferece],] are simple objects that take 3D spatial coor-
dinates and return a field value that often describes a shape. ClipWithImplicitFunction discards regions of
the original data set according to the values of the implicit function. (A companion filter that discards a region
of the data based on the value of a scalar field is described in Section 4.3.1.)

The result of ClipWithImplicitFunction is a volume. If a cell has its vertices positioned all outside the implicit
function, then it will be discarded entirely. Likewise, if a cell its vertices all inside the implicit function, then
it will be retained in its entirety. If a cell has some vertices inside the implicit function and some outside, then
the cell will be split into the portions inside (which will be retained) and the portions outside (which will be
discarded).

ClipWithImplicitFunction provides the following methods.

SetImplicitFunctionGetImplicitFunction Specifies the implicit function to be used to perform the clip op-
eration. The filter does not directly take a vtkm::ImplicitFunction but rather an ImplicitFunction
wrapped inside of a vtkm::cont::ImplicitFunctionHandle. The ImplicitFunctionHandle manages
the use of the virtual methods in ImplicitFunction on different devices, which may be using different
memory spaces or require different processor instructions. An ImplicitFunctionHandle is easily created
with the vtkm::cont::make ImplicitFunctionHandle function.

SetInvertClip Specifies whether the result of the clip filter should be inverted. If set to false (the default), all
regions where the implicit function is negative will be removed. If set to true, all regions where the implicit
function is positive will be removed.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

34 Chapter 4. Running Filters

DRAFT

4.2. Data Set Filters

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

In the example provided below the vtkm::Sphere implicit function is used. This function evaluates to a negative
value if points from the original dataset occur within the sphere, evaluates to 0 if the points occur on the surface
of the sphere, and evaluates to a positive value if the points occur outside the sphere.

Example 4.3: Using ClipWithImplicitFunction.
1 // Parameters needed for implicit function
2 vtkm :: Sphere implicitFunction (vtkm :: make_Vec (1, 0, 1), 0.5);
3
4 // Create an instance of a clip filter with this implicit function .
5 vtkm :: filter :: ClipWithImplicitFunction clip;
6 clip. SetImplicitFunction (
7 vtkm :: cont :: make_ImplicitFunctionHandle (implicitFunction));
8
9 // By default , ClipWithImplicitFunction will remove everything inside the sphere .

10 // Set the invert clip flag to keep the inside of the sphere and remove everything
11 // else.
12 clip. SetInvertClip (true);
13
14 // Execute the clip filter
15 vtkm :: cont :: DataSet outData = clip. Execute (inData);

4.2.3 External Faces

vtkm::filter::ExternalFaces is a filter that extracts all the external faces from a polyhedral data set. An
external face is any face that is on the boundary of a mesh. Thus, if there is a hole in a volume, the boundary
of that hole will be considered external. More formally, an external face is one that belongs to only one cell in a
mesh.

ExternalFaces provides the following methods.

SetCompactPoints/GetCompactPoints Specifies whether point fields should be compacted. If on, the filter will
remove from the output all points that are not used in the resulting surface. If off (the default), unused
points will remain listed in the topology, but point fields and coordinate systems will be shallow-copied to
the output.

SetPassPolyData/GetPassPolyData Specifies how polygonal data (polygons, lines, and vertices) will be han-
dled. If on (the default), these cells will be passed to the output. If off, these cells will be removed from
the output. (Because they have less than 3 topological dimensions, they are not considered to have any
“faces.”)

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

Chapter 4. Running Filters 35

DRAFT

4.2. Data Set Filters

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.2.4 Ghost Cell Classification

vtkm::filter::GhostCellClassify adds a cell centered field to the input data set that marks each cell as
either vtkm::CellClassification::NORMAL or vtkm::CellClassification::GHOST. The outer layer of cells
are marked as GHOST, and the remainder are marked as *CellClassificationNORMAL. This filter only supports
uniform and rectilinear data sets. The default field is “vtkmGhostCells”.

GhostCellClassify provides the following methods.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as the input field. The default index is 0, which is the first coordinate system.

SetOutputFieldName/GetOutputFieldName Specifies the name of the output field generated.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.2.5 Vertex Clustering

vtkm::filter::VertexClustering is a filter that simplifies a polygonal mesh. It does so by dividing space into
a uniform grid of bin and then merges together all points located in the same bin. The smaller the dimensions of
this binning grid, the fewer polygons will be in the output cells and the coarser the representation. This surface
simplification is an important operation to support level of detail (LOD) rendering in visualization applications.
Example 4.2 provides a demonstration of the vertex clustering filter.

VertexClustering provides the following methods.

SetNumberOfDivisions/GetNumberOfDimensions Specifies the dimensions of the uniform grid that establishes
the bins used for clustering. Setting smaller numbers of dimensions produces a smaller output, but with a
coarser representation of the surface. The dimensions are provided as a vtkm::Id3.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

36 Chapter 4. Running Filters

DRAFT

4.3. Data Set with Field Filters

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.3 Data Set with Field Filters

Data set with field filters are a class of filters that generate a new data set with a new topology. This new
topology is derived from an existing data set and at least one of the fields in the data set. For example, a field
might determine how each cell is culled, clipped, or sliced.

Before a filter is run, it is important to set up the state of the filter object to the parameters of the algorithm.
The state parameters will vary from one filter to the next, but one state parameter that all data set with field
filters share is the “active” field for the operation. The active field is set with a call to the SetActiveField
method. The argument to SetActiveField is a string that names this input field. Another state parameters all
data set with field filters share is the “active” cell set for the operation. The active cell set is set with a call to the
SetActiveCellSetIndex. Likewise, SetActiveCoordinateSystem selects which coordinate system to operate
on. By default, the filter will operate on the first cell set and coordinate system. (See Sections 11.2 and 11.4 for
more information about cell sets and coordinate systems, respectively.) Finally, SetOutputFieldName, specifies
the name assigned to the generated field. If not specified, then the filter will use a default name.

All data set with field filters contain an Execute method. When calling Execute a vtkm::cont::DataSet or
vtkm::cont::MultiBlock object with the input data is provided as an argument. The Execute method returns
a DataSet or MultiBlock object (matching the type of the input to Execute), which contains the data generated.

The following example provides a simple demonstration of using a data set with field filter. It specifically uses
the Marching Cubes filter, which is one of the data set with field filters.

Example 4.4: Using MarchingCubes, which is a data set with field filter.
1 vtkm :: filter :: MarchingCubes marchingCubes ;
2
3 marchingCubes . SetActiveField (" pointvar ");
4 marchingCubes . SetIsoValue (10.0);
5
6 vtkm :: cont :: DataSet isosurface = marchingCubes . Execute (inData);

4.3.1 Clip with Field

Clipping is an operation that removes regions from the data set based on a user-provided value or function. The
vtkm::filter::ClipWithField filter takes a clip value as an argument and removes regions where a named
scalar field is below (or above) that value. (A companion filter that discards a region of the data based on an
implicit function is described in Section 4.2.2.)

The result of ClipWithField is a volume. If a cell has field values at its vertices that are all below the specified
value, then it will be discarded entirely. Likewise, if a cell has field values at its vertices that are all above
the specified value, then it will be retained in its entirety. If a cell has some vertices with field values below
the specified value and some above, then the cell will be split into the portions above the value (which will be
retained) and the portions below the value (which will be discarded).

This operation is sometimes called an isovolume because it extracts the volume of a mesh that is inside the
iso-region of a scalar. This is in contrast to an isosurface (also known as a contour), which extracts only the
surface of that iso-value. (See Section 4.3.3 for extracting an isosurface.) ClipWithField is also similar to a
threshold operation, which extracts cells based on the value of field. The difference is that threshold will either

Chapter 4. Running Filters 37

DRAFT

4.3. Data Set with Field Filters

keep or remove entire cells based on the field values whereas clip with carve cells that straddle the valid regions.
(See section 4.3.4 for threshold extraction.)

ClipWithField provides the following methods.

SetClipValue/GetClipValue Specifies the field value for the clip operation. Regions where the active field is
less than this value are clipped away from each input cell.

SetInvertClip Specifies if the result for the clip filter should be inverted. If set to false (the default), regions
where the active field is less than the specified clip value are removed. If set to true, regions where the
active field is more than the specified clip value are removed.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

Example 4.5: Using ClipWithField.
1 // Create an instance of a clip filter that discards all regions with scalar
2 // value less than 25.
3 vtkm :: filter :: ClipWithField clip;
4 clip. SetClipValue (25.0);
5 clip. SetActiveField (" pointvar ");
6
7 // Execute the clip filter
8 vtkm :: cont :: DataSet outData = clip. Execute (inData);

4.3.2 Ghost Cell Removal

vtkm::filter::GhostCellRemove is a filter that is used to remove cells from a data set according to a cell
centered field that is provided to the filter. The default field used for removal is “vtkmGhostCells”. The field is
of type vtkm::UInt8, and represents a bit-field to classify each cell. By default, if the input is a structured data
set the filter will attempt to output a structured data set. If this is not possible, an explict data set is produced.
The field specified for cell removal is not passed to the output.

GhostCellRemove provides the following methods.

RemoveAllGhost Remove all cells where the value is a ghost cell (i.e. vtkm::CellClassification::GHOST).

RemoveByType Remove cells specified by the vtkm::UInt8 using a bitwise “and” operation with the type field.
The values in vtkm::CellClassification can be combined with a logical “or” operation to specify the
type. Current values of vtkm::CellClassification include: NORMAL, GHOST, and INVALID.

38 Chapter 4. Running Filters

DRAFT

4.3. Data Set with Field Filters

ConvertOutputToUnstructured Return an explict data set.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.3.3 Marching Cubes

Contouring is one of the most fundamental filters in scientific visualization. A contour is the locus where a field is
equal to a particular value. A topographic map showing curves of various elevations often used when hiking in hilly
regions is an example of contours of an elevation field in 2 dimensions. Extended to 3 dimensions, a contour gives
a surface. Thus, a contour is often called an isosurface. Marching Cubes is a well know algorithm for computing
contours and is implemented by vtkm::filter::MarchingCubes. Example 4.4 provides a demonstration of the
Marching Cubes filter.

MarchingCubes provides the following methods.

SetIsoValue/GetIsoValue Specifies the value on which to extract the contour. The contour will be the surface
where the field (provided to Execute) is equal to this value.

SetMergeDuplicatePoints/GetMergeDuplicatePoints Specifies whether coincident points in the data set
should be merged. Because the Marching Cubes filter (like all filters in VTK-m) runs in parallel, parallel
threads can (and often do) create duplicate versions of points. When this flag is set to true, a secondary
operation will find all duplicated points and combine them together.

SetGenerateNormals/GetGenerateNormals Specifies whether to generate normal vectors for the surface. Nor-
mals are used in shading calculations during rendering and can make the surface appear more smooth. By
default, the generated normals are based on the gradient of the field being contoured and can be quite
expensive to compute. A faster method is available that computes the normals based on the faces of the
isosurface mesh, but the normals do not look as good as the gradient based normals. Fast normals can be
enabled using the flags described bellow.

SetComputeFastNormalsForStructured/GetComputeFastNormalsForStructured Specifies whether to use the
fast method of normals computation for Structured data sets. This is only valid if the generate normals
flag is set.

SetComputeFastNormalsForUnstructured/GetComputeFastNormalsForUnstructured Specifies whether to
use the fast method of normals computation for unstructured data sets. This is only valid if the gen-
erate normals flag is set.

SetNormalArrayName/GetNormalArrayName Specifies the name used for the normals field if it is being created.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

Chapter 4. Running Filters 39

DRAFT

4.3. Data Set with Field Filters

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

4.3.4 Threshold

A threshold operation removes topology elements from a data set that do not meet a specified criterion. The
vtkm::filter::Threshold filter removes all cells where the field (provided to Execute) is not between a range
of values.

Note that Threshold either passes an entire cell or discards an entire cell. This can consequently lead to jagged
surfaces at the interface of the threshold caused by the shape of cells that jut inside or outside the removed
region. See Section 4.3.1 for a clipping filter that will clip off a smooth region of the mesh.

Threshold provides the following methods.

SetLowerThreshold/GetLowerThreshold Specifies the lower scalar value. Any cells where the scalar field is
less than this value are removed.

SetUpperThresholdGetUpperThreshold Specifies the upper scalar value. Any cells where the scalar field is
more than this value are removed.

SetActiveField/GetActiveFieldName Specifies the name of the field to use as input.

SetUseCoordinateSystemAsField/GetUseCoordinateSystemAsField Specifies a Boolean flag that determines
whether to use point coordinates as the input field. Set to false by default. When true, the values for the
active field are ignored.

SetActiveCoordinateSystem/GetActiveCoordinateSystemIndex Specifies the index of which coordinate sys-
tem to use as when computing spatial locations in the mesh. The default index is 0, which is the first
coordinate system.

SetActiveCellSetIndex/GetActiveCellSetIndex Specifies the index for the cell set to use from the data set
provided to the Execute method. The default index is 0, which is the first cell set.

Execute Takes a data set, executes the filter on a device, and returns a data set that contains the result.

SetFieldsToPass/GetFieldsToPass Specifies which fields to pass from input to output. By default all fields
are passed. See Section 4.4.2 for more details.

40 Chapter 4. Running Filters

DRAFT

4.3. Data Set with Field Filters

4.3.5 Streamlines

Streamlines are a powerful technique for the visualization of flow fields. A streamline is a curve that is parallel
to the velocity vector of the flow field. Individual streamlines are computed from an initial point location (seed)
using a numerical method to integrate the point through the flow field.

vtkm::filter::Streamline provides the following methods.

SetSeeds Specifies the seed locations for the streamlines. Each seed is advected in the vector field to generate
one streamline for each seed.

SetStepSize Specifies the step size used for the numerical integrator (4th order Runge-Kutta method) to inte-
grate the seed locations through the flow field.

SetNumberOfSteps Specifies the number of integration steps to be performed on each streamline.

Example 4.6: Using Streamline, which is a data set with field filter.
1 vtkm :: filter :: Streamline streamlines ;
2
3 // Specify the seeds .
4 vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault , 3>> seedArray ;
5 seedArray . Allocate (2);
6 seedArray . GetPortalControl (). Set (0, vtkm ::Vec <vtkm :: FloatDefault , 3>(0, 0, 0));
7 seedArray . GetPortalControl (). Set (1, vtkm ::Vec <vtkm :: FloatDefault , 3>(1, 1, 1));
8
9 streamlines . SetActiveField (" vectorvar ");

10 streamlines . SetStepSize (0.1f);
11 streamlines . SetNumberOfSteps (100);
12 streamlines . SetSeeds (seedArray);
13
14 vtkm :: cont :: DataSet streamlineCurves = streamlines . Execute (inData);

4.3.6 Pathlines

Pathlines are the analog to Streamlines for time varying vector fields. Individual pathlines are computed from
an initial point location (seed) using a numerical method to integrate the point through the flow field. This filter
requires two data sets as input. The data set passed into the filter is termed “Previous” and the “Next” data set
is specified to the filter using a method.

vtkm::filter::Pathline provides the following methods.

SetPreviousTime Specifies time value for the input data set.

SetNextTime Specifies time value for the next data set.

SetNextDataSet Specifies the data set for the next time step.

SetSeeds Specifies the seed locations for the pathlines. Each seed is advected in the vector field to generate one
streamline for each seed.

SetStepSize Specifies the step size used for the numerical integrator (4th order Runge-Kutta method) to inte-
grate the seed locations through the flow field.

SetNumberOfSteps Specifies the number of integration steps to be performed on each pathline.

Chapter 4. Running Filters 41

DRAFT

4.4. Advanced Field Management

Example 4.7: Using Pathline, which is a data set with field filter.
1 vtkm :: filter :: Pathline pathlines ;
2
3 // Specify the seeds .
4 vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault , 3>> seedArray ;
5 seedArray . Allocate (2);
6 seedArray . GetPortalControl (). Set (0, vtkm ::Vec <vtkm :: FloatDefault , 3>(0, 0, 0));
7 seedArray . GetPortalControl (). Set (1, vtkm ::Vec <vtkm :: FloatDefault , 3>(1, 1, 1));
8
9 pathlines . SetActiveField (" vectorvar ");

10 pathlines . SetStepSize (0.1f);
11 pathlines . SetNumberOfSteps (100);
12 pathlines . SetSeeds (seedArray);
13 pathlines . SetPreviousTime (0.0f);
14 pathlines . SetNextTime (1.0f);
15 pathlines . SetNextDataSet (inData2);
16
17 vtkm :: cont :: DataSet pathlineCurves = pathlines . Execute (inData1);

4.4 Advanced Field Management

Most filters work with fields as inputs and outputs to their algorithms. Although in the previous discussions of
the filters we have seen examples of specifying fields, these examples have been kept brief in the interest of clarity.
In this section we revisit how filters manage fields and provide more detailed documentation of the controls.

Note that not all of the discussion in this section applies to all the aforementioned filters. For example, not all
filters have a specified input field. But where possible, the interface to the filter objects is kept consistent.

4.4.1 Input Fields

Many of VTK-m’s filters have a method named SetActiveField, which selects a field in the input data to use
as the data for the filter’s algorithm. We have already seen how SetActiveField takes the name of the field as
an argument. However, SetActiveField also takes an optional second argument that specifies which topological
elements the field is associated with (such as points or cells). If specified, this argument is one of the following.

vtkm::cont::Field::ASSOC ANY Any field regardless of the association. (This is the default if no association
is given.)

vtkm::cont::Field::ASSOC POINTS A field that applies to points. There is a separate field value attached to
each point. Point fields usually represent samples of continuous data that can be reinterpolated through
cells. Physical properties such as temperature, pressure, density, velocity, etc. are usually best represented
in point fields. Data that deals with the points of the topology, such as displacement vectors, are also
appropriate for point data.

vtkm::cont::Field::ASSOC CELL SET A field that applies to cells. There is a separate field value attached
to each cell in a cell set. Cell fields usually represent values from an integration over the finite cells of the
mesh. Integrated values like mass or volume are best represented in cell fields. Statistics about each cell
like strain or cell quality are also appropriate for cell data.

vtkm::cont::Field::ASSOC WHOLE MESH A “global” field that applies to the whole mesh. These often contain
summary or annotation information. An example of a whole mesh field could be the volume that the mesh
covers.

42 Chapter 4. Running Filters

DRAFT

4.4. Advanced Field Management

Example 4.8: Setting a field’s active filter with an association.
1 filter . SetActiveField (" pointvar ", vtkm :: cont :: Field :: Association :: POINTS);

It is possible to have two fields with the same name that are only differentiatable by the association. That
is, you could have a point field and a cell field with different data but the same name. Thus, it is best
practice to specify the field association when possible. Likewise, it is poor practice to have two fields with
the same name, particularly if the data are not equivalent in some way. It is often the case that fields are
selected without an association.

Common Errors

It is also possible to set the active scalar field as a coordinate system of the data. A coordinate system essentially
provides the spatial location of the points of the data and they have a special place in the vtkm::cont::DataSet
structure. (See Section 11.4 for details on coordinate systems.) You can use a coordinate system as the active
scalars by calling the SetUseCoordinateSystemAsField method with a true flag. Since a DataSet can have
multiple coordinate systems, you can select the desired coordinate system with SetActiveCoordinateSystem.
(By default, the first coordinate system will be used.)

[Example of setting the active coordinate system.]

4.4.2 Passing Fields from Input to Output

After a filter successfully executes and returns a new data set, fields are mapped from input to output. Depending
on what operation the filter does, this could be a simple shallow copy of an array, or it could be a computed
operation. By default, the filter will automatically pass all fields from input to output (performing whatever
transformations are necessary). You can control which fields are passed (and equivalently which are not) with
the SetFieldsToPass methods of vtkm::filter::Filter.

There are multiple ways to to use Filter::SetFieldsToPass to control what fields are passed. If you want
to turn off all fields so that none are passed, call SetFieldsToPass with vtkm::filter::FieldSelection::-
MODE NONE.

Example 4.9: Turning off the passing of all fields when executing a filter.
1 filter . SetFieldsToPass (vtkm :: filter :: FieldSelection :: MODE_NONE);

If you want to pass one specific field, you can pass that field’s name to SetFieldsToPass.

Example 4.10: Setting one field to pass by name.
1 filter . SetFieldsToPass (" pointvar ");

Or you can provide a list of fields to pass by giving SetFieldsToPass an initializer list of names.

Example 4.11: Using a list of fields for a filter to pass.
1 filter . SetFieldsToPass ({ " pointvar ", " cellvar " });

If you want to instead select a list of fields to not pass, you can add vtkm::filter::FieldSelection::MODE -
EXCLUDE as an argument to SetFieldsToPass.

Example 4.12: Excluding a list of fields for a filter to pass.
1 filter . SetFieldsToPass ({ " pointvar ", " cellvar " },
2 vtkm :: filter :: FieldSelection :: MODE_EXCLUDE);

Chapter 4. Running Filters 43

DRAFT

4.4. Advanced Field Management

Ultimately, Filter::SetFieldsToPass takes a vtkm::filter::FieldSelection object. You can create one
directly to select (or exclude) specific fields and their associations.

Example 4.13: Using vtkm::filter::FieldSelection.
1 vtkm :: filter :: FieldSelection fieldSelection ;
2 fieldSelection . AddField (" scalars ");
3 fieldSelection . AddField (" cellvar ", vtkm :: cont :: Field :: Association :: CELL_SET);
4
5 filter . SetFieldsToPass (fieldSelection);

It is also possible to specify field attributions directly to Filter::SetFieldsToPass. If you only have one field,
you can just specify both the name and attribution. If you have multiple fields, you can provide an initializer
list of std::pair or vtkm::Pair containing a std::string and a vtkm::cont::Field::AssociationEnum.
In either case, you can add an optional last argument of vtkm::filter::FieldSelection::MODE EXCLUDE to
exclude the specified filters instead of selecting them.

Example 4.14: Selecting one field and its association for a filter to pass.
1 filter . SetFieldsToPass (" pointvar ", vtkm :: cont :: Field :: Association :: POINTS);

Example 4.15: Selecting a list of fields and their associations for a filter to pass.
1 filter . SetFieldsToPass (
2 { vtkm :: make_Pair (" pointvar ", vtkm :: cont :: Field :: Association :: POINTS),
3 vtkm :: make_Pair (" cellvar ", vtkm :: cont :: Field :: Association :: CELL_SET),
4 vtkm :: make_Pair (" scalars ", vtkm :: cont :: Field :: Association :: ANY) });

44 Chapter 4. Running Filters

DRAFT
CHAPTER

FIVE

RENDERING

Rendering, the generation of images from data, is a key component to visualization. To assist with rendering,
VTK-m provides a rendering package to produce imagery from data, which is located in the vtkm::rendering
namespace.

The rendering package in VTK-m is not intended to be a fully featured rendering system or library. Rather, it
is a lightweight rendering package with two primary use cases:

1. New users getting started with VTK-m need a “quick and dirty” render method to see their visualization
results.

2. In situ visualization that integrates VTK-m with a simulation or other data-generation system might need
a lightweight rendering method.

Both of these use cases require just a basic rendering platform. Because VTK-m is designed to be integrated
into larger systems, it does not aspire to have a fully featured rendering system.

VTK-m’s big sister toolkit VTK is already integrated with VTK-m and has its own fully featured rendering
system. If you need more rendering capabilities than what VTK-m provides, you can leverage VTK instead.

Did you know?

5.1 Scenes and Actors

The primary intent of the rendering package in VTK-m is to visually display the data that is loaded and
processed. Data are represented in VTK-m by vtkm::cont::DataSet objects. DataSet is presented in Chapters
3 and 4. For now we treat DataSet mostly as an opaque object that can be passed around readers, writers,
filters, and rendering units. Detailed documentation for DataSet is provided in Chapter 11.

To render a DataSet, the data are wrapped in a vtkm::rendering::Actor class. The Actor holds the compo-
nents of the DataSet to render (a cell set, a coordinate system, and a field). A color table can also be optionally
be specified, but a default color table will be specified otherwise.

Actors are collected together in an object called vtkm::rendering::Scene. An Actor is added to a Scene with
the AddActor method. The following example demonstrates creating a Scene with one Actor.

DRAFT

5.2. Canvas

Example 5.1: Creating an Actor and adding it to a Scene.
1 vtkm :: rendering :: Actor actor (surfaceData . GetCellSet (),
2 surfaceData . GetCoordinateSystem (),
3 surfaceData . GetField (" RandomPointScalars "));
4
5 vtkm :: rendering :: Scene scene ;
6 scene . AddActor (actor);

5.2 Canvas

A canvas is a unit that represents the image space that is the target of the rendering. The canvas’ primary
function is to manage the buffers that hold the working image data during the rendering. The canvas also
manages the context and state of the rendering subsystem.

vtkm::rendering::Canvas is the base class of all canvas objects. Each type of rendering system has its own
canvas subclass, but currently the only rendering system provided by VTK-m is the internal ray tracer. [Make
sure this becomes true.] The canvas for the ray tracer is vtkm::rendering::CanvasRayTracer. Canvas-
RayTracer is typically constructed by giving the width and height of the image to render.

Example 5.2: Creating a canvas for rendering.
1 vtkm :: rendering :: CanvasRayTracer canvas (1920 , 1080);

5.3 Mappers

A mapper is a unit that converts data (managed by an Actor) and issues commands to the rendering subsystem
to generate images. All mappers in VTK-m are a subclass of vtkm::rendering::Mapper. Different rendering
systems (as established by the Canvas) often require different mappers. Also, different mappers could render
different types of data in different ways. For example, one mapper might render polygonal surfaces whereas
another might render polyhedra as a translucent volume. Thus, a mapper should be picked to match both the
rendering system of the Canvas and the data in the Actor.

The following mappers are provided by VTK-m.

vtkm::rendering::MapperRayTracer Uses VTK-m’s built in ray tracing system to render the visible surface
of a mesh. MapperRayTracer only works in conjunction with CanvasRayTracer.

vtkm::rendering::MapperCylinder Uses VTK-m’s built in ray tracing system to render cylinders as lines of
a mesh. MapperCylinder only works in conjunction with CanvasRayTracer.

vtkm::rendering::MapperPoint Uses VTK-m’s built in ray tracing system to render the visible points/vertices
of a mesh. MapperPoint only works in conjunction with CanvasRayTracer.

vtkm::rendering::MapperQuad Uses VTK-m’s built in ray tracing system to render the visible quadrilaterals
of a mesh. MapperQuad only works in conjunction with CanvasRayTracer.

vtkm::rendering::MapperVolume Uses VTK-m’s built in ray tracing system to render polyhedra as a translu-
cent volume. MapperVolume only works in conjunction with CanvasRayTracer.

vtkm::rendering::MapperWireframer Uses VTK-m’s built in ray tracing system to render the cell edges (i.e.
the “wireframe”) of a mesh. MapperWireframer only works in conjunction with CanvasRayTracer.

46 Chapter 5. Rendering

DRAFT

5.4. Views

5.4 Views

A view is a unit that collects all the structures needed to perform rendering. It contains everything needed to
take a Scene (Section 5.1) and use a Mapper (Section 5.3) to render it onto a Canvas (Section 5.2). The view
also annotates the image with spatial and scalar properties.

The base class for all views is vtkm::rendering::View. View is an abstract class, and you must choose one of the
three provided subclasses, vtkm::rendering::View3D, vtkm::rendering::View2D, and vtkm::rendering::-
View3D, depending on the type of data being presented. All three view classes take a Scene, a Mapper, and a
Canvas as arguments to their constructor.

Example 5.3: Constructing a View.
1 vtkm :: rendering :: Actor actor (surfaceData . GetCellSet (),
2 surfaceData . GetCoordinateSystem (),
3 surfaceData . GetField (" RandomPointScalars "));
4
5 vtkm :: rendering :: Scene scene ;
6 scene . AddActor (actor);
7
8 vtkm :: rendering :: MapperRayTracer mapper ;
9 vtkm :: rendering :: CanvasRayTracer canvas (1920 , 1080);

10
11 vtkm :: rendering :: View3D view(scene , mapper , canvas);
12 view. Initialize ();

Once the View is created but before it is used to render, the Initialize method should be called. This is
demonstrated in Example 5.3.

The View also maintains a background color (the color used in areas where nothing is drawn) and a foreground
color (the color used for annotation elements). By default, the View has a black background and a white
foreground. These can be set in the view’s constructor, but it is a bit more readable to set them using the
View::SetBackground and View::SetForeground methods. In either case, the colors are specified using the
vtkm::rendering::Color helper class, which manages the red, green, and blue color channels as well as an
optional alpha channel. These channel values are given as floating point values between 0 and 1.

Example 5.4: Changing the background and foreground colors of a View.
1 view. SetBackgroundColor (vtkm :: rendering :: Color (1.0f, 1.0f, 1.0f));
2 view. SetForegroundColor (vtkm :: rendering :: Color (0.0f, 0.0f, 0.0f));

Although the background and foreground colors are set independently, it will be difficult or impossible to see
the annotation if there is not enough contrast between the background and foreground colors. Thus, when
changing a View’s background color, it is always good practice to also change the foreground color.

Common Errors

Once the View is constructed, intialized, and set up, it is ready to render. This is done by calling the View::Paint
method.

Example 5.5: Using Canvas::Paint in a display callback.
1 view. Paint ();

Putting together Examples 5.3, 5.4, and 5.5, the final render of a view looks like that in Figure 5.1.

Chapter 5. Rendering 47

DRAFT

5.5. Changing Rendering Modes

Figure 5.1: Example output of VTK-m’s rendering system.

Of course, the vtkm::rendering::CanvasRayTracer created in 5.3 is an offscreen rendering buffer, so you cannot
immediately see the image. When doing batch visualization, an easy way to output the image to a file for later
viewing is with the View::SaveAs method. This method saves the file in the portable pixelmap (PPM) format.

Example 5.6: Saving the result of a render as an image file.
1 view. SaveAs (" BasicRendering .ppm ");

We visit doing interactive rendering in a GUI later in Section 5.7.

5.5 Changing Rendering Modes

Example 5.3 constructs the default mapper for ray tracing, which renders the data as an opaque solid. However,
you can change the rendering mode by using one of the other mappers listed in Section 5.3. For example, say you
just wanted to see a wireframe representation of your data. You can achieve this by using vtkm::rendering::-
MapperWireframer.

Example 5.7: Creating a mapper for a wireframe representation.
1 vtkm :: rendering :: MapperWireframer mapper ;
2 vtkm :: rendering :: View3D view(scene , mapper , canvas);

Alternatively, perhaps you wish to render just the points of mesh. vtkm::rendering::MapperPoint renders the
points as spheres and also optionally can scale the spheres based on field values.

Example 5.8: Creating a mapper for point representation.
1 vtkm :: rendering :: MapperPoint mapper ;
2 mapper . UseVariableRadius (true);
3 mapper . SetRadiusDelta (10.0 f);
4
5 vtkm :: rendering :: View3D view(scene , mapper , canvas);

48 Chapter 5. Rendering

DRAFT

5.6. Manipulating the Camera

These mappers respectively render the images shown in Figure 5.2. Other mappers, such as those that can
render translucent volumes, are also available.

Figure 5.2: Examples of alternate rendering modes using different mappers. The left image is rendered with
MapperWireframer. The right image is rendered with MapperPoint.

5.6 Manipulating the Camera

The vtkm::rendering::View uses an object called vtkm::rendering::Camera to describe the vantage point
from which to draw the geometry. The camera can be retrieved from the View::GetCamera method. That
retrieved camera can be directly manipulated or a new camera can be provided by calling View::SetCamera. In
this section we discuss camera setups typical during view set up. Camera movement during interactive rendering
is revisited in Section 5.7.2.

A Camera operates in one of two major modes: 2D mode or 3D mode. 2D mode is designed for looking at flat
geometry (or close to flat geometry) that is parallel to the x-y plane. 3D mode provides the freedom to place the
camera anywhere in 3D space. The different modes can be set with SetModeTo2D and SetModeTo3D, respectively.
The interaction with the camera in these two modes is very different.

5.6.1 2D Camera Mode

The 2D camera is restricted to looking at some region of the x-y plane.

View Range

The vantage point of a 2D camera can be specified by simply giving the region in the x-y plane to look at. This
region is specified by calling Camera::SetViewRange2D. This method takes the left, right, bottom, and top of
the region to view. Typically these are set to the range of the geometry in world space as shown in Figure 5.3.

There are 3 overloaded versions of the SetViewRange2D method. The first version takes the 4 range values, left,
right, bottom, and top, as separate arguments in that order. The second version takes two vtkm::Range objects
specifying the range in the x and y directions, respectively. The third version trakes a single vtkm::Bounds
object, which completely specifies the spatial range. (The range in z is ignored.) The Range and Bounds objects
are documented later in Sections 6.5.4 and 6.5.5, respectively.

Chapter 5. Rendering 49

DRAFT

5.6. Manipulating the Camera

Bottom
(Y Min)

Top
(Y Max)

Left
(X Min)

Right
(X Max)

Figure 5.3: The view range bounds to give a Camera.

Pan

A camera pan moves the viewpoint left, right, up, or down. A camera pan is performed by calling the Camera::-
Pan method. Pan takes two arguments: the amount to pan in x and the amount to pan in y.

The pan is given with respect to the projected space. So a pan of 1 in the x direction moves the camera to focus
on the right edge of the image whereas a pan of −1 in the x direction moves the camera to focus on the left edge
of the image.

Example 5.9: Panning the camera.
1 view. GetCamera (). Pan(deltaX , deltaY);

Zoom

A camera zoom draws the geometry larger or smaller. A camera zoom is performed by calling the Camera::Zoom
method. Zoom takes a single argument specifying the zoom factor. A positive number draws the geometry larger
(zoom in), and larger zoom factor results in larger geometry. Likewise, a negative number draws the geometry
smaller (zoom out). A zoom factor of 0 has no effect.

Example 5.10: Zooming the camera.
1 view. GetCamera (). Zoom(zoomFactor);

5.6.2 3D Camera Mode

The 3D camera is a free-form camera that can be placed anywhere in 3D space and can look in any direction.
The projection of the 3D camera is based on the pinhole camera model in which all viewing rays intersect a
single point. This single point is the camera’s position.

50 Chapter 5. Rendering

DRAFT

5.6. Manipulating the Camera

Position and Orientation

The position of the camera, which is the point where the observer is viewing the scene, can be set with the
Camera::SetPosition method. The direction the camera is facing is specified by giving a position to focus on.
This is called either the “look at” point or the focal point and is specified with the Camera::SetLookAt method.
Figure 5.4 shows the relationship between the position and look at points.

Look At

PositionField of
View

View
Up

Clipping
Range
Near

Clipping
Range

Far

Figure 5.4: The position and orientation parameters for a Camera.

In addition to specifying the direction to point the camera, the camera must also know which direction is
considered “up.” This is specified with the view up vector using the Camera::SetViewUp method. The view up
vector points from the camera position (in the center of the image) to the top of the image. The view up vector
in relation to the camera position and orientation is shown in Figure 5.4.

Another important parameter for the camera is its field of view. The field of view specifies how wide of a region
the camera can see. It is specified by giving the angle in degrees of the cone of visible region emanating from
the pinhole of the camera to the Camera::SetFieldOfView method. The field of view angle in relation to the
camera orientation is shown in Figure 5.4. A field of view angle of 60◦ usually works well.

Finally, the camera must specify a clipping region that defines the valid range of depths for the object. This is
a pair of planes parallel to the image that all visible data must lie in. Each of these planes is defined simply
by their distance to the camera position. The near clip plane is closer to the camera and must be in front of
all geometry. The far clip plane is further from the camera and must be behind all geometry. The distance to

Chapter 5. Rendering 51

DRAFT

5.6. Manipulating the Camera

both the near and far planes are specified with the Camera::SetClippingRange method. Figure 5.4 shows the
clipping planes in relationship to the camera position and orientation.

Example 5.11: Directly setting vtkm::rendering::Camera position and orientation.
1 camera . SetPosition (vtkm :: make_Vec (10.0 , 6.0 , 6.0));
2 camera . SetLookAt (vtkm :: make_Vec (0.0 , 0.0 , 0.0));
3 camera . SetViewUp (vtkm :: make_Vec (0.0 , 1.0 , 0.0));
4 camera . SetFieldOfView (60.0);
5 camera . SetClippingRange (0.1 , 100.0);

Movement

In addition to specifically setting the position and orientation of the camera, vtkm::rendering::Camera contains
several convenience methods that move the camera relative to its position and look at point.

Two such methods are elevation and azimuth, which move the camera around the sphere centered at the look
at point. Camera::Elevation raises or lowers the camera. Positive values raise the camera up (in the direction
of the view up vector) whereas negative values lower the camera down. Camera::Azimuth moves the camera
around the look at point to the left or right. Positive values move the camera to the right whereas negative
values move the camera to the left. Both Elevation and Azimuth specify the amount of rotation in terms of
degrees. Figure 5.5 shows the relative movements of Elevation and Azimuth.

Dolly

Elevation

Azimuth

Roll

Figure 5.5: Camera movement functions relative to position and orientation.

Example 5.12: Moving the camera around the look at point.
1 view. GetCamera (). Azimuth (45.0);
2 view. GetCamera (). Elevation (45.0);

52 Chapter 5. Rendering

DRAFT

5.6. Manipulating the Camera

The Camera::Elevation and Camera::Azimuth methods change the position of the camera, but not the
view up vector. This can cause some wild camera orientation changes when the direction of the camera
view is near parallel to the view up vector, which often happens when the elevation is raised or lowered by
about 90 degrees.

Common Errors

In addition to rotating the camera around the look at point, you can move the camera closer or further from the
look at point. This is done with the Camera::Dolly method. The Dolly method takes a single value that is the
factor to scale the distance between camera and look at point. Values greater than one move the camera away,
values less than one move the camera closer. The direction of dolly movement is shown in Figure 5.5.

Finally, the Camera::Roll method rotates the camera around the viewing direction. It has the effect of rotating
the rendered image. The Roll method takes a single value that is the angle to rotate in degrees. The direction
of roll movement is shown in Figure 5.5.

Pan

A camera pan moves the viewpoint left, right, up, or down. A camera pan is performed by calling the Camera::-
Pan method. Pan takes two arguments: the amount to pan in x and the amount to pan in y.

The pan is given with respect to the projected space. So a pan of 1 in the x direction moves the camera to focus
on the right edge of the image whereas a pan of −1 in the x direction moves the camera to focus on the left edge
of the image.

Example 5.13: Panning the camera.
1 view. GetCamera (). Pan(deltaX , deltaY);

Zoom

A camera zoom draws the geometry larger or smaller. A camera zoom is performed by calling the Camera::Zoom
method. Zoom takes a single argument specifying the zoom factor. A positive number draws the geometry larger
(zoom in), and larger zoom factor results in larger geometry. Likewise, a negative number draws the geometry
smaller (zoom out). A zoom factor of 0 has no effect.

Example 5.14: Zooming the camera.
1 view. GetCamera (). Zoom(zoomFactor);

Reset

Setting a specific camera position and orientation can be frustrating, particularly when the size, shape, and
location of the geometry is not known a priori. Typically this involves querying the data and finding a good
camera orientation.

To make this process simpler, vtkm::rendering::Camera has a convenience method named Camera::ResetTo-
Bounds that automatically positions the camera based on the spatial bounds of the geometry. The most expedient
method to find the spatial bounds of the geometry being rendered is to get the vtkm::rendering::Scene object
and call GetSpatialBounds. The Scene object can be retrieved from the vtkm::rendering::View, which, as
described in Section 5.4, is the central object for managing rendering.

Chapter 5. Rendering 53

DRAFT

5.7. Interactive Rendering

Example 5.15: Resetting a Camera to view geometry.
1 void ResetCamera (vtkm :: rendering :: View& view)
2 {
3 vtkm :: Bounds bounds = view. GetScene (). GetSpatialBounds ();
4 view. GetCamera (). ResetToBounds (bounds);
5 }

The ResetToBounds method operates by placing the look at point in the center of the bounds and then placing
the position of the camera relative to that look at point. The position is such that the view direction is the
same as before the call to ResetToBounds and the distance between the camera position and look at point has
the bounds roughly fill the rendered image. This behavior is a convenient way to update the camera to make
the geometry most visible while still preserving the viewing position. If you want to reset the camera to a new
viewing angle, it is best to set the camera to be pointing in the right direction and then calling ResetToBounds
to adjust the position.

Example 5.16: Resetting a Camera to be axis aligned.
1 view. GetCamera (). SetPosition (vtkm :: make_Vec (0.0 , 0.0 , 0.0));
2 view. GetCamera (). SetLookAt (vtkm :: make_Vec (0.0 , 0.0 , -1.0));
3 view. GetCamera (). SetViewUp (vtkm :: make_Vec (0.0 , 1.0 , 0.0));
4 vtkm :: Bounds bounds = view. GetScene (). GetSpatialBounds ();
5 view. GetCamera (). ResetToBounds (bounds);

5.7 Interactive Rendering

So far in our description of VTK-m’s rendering capabilities we have talked about doing rendering of fixed scenes.
However, an important use case of scientific visualization is to provide an interactive rendering system to explore
data. In this case, you want to render into a GUI application that lets the user interact manipulate the view.
The full design of a 3D visualization application is well outside the scope of this book, but we discuss in general
terms what you need to plug VTK-m’s rendering into such a system.

In this section we discuss two important concepts regarding interactive rendering. First, we need to write images
into a GUI while they are being rendered. Second, we want to translate user interaction to camera movement.

5.7.1 Rendering Into a GUI

Before being able to show rendering to a user, we need a system rendering context in which to push the images.
In this section we demonstrate the display of images using the OpenGL rendering system, which is common for
scientific visualization applications. That said, you could also use other rendering systems like DirectX or even
paste images into a blank widget.

Creating an OpenGL context varies depending on the OS platform you are using. If you do not already have
an application you want to integrate with VTK-m’s rendering, you may wish to start with graphics utility API
such as GLUT or GLFW. The process of initializing an OpenGL context is not discussed here.

The process of rendering into an OpenGL context is straightforward. First call Paint on the View object to
do the actual rendering. Second, get the image color data out of the View’s Canvas object. This is done by
calling Canvas::GetColorBuffer. This will return a vtkm::cont::ArrayHandle object containing the image’s
pixel color data. (ArrayHandles are discussed in detail in Chapter 7.) A raw pointer can be pulled out of
this ArrayHandle by calling GetStorage().GetBasePointer(). Third, the pixel color data are pasted into the
OpenGL render context. There are multiple ways to do so, but the most straightforward way is to use the
glDrawPixels function provided by OpenGL. Fourth, swap the OpenGL buffers. The method to swap OpenGL

54 Chapter 5. Rendering

DRAFT

5.7. Interactive Rendering

buffers varies by OS platform. The aforementioned graphics libraries GLUT and GLFW each provide a function
for doing so.

Example 5.17: Rendering a View and pasting the result to an active OpenGL context.
1 view. Paint ();
2
3 // Get the color buffer containing the rendered image .
4 vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: Float32 , 4>> colorBuffer =
5 view. GetCanvas (). GetColorBuffer ();
6
7 // Pull the C array out of the arrayhandle .
8 void * colorArray = colorBuffer . GetStorage (). GetBasePointer ();
9

10 // Write the C array to an OpenGL buffer .
11 glDrawPixels ((GLint)view. GetCanvas (). GetWidth (),
12 (GLint)view. GetCanvas (). GetHeight (),
13 GL_RGBA ,
14 GL_FLOAT ,
15 colorArray);
16
17 // Swap the OpenGL buffers (system dependent).

5.7.2 Camera Movement

When interactively manipulating the camera in a windowing system, the camera is usually moved in response
to mouse movements. Typically, mouse movements are detected through callbacks from the windowing system
back to your application. Once again, the details on how this works depend on your windowing system. The
assumption made in this section is that through the windowing system you will be able to track the x-y pixel
location of the mouse cursor at the beginning of the movement and the end of the movement. Using these two
pixel coordinates, as well as the current width and height of the render space, we can make several typical camera
movements.

Pixel coordinates in VTK-m’s rendering system originate in the lower-left corner of the image. However,
windowing systems generally report mouse coordinates with the origin in the upper-left corner. The upshot
is that the y coordinates will have to be reversed when translating mouse coordinates to VTK-m image
coordinates. This inverting is present in all the following examples.

Common Errors

Rotate

A common and important mode of interaction with 3D views is to allow the user to rotate the object under
inspection by dragging the mouse. To facilitate this type of interactive rotation, vtkm::rendering::Camera
provides a convenience method named TrackballRotate. The TrackballRotate method takes a start and end
position of the mouse on the image and rotates viewpoint as if the user grabbed a point on a sphere centered in
the image at the start position and moved under the end position.

The TrackballRotate method is typically called from within a mouse movement callback. The callback must
record the pixel position from the last event and the new pixel position of the mouse. Those pixel positions must
be normalized to the range -1 to 1 where the position (-1,-1) refers to the lower left of the image and (1,1) refers

Chapter 5. Rendering 55

DRAFT

5.7. Interactive Rendering

to the upper right of the image. The following example demonstrates the typical operations used to establish
rotations when dragging the mouse.

Example 5.18: Interactive rotations through mouse dragging with Camera::TrackballRotate.
1 void DoMouseRotate (vtkm :: rendering :: View& view ,
2 vtkm :: Id mouseStartX ,
3 vtkm :: Id mouseStartY ,
4 vtkm :: Id mouseEndX ,
5 vtkm :: Id mouseEndY)
6 {
7 vtkm :: Id screenWidth = view. GetCanvas (). GetWidth ();
8 vtkm :: Id screenHeight = view. GetCanvas (). GetHeight ();
9

10 // Convert the mouse position coordinates , given in pixels from 0 to
11 // width /height , to normalized screen coordinates from -1 to 1. Note that y
12 // screen coordinates are usually given from the top down whereas our
13 // geometry transforms are given from bottom up , so you have to reverse the y
14 // coordiantes .
15 vtkm :: Float32 startX = (2.0f * mouseStartX) / screenWidth - 1.0f;
16 vtkm :: Float32 startY = -((2.0f * mouseStartY) / screenHeight - 1.0f);
17 vtkm :: Float32 endX = (2.0f * mouseEndX) / screenWidth - 1.0f;
18 vtkm :: Float32 endY = -((2.0f * mouseEndY) / screenHeight - 1.0f);
19
20 view. GetCamera (). TrackballRotate (startX , startY , endX , endY);
21 }

Pan

Panning can be performed by calling Camera::Pan with the translation relative to the width and height of the
canvas. For the translation to track the movement of the mouse cursor, simply scale the pixels the mouse has
traveled by the width and height of the image.

Example 5.19: Pan the view based on mouse movements.
1 void DoMousePan (vtkm :: rendering :: View& view ,
2 vtkm :: Id mouseStartX ,
3 vtkm :: Id mouseStartY ,
4 vtkm :: Id mouseEndX ,
5 vtkm :: Id mouseEndY)
6 {
7 vtkm :: Id screenWidth = view. GetCanvas (). GetWidth ();
8 vtkm :: Id screenHeight = view. GetCanvas (). GetHeight ();
9

10 // Convert the mouse position coordinates , given in pixels from 0 to
11 // width /height , to normalized screen coordinates from -1 to 1. Note that y
12 // screen coordinates are usually given from the top down whereas our
13 // geometry transforms are given from bottom up , so you have to reverse the y
14 // coordiantes .
15 vtkm :: Float32 startX = (2.0f * mouseStartX) / screenWidth - 1.0f;
16 vtkm :: Float32 startY = -((2.0f * mouseStartY) / screenHeight - 1.0f);
17 vtkm :: Float32 endX = (2.0f * mouseEndX) / screenWidth - 1.0f;
18 vtkm :: Float32 endY = -((2.0f * mouseEndY) / screenHeight - 1.0f);
19
20 vtkm :: Float32 deltaX = endX - startX ;
21 vtkm :: Float32 deltaY = endY - startY ;
22
23 view. GetCamera (). Pan(deltaX , deltaY);
24 }

56 Chapter 5. Rendering

DRAFT

5.8. Color Tables

Zoom

Zooming can be performed by calling Camera::Zoom with a positive or negative zoom factor. When using Zoom
to respond to mouse movements, a natural zoom will divide the distance traveled by the mouse pointer by the
width or height of the screen as demonstrated in the following example.

Example 5.20: Zoom the view based on mouse movements.
1 void DoMouseZoom (vtkm :: rendering :: View& view ,
2 vtkm :: Id mouseStartY ,
3 vtkm :: Id mouseEndY)
4 {
5 vtkm :: Id screenHeight = view. GetCanvas (). GetHeight ();
6
7 // Convert the mouse position coordinates , given in pixels from 0 to height ,
8 // to normalized screen coordinates from -1 to 1. Note that y screen
9 // coordinates are usually given from the top down whereas our geometry

10 // transforms are given from bottom up , so you have to reverse the y
11 // coordiantes .
12 vtkm :: Float32 startY = -((2.0f * mouseStartY) / screenHeight - 1.0f);
13 vtkm :: Float32 endY = -((2.0f * mouseEndY) / screenHeight - 1.0f);
14
15 vtkm :: Float32 zoomFactor = endY - startY ;
16
17 view. GetCamera (). Zoom(zoomFactor);
18 }

5.8 Color Tables

An important feature of VTK-m’s rendering units is the ability to pseudocolor objects based on scalar data.
This technique maps each scalar to a potentially unique color. This mapping from scalars to colors is defined by
a vtkm::cont::ColorTable object. A ColorTable can be specified as an optional argument when constructing
a vtkm::rendering::Actor. (Use of Actors is discussed in Section 5.1.)

Example 5.21: Specifying a ColorTable for an Actor.
1 vtkm :: rendering :: Actor actor (surfaceData . GetCellSet (),
2 surfaceData . GetCoordinateSystem (),
3 surfaceData . GetField (" RandomPointScalars "),
4 vtkm :: cont :: ColorTable (" inferno "));

The easiest way to create a ColorTable is to provide the name of one of the many predefined sets of color
provided by VTK-m. A list of all available predefined color tables is provided below.

Viridis Matplotlib Virdis, which is designed to have perceptual uni-
formity, accessibility to color blind viewers, and good con-
version to black and white. This is the default color map.

Cool to Warm A color table designed to be perceptually even, to work well
on shaded 3D surfaces, and to generally perform well across
many uses.

Cool to Warm Extended This colormap is an expansion on cool to warm that moves
through a wider range of hue and saturation. Useful if you
are looking for a greater level of detail, but the darker colors
at the end might interfere with 3D surfaces.

Inferno Matplotlib Inferno, which is designed to have perceptual uni-
formity, accessibility to color blind viewers, and good conver-
sion to black and white.

Chapter 5. Rendering 57

DRAFT

5.8. Color Tables

Plasma Matplotlib Plasma, which is designed to have perceptual uni-
formity, accessibility to color blind viewers, and good conver-
sion to black and white.

Black-Body Radiation The colors are inspired by the wavelengths of light from black
body radiation. The actual colors used are designed to be
perceptually uniform.

X Ray Greyscale colormap useful for making volume renderings sim-
ilar to what you would expect in an x-ray.

Green A sequential color map of green varied by saturation.
Black - Blue - White A sequential color map from black to blue to white.
Blue to Orange A double-ended (diverging) color table that goes from dark

blues to a neutral white and then a dark orange at the other
end.

Gray to Red A double-ended (diverging) color table with black/gray at
the low end and orange/red at the high end.

Cold and Hot A double-ended color map with a black middle color and
diverging values to either side. Colors go from red to yellow
on the positive side and through blue on the negative side.

Blue - Green - Orange A three-part color map with blue at the low end, green in
the middle, and orange at the high end.

Yellow - Gray - Blue A three-part color map with yellow at the low end, gray in
the middle, and blue at the high end.

Rainbow Uniform A color table that spans the hues of a rainbow. There have
been many scientific perceptual studies on the effectiveness
of rainbow colors, and they uniformly found them to be in-
effective. This color table modifies the hues to make them
more perceptually uniform, which should improve the effec-
tiveness of the colors. However, we still recommend the other
color tables over this one.

Jet A rainbow color table that adds some darkness for greater
perceptual resolution. The ends of the jet color table might
be too dark for 3D surfaces.

Rainbow Desaturated All the badness of the rainbow color table with periodic dark
points added, which can help identify rate of change.

[There is more functionality to document in ColorTable. In particular, building color tables
by adding control points. However, I am not bothering to document that right now because
(1) I don’t think many people will use it and (2) it is pretty clear from the Doxygen.]

58 Chapter 5. Rendering

DRAFTPart II

Using VTK-m

DRAFT

DRAFT
CHAPTER

SIX

BASIC PROVISIONS

This section describes the core facilities provided by VTK-m. These include macros, types, and classes that
define the environment in which code is run, the core types of data stored, and template introspection. We also
start with a description of package structure used by VTK-m.

6.1 General Approach

VTK-m is designed to provide a pervasive parallelism throughout all its visualization algorithms, meaning that
the algorithm is designed to operate with independent concurrency at the finest possible level throughout. VTK-
m provides this pervasive parallelism by providing a programming construct called a worklet, which operates on
a very fine granularity of data. The worklets are designed as serial components, and VTK-m handles whatever
layers of concurrency are necessary, thereby removing the onus from the visualization algorithm developer.
Worklet operation is then wrapped into filters, which provide a simplified interface to end users.

A worklet is essentially a small functor or kernel designed to operate on a small element of data. (The name
“worklet” means a small amount of work. We mean small in this sense to be the amount of data, not necessarily
the amount of instructions performed.) The worklet is constrained to contain a serial and stateless function.
These constraints form three critical purposes. First, the constraints on the worklets allow VTK-m to schedule
worklet invocations on a great many independent concurrent threads and thereby making the algorithm per-
vasively parallel. Second, the constraints allow VTK-m to provide thread safety. By controlling the memory
access the toolkit can insure that no worklet will have any memory collisions, false sharing, or other parallel pro-
gramming pitfalls. Third, the constraints encourage good programming practices. The worklet model provides
a natural approach to visualization algorithm design that also has good general performance characteristics.

VTK-m allows developers to design algorithms that are run on massive amounts of threads. However, VTK-m
also allows developers to interface to applications, define data, and invoke algorithms that they have written or
are provided otherwise. These two modes represent significantly different operations on the data. The operating
code of an algorithm in a worklet is constrained to access only a small portion of data that is provided by the
framework. Conversely, code that is building the data structures needs to manage the data in its entirety, but
has little reason to perform computations on any particular element.

Consequently, VTK-m is divided into two environments that handle each of these use cases. Each environment
has its own API, and direct interaction between the environments is disallowed. The environments are as follows.

Execution Environment This is the environment in which the computational portion of algorithms are exe-
cuted. The API for this environment provides work for one element with convenient access to information
such as connectivity and neighborhood as needed by typical visualization algorithms. Code for the execu-
tion environment is designed to always execute on a very large number of threads.

DRAFT

6.2. Package Structure

Control Environment This is the environment that is used to interface with applications, interface with
I/O devices, and schedule parallel execution of the algorithms. The associated API is designed for users
that want to use VTK-m to analyze their data using provided or supplied filters. Code for the control
environment is designed to run on a single thread (or one single thread per process in an MPI job).

These dual programming environments are partially a convenience to isolate the application from the execution
of the worklets and are partially a necessity to support GPU languages with host and device environments. The
control and execution environments are logically equivalent to the host and device environments, respectively, in
CUDA and other associated GPU languages.

W
orklet

Control
Environment

Data Model
Array Handle
Invoke

Execution
Environment

Cell Operations
Field Operations

Basic Math
Make CellsAllocate

Transfer
Schedule

Sort
Scan

...

Device
Adapter

Figure 6.1: Diagram of the VTK-m framework.

Figure 6.1 displays the relationship between the control and execution environment. The typical workflow when
using VTK-m is that first the control thread establishes a data set in the control environment and then invokes a
parallel operation on the data using a filter. From there the data is logically divided into its constituent elements,
which are sent to independent invocations of a worklet. The worklet invocations, being independent, are run on
as many concurrent threads as are supported by the device. On completion the results of the worklet invocations
are collected to a single data structure and a handle is returned back to the control environment.

Are you only planning to use filters in VTK-m that already exist? If so, then everything you work with will
be in the control environment. The execution environment is only used when implementing algorithms for
filters.

Did you know?

6.2 Package Structure

VTK-m is organized in a hierarchy of nested packages. VTK-m places definitions in namespaces that correspond
to the package (with the exception that one package may specialize a template defined in a different namespace).

The base package is named vtkm . All classes within VTK-m are placed either directly in the vtkm package or
in a package beneath it. This helps prevent name collisions between VTK-m and any other library.

As described in Section 6.1, the VTK-m API is divided into two distinct environments: the control environment
and the execution environment. The API for these two environments are located in the vtkm::cont and vtkm::-
exec packages, respectively. Items located in the base vtkm namespace are available in both environments.

62 Chapter 6. Basic Provisions

DRAFT

6.3. Function and Method Environment Modifiers

Although it is conventional to spell out names in identifiers,1 there is an exception to abbreviate control and
execution to cont and exec, respectively. This is because it is also part of the coding convention to declare
the entire namespace when using an identifier that is part of the corresponding package. The shorter names
make the identifiers easier to read, faster to type, and more feasible to pack lines in 80 column displays. These
abbreviations are also used instead of more common abbreviations (e.g. ctrl for control) because, as part of
actual English words, they are easier to type.

Further functionality in VTK-m is built on top of the base vtkm , vtkm::cont , and vtkm::exec packages.
Support classes for building worklets, described in Chapter 12, are contained in the vtkm::worklet package.
Other facilities in VTK-m are provided in their own packages such as vtkm::io , vtkm::filter , and vtkm::-
rendering . These packages are described in Part I.

VTK-m contains code that uses specialized compiler features, such as those with CUDA, or libraries, such as Intel
Threading Building Blocks, that will not be available on all machines. Code for these features are encapsulated
in their own packages under the vtkm::cont namespace: vtkm::cont::cuda and vtkm::cont::tbb .

VTK-m contains OpenGL interoperability that allows data generated with VTK-m to be efficiently transferred
to OpenGL objects. This feature is encapsulated in the vtkm::opengl package.

Figure 6.2 provides a diagram of the VTK-m package hierarchy.

Figure 6.2: VTK-m package hierarchy.

By convention all classes will be defined in a file with the same name as the class name (with a .h extension)
located in a directory corresponding to the package name. For example, the vtkm::cont::ArrayHandle class is
found in the vtkm/cont/ArrayHandle.h header. There are, however, exceptions to this rule. Some smaller classes
and types are grouped together for convenience. These exceptions will be noted as necessary.

Within each namespace there may also be internal and detail sub-namespaces. The internal namespaces
contain features that are used internally and may change without notice. The detail namespaces contain
features that are used by a particular class but must be declared outside of that class. Users should generally
ignore classes in these namespaces.

6.3 Function and Method Environment Modifiers

Any function or method defined by VTK-m must come with a modifier that determines in which environments
the function may be run. These modifiers are C macros that VTK-m uses to instruct the compiler for which
architectures to compile each method. Most user code outside of VTK-m need not use these macros with the
important exception of any classes passed to VTK-m. This occurs when defining new worklets, array storage,
and device adapters.

VTK-m provides three modifier macros, VTKM CONT, VTKM EXEC, and VTKM EXEC CONT, which are used to declare
functions and methods that can run in the control environment, execution environment, and both environments,

1VTK-m coding conventions are outlined in the doc/CodingConventions.md file in the VTK-m source code and at https://gitlab.
kitware.com/vtk/vtk-m/blob/master/docs/CodingConventions.md

Chapter 6. Basic Provisions 63

https://gitlab.kitware.com/vtk/vtk-m/blob/master/docs/CodingConventions.md
https://gitlab.kitware.com/vtk/vtk-m/blob/master/docs/CodingConventions.md

DRAFT

6.4. Initialization

respectively. These macros get defined by including just about any VTK-m header file, but including vtkm/-
Types.h will ensure they are defined.

The modifier macro is placed after the template declaration, if there is one, and before the return type for the
function. Here is a simple example of a function that will square a value. Since most types you would use this
function on have operators in both the control and execution environments, the function is declared for both
places.

Example 6.1: Usage of an environment modifier macro on a function.
1 template < typename ValueType >
2 VTKM_EXEC_CONT ValueType Square (const ValueType & inValue)
3 {
4 return inValue * inValue ;
5 }

The primary function of the modifier macros is to inject compiler-specific keywords that specify what architecture
to compile code for. For example, when compiling with CUDA, the control modifiers have host in them
and execution modifiers have device in them.

It is sometimes the case that a function declared as VTKM EXEC CONT has to call a method declared as VTKM -
EXEC or VTKM CONT. Generally functions should not call other functions with incompatible control/execution
modifiers, but sometimes a generic VTKM EXEC CONT function calls another function determined by the template
parameters, and the valid environments of this subfunction may be inconsistent. For cases like this, you can
use the VTKM SUPPRESS EXEC WARNINGS to tell the compiler to ignore the inconsistency when resolving the
template. When applied to a templated function or method, VTKM SUPPRESS EXEC WARNINGS is placed before
the template keyword. When applied to a non-templated method in a templated class, VTKM SUPPRESS EXEC -
WARNINGS is placed before the environment modifier macro.

Example 6.2: Suppressing warnings about functions from mixed environments.
1 VTKM_SUPPRESS_EXEC_WARNINGS
2 template < typename Functor >
3 VTKM_EXEC_CONT void OverlyComplicatedForLoop (Functor & functor ,
4 vtkm :: Id numInterations)
5 {
6 for (vtkm :: Id index = 0; index < numInterations ; index ++)
7 {
8 functor ();
9 }

10 }

6.4 Initialization

When it comes to running VTK-m code, there are a few ways in which various facilities, such as logging and
device connections, can be initialized. The preferred method of initializing these features is to run the vtkm::-
cont::Initialize function. Although it is not strictly necessary to call Initialize, it is recommended to set
up state and check for available devices.

Initialize can be called without any arguments, in which case VTK-m will be initialized with defaults. But it
can also optionally take the argc and argv arguments to the main function to parse some options that control the
state of VTK-m. VTK-m accepts arguments that, for example, configure the compute device to use or establish
logging levels. Any arguments that are handled by VTK-m are removed from the argc/argv list so that your
program can then respond to the remaining arguments.

Initialize takes an optional third argument that specifies some options on the behavior of the argument
parsing. The options are specified as a bit-wise “or” of fields specified in the vtkm::cont::InitializeOptions

64 Chapter 6. Basic Provisions

DRAFT

6.4. Initialization

enum. The available initialize options are

None Placeholder used when no options are enabled. This is the value used when the third argument to Ini-
tialize is not provided.

RequireDevice Issue an error if the device argument is not specified.

DefaultAnyDevice If no device is specified, treat it as if the user gave “–device=Any”. This means that De-
viceAdapterTagUndefined will never be return in the result.

AddHelp Add a help option. If “-h” or “–help” is provided, prints a usage statement. Of course, the usage
statement will only print out arguments processed by VTK-m, which is why help is not given by default.
A string with usage help is returned from Initialize so that the calling program can provide VTK-m’s
help in its own usage statement.

ErrorOnBadOption If an unknown option is encountered, the program terminates with an error. If this option
is not provided, any unknown options are returned in argv. If this option is used, it is a good idea to use
AddHelp as well.

ErrorOnBadArgument If an extra argument is encountered, the program terminates with an error. If this option
is not provided, any unknown arguments are returned in argv.

Strict If supplied, Initialize treats its own arguments as the only ones supported by the application and provides
an error if not followed exactly. This is a convenience option that is a combination of ErrorOnBadOption,
ErrorOnBadArgument, and AddHelp.

As stated earlier, vtkm::cont::Initialize removes parsed options from the argc/argv passed to it so that
the calling program can further respond to command line arguments. Additionally, Initialize returns an
vtkm::cont::InitializeResult object that contains the following information.

Device A vtkm::cont::DeviceAdapterId that represents the device specified by the command line arguments.
(See Chapter 8 for details on how VTK-m represents devices.) If no device is specified in the command line
options, vtkm::cont::DeviceAdapterTagUndefined is returned (unless the DefaultAnyDevice option is
given, in which case vtkm::cont::DeviceAdapterTagAny is returned).

Example 6.3: Calling Initialize.
1 # include <vtkm/cont/ Initialize .h>
2
3 int main(int argc , char ** argv)
4 {
5 vtkm :: cont :: InitializeOptions options =
6 vtkm :: cont :: InitializeOptions :: ErrorOnBadArgument |
7 vtkm :: cont :: InitializeOptions :: DefaultAnyDevice ;
8 vtkm :: cont :: InitializeResult config = vtkm :: cont :: Initialize (argc , argv , options);
9

10 if (argc != 2)
11 {
12 std :: cerr << " USAGE : " << argv [0] << " [options] filename " << std :: endl;
13 std :: cerr << " Available options are :" << std :: endl;
14 std :: cerr << config . Usage << std :: endl;
15 return 1;
16 }
17 std :: string filename = argv [1];
18

Chapter 6. Basic Provisions 65

DRAFT

6.5. Core Data Types

19 // Do something cool with VTK -m
20 // ...
21
22 return 0;
23 }

6.5 Core Data Types

Except in rare circumstances where precision is not a concern, VTK-m does not directly use the core C types
like int, float, and double. Instead, VTK-m provides its own core types, which are declared in vtkm/Types.h.

6.5.1 Single Number Types

To ensure portability across different compilers and architectures, VTK-m provides type aliases for the following
basic types with explicit precision: vtkm::Float32, vtkm::Float64, vtkm::Int8, vtkm::Int16, vtkm::Int32,
vtkm::Int64, vtkm::UInt8, vtkm::UInt16, vtkm::UInt32, and vtkm::UInt64. Under most circumstances
when using VTK-m (and performing visualization in general) the type of data is determined by the source of the
data or resolved through templates. In the case where a specific type of data is required, these VTK-m–defined
types should be preferred over basic C types like int or float.

Many of the structures in VTK-m require indices to identify elements like points and cells. All indices for arrays
and other lists use the type vtkm::Id. By default this type is a 32-bit wide integer but can be easily changed
by compile options. The CMake configuration option VTKM USE 64BIT IDS can be used to change vtkm::Id
to be 64 bits wide. This configuration can be overridden by defining the C macro VTKM USE 64BIT IDS or
VTKM NO 64BIT IDS to force vtkm::Id to be either 64 or 32 bits. These macros must be defined before any
VTK-m header files are included to take effect.

There is also a secondary index type named vtkm::IdComponent that is used to index components of short
vectors (discussed in Section 6.5.2). This type is an integer that might be a shorter width than vtkm::Id.

There is also the rare circumstance in which an algorithm in VTK-m computes data values for which there is
no indication what the precision should be. For these circumstances, the type vtkm::FloatDefault is provided.
By default this type is a 32-bit wide floating point number but can be easily changed by compile options. The
CMake configuration option VTKM USE DOUBLE PRECISION can be used to change vtkm::FloatDefault to
be 64 bits wide. This configuration can be overridden by defining the C macro VTKM USE DOUBLE PRECISION
or VTKM NO DOUBLE PRECISION to force vtkm::FloatDefault to be either 64 or 32 bits. These macros must
be defined before any VTK-m header files are included to take effect.

For convenience, you can include either vtkm/internal/ConfigureFor32.h or vtkm/internal/ConfigureFor64.h to force
both vtkm::Id and vtkm::FloatDefault to be 32 or 64 bits.

6.5.2 Vector Types

Visualization algorithms also often require operations on short vectors. Arrays indexed in up to three dimensions
are common. Data are often defined in 2-space and 3-space, and transformations are typically done in homoge-
neous coordinates of length 4. To simplify these types of operations, VTK-m provides the vtkm::Vec <T,Size>
templated type, which is essentially a fixed length array of a given type.

The default constructor of vtkm::Vec objects leaves the values uninitialized. All vectors have a constructor with
one argument that is used to initialize all components. All vtkm::Vec objects also have a constructor that allows
you to set the individual components (one per argument). All vtkm::Vec objects with a size that is greater than

66 Chapter 6. Basic Provisions

DRAFT

6.5. Core Data Types

4 are constructed at run time and support an arbitrary number of initial values. Likewise, there is a vtkm::-
make Vec convenience function that builds initialized vector types with an arbitrary number of components.
Once created, you can use the bracket operator to get and set component values with the same syntax as an
array.

Example 6.4: Creating vector types.
1 vtkm ::Vec <vtkm :: Float32 , 3> A{ 1 }; // A is (1, 1, 1)
2 A[1] = 2; // A is now (1, 2, 1)
3 vtkm ::Vec <vtkm :: Float32 , 3> B{ 1, 2, 3 }; // B is (1, 2, 3)
4 vtkm ::Vec <vtkm :: Float32 , 3> C = vtkm :: make_Vec (3, 4, 5); // C is (3, 4, 5)
5 // creation with initializer lists
6 vtkm ::Vec <vtkm :: Float32 , 5> D{ 1 }; // D is (1, 1, 1, 1, 1)
7 vtkm ::Vec <vtkm :: Float32 , 5> E{ 1, 2, 3, 4, 5 }; // E is (1, 2, 3, 4, 5)
8 vtkm ::Vec <vtkm :: Float32 , 5> F = { 6, 7, 8, 9, 10 }; // F is (6, 7, 8, 9, 10)
9 auto G = vtkm :: make_Vec (1, 3, 5, 7, 9); // G is (1, 3, 5, 7, 9)

The types vtkm::Id2 and vtkm::Id3 are type aliases of vtkm::Vec <vtkm::Id,2> and vtkm::Vec <vtkm::-
Id,2>. These are used to index arrays of 2 and 3 dimensions, which is common.

vtkm::Vec supports component-wise arithmetic using the operators for plus (+), minus (-), multiply (*), and
divide (/). It also supports scalar to vector multiplication with the multiply operator. The comparison operators
equal (==) is true if every pair of corresponding components are true and not equal (!=) is true otherwise. A
special vtkm::Dot function is overloaded to provide a dot product for every type of vector.

Example 6.5: Vector operations.
1 vtkm ::Vec <vtkm :: Float32 , 3> A{ 1, 2, 3 };
2 vtkm ::Vec <vtkm :: Float32 , 3> B{ 4, 5, 6.5 };
3 vtkm ::Vec <vtkm :: Float32 , 3> C = A + B; // C is (5, 7, 9.5)
4 vtkm ::Vec <vtkm :: Float32 , 3> D = 2.0f * C; // D is (10 , 14, 19)
5 vtkm :: Float32 s = vtkm :: Dot(A, B); // s is 33.5
6 bool b1 = (A == B); // b1 is false
7 bool b2 = (A == vtkm :: make_Vec (1, 2, 3)); // b2 is true
8
9 vtkm ::Vec <vtkm :: Float32 , 5> E{ 1, 2.5 , 3, 4, 5 }; // E is (1, 2, 3, 4, 5)

10 vtkm ::Vec <vtkm :: Float32 , 5> F{ 6, 7, 8.5 , 9, 10.5 }; // F is (6, 7, 8, 9, 10)
11 vtkm ::Vec <vtkm :: Float32 , 5> G = E + F; // G is (7, 9.5 , 11.5 , 13, 15.5)
12 bool b3 = (E == F); // b3 is false
13 bool b4 = (G == vtkm :: make_Vec (7.f, 9.5f, 11.5f, 13.f, 15.5f)); // b4 is true

These operators, of course, only work if they are also defined for the component type of the vtkm::Vec. For
example, the multiply operator will work fine on objects of type vtkm::Vec <char,3>, but the multiply operator
will not work on objects of type vtkm::Vec <std::string,3> because you cannot multiply objects of type
std::string.

In addition to generalizing vector operations and making arbitrarily long vectors, vtkm::Vec can be repurposed
for creating any sequence of homogeneous objects. Here is a simple example of using vtkm::Vec to hold the
state of a polygon.

Example 6.6: Repurposing a vtkm::Vec.
1 vtkm ::Vec <vtkm ::Vec <vtkm :: Float32 , 2>, 3> equilateralTriangle (
2 vtkm :: make_Vec (0.0 , 0.0) ,
3 vtkm :: make_Vec (1.0 , 0.0) ,
4 vtkm :: make_Vec (0.5 , 0.8660254));

The vtkm::Vec class provides a convenient structure for holding and passing small vectors of data. However,
there are times when using Vec is inconvenient or inappropriate. For example, the size of vtkm::Vec must be
known at compile time, but there may be need for a vector whose size is unknown until compile time. Also, the
data populating a vtkm::Vec might come from a source that makes it inconvenient or less efficient to construct

Chapter 6. Basic Provisions 67

DRAFT

6.5. Core Data Types

a vtkm::Vec. For this reason, VTK-m also provides several Vec-like objects that behave much like vtkm::Vec
but are a different class. These Vec-like objects have the same interface as vtkm::Vec except that the NUM -
COMPONENTS constant is not available on those that are sized at run time. Vec-like objects also come with a
CopyInto method that will take their contents and copy them into a standard Vec class. (The standard Vec
class also has a CopyInto method for consistency.)

The first Vec-like object is vtkm::VecC, which exposes a C-type array as a Vec. The constructor for vtkm::VecC
takes a C array and a size of that array. There is also a constant version of VecC named vtkm::VecCConst, which
takes a constant array and cannot be mutated. The vtkm/Types.h header defines both VecC and VecCConst as
well as multiple versions of vtkm::make VecC to easily convert a C array to either a VecC or VecCConst.

The following example demonstrates converting values from a constant table into a vtkm::VecCConst for further
consumption. The table and associated methods define how 8 points come together to form a hexahedron.

Example 6.7: Using vtkm::VecCConst with a constant array.
1 VTKM_EXEC
2 vtkm :: VecCConst <vtkm :: IdComponent > HexagonIndexToIJK (vtkm :: IdComponent index)
3 {
4 static const vtkm :: IdComponent HexagonIndexToIJKTable [8][3] = {
5 { 0, 0, 0 }, { 1, 0, 0 }, { 1, 1, 0 }, { 0, 1, 0 },
6 { 0, 0, 1 }, { 1, 0, 1 }, { 1, 1, 1 }, { 0, 1, 1 }
7 };
8
9 return vtkm :: make_VecC (HexagonIndexToIJKTable [index], 3);

10 }
11
12 VTKM_EXEC
13 vtkm :: IdComponent HexagonIJKToIndex (vtkm :: VecCConst <vtkm :: IdComponent > ijk)
14 {
15 static const vtkm :: IdComponent HexagonIJKToIndexTable [2][2][2] = {
16 {
17 // i=0
18 { 0, 4 }, // j=0
19 { 3, 7 }, // j=1
20 },
21 {
22 // i=1
23 { 1, 5 }, // j=0
24 { 2, 6 }, // j=1
25 }
26 };
27
28 return HexagonIJKToIndexTable [ijk [0]][ijk [1]][ijk [2]];
29 }

The vtkm::VecC and vtkm::VecCConst classes only hold a pointer to a buffer that contains the data. They
do not manage the memory holding the data. Thus, if the pointer given to vtkm::VecC or vtkm::VecCConst
becomes invalid, then using the object becomes invalid. Make sure that the scope of the vtkm::VecC or
vtkm::VecCConst does not outlive the scope of the data it points to.

Common Errors

The next Vec-like object is vtkm::VecVariable, which provides a Vec-like object that can be resized at run time
to a maximum value. Unlike VecC, VecVariable holds its own memory, which makes it a bit safer to use. But
also unlike VecC, you must define the maximum size of VecVariable at compile time. Thus, VecVariable is
really only appropriate to use when there is a predetermined limit to the vector size that is fairly small.

68 Chapter 6. Basic Provisions

DRAFT

6.5. Core Data Types

The following example uses a vtkm::VecVariable to store the trace of edges within a hexahedron. This example
uses the methods defined in Example 6.7.

Example 6.8: Using vtkm::VecVariable.
1 vtkm :: VecVariable <vtkm :: IdComponent , 4> HexagonShortestPath (
2 vtkm :: IdComponent startPoint ,
3 vtkm :: IdComponent endPoint)
4 {
5 vtkm :: VecCConst <vtkm :: IdComponent > startIJK = HexagonIndexToIJK (startPoint);
6 vtkm :: VecCConst <vtkm :: IdComponent > endIJK = HexagonIndexToIJK (endPoint);
7
8 vtkm ::Vec <vtkm :: IdComponent , 3> currentIJK ;
9 startIJK . CopyInto (currentIJK);

10
11 vtkm :: VecVariable <vtkm :: IdComponent , 4> path;
12 path. Append (startPoint);
13 for (vtkm :: IdComponent dimension = 0; dimension < 3; dimension ++)
14 {
15 if (currentIJK [dimension] != endIJK [dimension])
16 {
17 currentIJK [dimension] = endIJK [dimension];
18 path. Append (HexagonIJKToIndex (currentIJK));
19 }
20 }
21
22 return path;
23 }

VTK-m provides further examples of Vec-like objects as well. For example, the vtkm::VecFromPortal and
vtkm::VecFromPortalPermute objects allow you to treat a subsection of an arbitrarily large array as a Vec.
These objects work by attaching to array portals, which are described in Section 7.2. Another example of a
Vec-like object is vtkm::VecRectilinearPointCoordinates, which efficiently represents the point coordinates
in an axis-aligned hexahedron. Such shapes are common in structured grids. These and other data sets are
described in Chapter 11.

6.5.3 Pair

VTK-m defines a vtkm::Pair <T1,T2> templated object that behaves just like std::pair from the standard
template library. The difference is that vtkm::Pair will work in both the execution and control environment,
whereas the STL std::pair does not always work in the execution environment.

The VTK-m version of vtkm::Pair supports the same types, fields, and operations as the STL version. VTK-m
also provides a vtkm::make Pair function for convenience.

6.5.4 Range

VTK-m provides a convenience structure named vtkm::Range to help manage a range of values. The Range
struct contains two data members, Min and Max, which represent the ends of the range of numbers. Min and
Max are both of type vtkm::Float64. Min and Max can be directly accessed, but Range also comes with the
following helper functions to make it easier to build and use ranges. Note that all of these functions treat the
minimum and maximum value as inclusive to the range.

IsNonEmpty Returns true if the range covers at least one value.

Contains Takes a single number and returns true if that number is contained within the range.

Chapter 6. Basic Provisions 69

DRAFT

6.5. Core Data Types

Length Returns the distance between Min and Max. Empty ranges return a length of 0. Note that if the range
is non-empty and the length is 0, then Min and Max must be equal, and the range contains exactly one
number.

Center Returns the number equidistant to Min and Max. If the range is empty, NaN is returned.

Include Takes either a single number or another range and modifies this range to include the given number or
range. If necessary, the range is grown just enough to encompass the given argument. If the argument is
already in the range, nothing changes.

Union A nondestructive version of Include, which builds a new Range that is the union of this range and the
argument. The + operator is also overloaded to compute the union.

The following example demonstrates the operation of vtkm::Range.

Example 6.9: Using vtkm::Range.
1 vtkm :: Range range ; // default constructor is empty range
2 bool b1 = range . IsNonEmpty (); // b1 is false
3
4 range . Include (0.5); // range now is [0.5 .. 0.5]
5 bool b2 = range . IsNonEmpty (); // b2 is true
6 bool b3 = range . Contains (0.5); // b3 is true
7 bool b4 = range . Contains (0.6); // b4 is false
8
9 range . Include (2.0); // range is now [0.5 .. 2]

10 bool b5 = range . Contains (0.5); // b3 is true
11 bool b6 = range . Contains (0.6); // b4 is true
12
13 range . Include (vtkm :: Range (-1, 1)); // range is now [-1 .. 2]
14
15 range . Include (vtkm :: Range (3, 4)); // range is now [-1 .. 4]
16
17 vtkm :: Float64 lower = range .Min; // lower is -1
18 vtkm :: Float64 upper = range .Max; // upper is 4
19 vtkm :: Float64 length = range . Length (); // length is 5
20 vtkm :: Float64 center = range . Center (); // center is 1.5

6.5.5 Bounds

VTK-m provides a convenience structure named vtkm::Bounds to help manage an axis-aligned region in 3D
space. Among other things, this structure is often useful for representing a bounding box for geometry. The
Bounds struct contains three data members, X, Y, and Z, which represent the range of the bounds along each re-
spective axis. All three of these members are of type vtkm::Range, which is discussed previously in Section 6.5.4.
X, Y, and Z can be directly accessed, but Bounds also comes with the following helper functions to make it easier
to build and use ranges.

IsNonEmpty Returns true if the bounds cover at least one value.

Contains Takes a vtkm::Vec of size 3 and returns true if those point coordinates are contained within the range.

Center Returns the point at the center of the range as a vtkm::Vec <vtkm::Float64,3>.

Include Takes either a vtkm::Vec of size 3 or another bounds and modifies this bounds to include the given
point or bounds. If necessary, the bounds are grown just enough to encompass the given argument. If the
argument is already in the bounds, nothing changes.

70 Chapter 6. Basic Provisions

DRAFT

6.6. Traits

Union A nondestructive version of Include, which builds a new Bounds that is the union of this bounds and
the argument. The + operator is also overloaded to compute the union.

The following example demonstrates the operation of vtkm::Bounds.

Example 6.10: Using vtkm::Bounds.
1 vtkm :: Bounds bounds ; // default constructor makes empty
2 bool b1 = bounds . IsNonEmpty (); // b1 is false
3
4 bounds . Include (vtkm :: make_Vec (0.5 , 2.0 , 0.0)); // bounds contains only
5 // the point [0.5 , 2, 0]
6 bool b2 = bounds . IsNonEmpty (); // b2 is true
7 bool b3 = bounds . Contains (vtkm :: make_Vec (0.5 , 2.0 , 0.0)); // b3 is true
8 bool b4 = bounds . Contains (vtkm :: make_Vec (1, 1, 1)); // b4 is false
9 bool b5 = bounds . Contains (vtkm :: make_Vec (0, 0, 0)); // b5 is false

10
11 bounds . Include (vtkm :: make_Vec (4, -1, 2)); // bounds is region [0.5 .. 4] in X,
12 // [-1 .. 2] in Y,
13 // and [0 .. 2] in Z
14 bool b6 = bounds . Contains (vtkm :: make_Vec (0.5 , 2.0 , 0.0)); // b6 is true
15 bool b7 = bounds . Contains (vtkm :: make_Vec (1, 1, 1)); // b7 is true
16 bool b8 = bounds . Contains (vtkm :: make_Vec (0, 0, 0)); // b8 is false
17
18 vtkm :: Bounds otherBounds (vtkm :: make_Vec (0, 0, 0), vtkm :: make_Vec (3, 3, 3));
19 // otherBounds is region [0 .. 3] in X, Y, and Z
20 bounds . Include (otherBounds); // bounds is now region [0 .. 4] in X,
21 // [-1 .. 3] in Y,
22 // and [0 .. 3] in Z
23
24 vtkm ::Vec <vtkm :: Float64 , 3> lower (bounds .X.Min , bounds .Y.Min , bounds .Z.Min);
25 // lower is [0, -1, 0]
26 vtkm ::Vec <vtkm :: Float64 , 3> upper (bounds .X.Max , bounds .Y.Max , bounds .Z.Max);
27 // upper is [4, 3, 3]
28
29 vtkm ::Vec <vtkm :: Float64 , 3> center = bounds . Center (); // center is [2, 1, 1.5]

6.6 Traits

When using templated types, it is often necessary to get information about the type or specialize code based on
general properties of the type. VTK-m uses traits classes to publish and retrieve information about types. A
traits class is simply a templated structure that provides type aliases for tag structures, empty types used for
identification. The traits classes might also contain constant numbers and helpful static functions. See Effective
C++ Third Edition by Scott Mayers for a description of traits classes and their uses.

6.6.1 Type Traits

The vtkm::TypeTraits <T> templated class provides basic information about a core type. These type traits
are available for all the basic C++ types as well as the core VTK-m types described in Section 6.5. vtkm::-
TypeTraits contains the following elements.

NumericTag This type is set to either vtkm::TypeTraitsRealTag or vtkm::TypeTraitsIntegerTag to signal
that the type represents either floating point numbers or integers.

DimensionalityTag This type is set to either vtkm::TypeTraitsScalarTag or vtkm::TypeTraitsVectorTag
to signal that the type represents either a single scalar value or a tuple of values.

Chapter 6. Basic Provisions 71

DRAFT

6.6. Traits

ZeroInitialization A static member function that takes no arguments and returns 0 (or the closest equivalent
to it) cast to the type.

The definition of vtkm::TypeTraits for vtkm::Float32 could like something like this.

Example 6.11: Definition of vtkm::TypeTraits <vtkm::Float32 >.
1 namespace vtkm {
2
3 template <>
4 struct TypeTraits <vtkm :: Float32 >
5 {
6 using NumericTag = vtkm :: TypeTraitsRealTag ;
7 using DimensionalityTag = vtkm :: TypeTraitsScalarTag ;
8
9 VTKM_EXEC_CONT

10 static vtkm :: Float32 ZeroInitialization () { return vtkm :: Float32 (0); }
11 };
12
13 }

Here is a simple example of using vtkm::TypeTraits to implement a generic function that behaves like the
remainder operator (%) for all types including floating points and vectors.

Example 6.12: Using TypeTraits for a generic remainder.
1 # include <vtkm/ TypeTraits .h>
2
3 # include <vtkm/Math.h>
4
5 template < typename T>
6 T AnyRemainder (const T& numerator , const T& denominator);
7
8 namespace detail
9 {

10
11 template < typename T>
12 T AnyRemainderImpl (const T& numerator ,
13 const T& denominator ,
14 vtkm :: TypeTraitsIntegerTag ,
15 vtkm :: TypeTraitsScalarTag)
16 {
17 return numerator % denominator ;
18 }
19
20 template < typename T>
21 T AnyRemainderImpl (const T& numerator ,
22 const T& denominator ,
23 vtkm :: TypeTraitsRealTag ,
24 vtkm :: TypeTraitsScalarTag)
25 {
26 // The VTK -m math library contains a Remainder function that operates on
27 // floating point numbers .
28 return vtkm :: Remainder (numerator , denominator);
29 }
30
31 template < typename T, typename NumericTag >
32 T AnyRemainderImpl (const T& numerator ,
33 const T& denominator ,
34 NumericTag ,
35 vtkm :: TypeTraitsVectorTag)
36 {
37 T result ;
38 for (int componentIndex = 0; componentIndex < T:: NUM_COMPONENTS ; componentIndex ++)

72 Chapter 6. Basic Provisions

DRAFT

6.6. Traits

39 {
40 result [componentIndex] =
41 AnyRemainder (numerator [componentIndex], denominator [componentIndex]);
42 }
43 return result ;
44 }
45
46 } // namespace detail
47
48 template < typename T>
49 T AnyRemainder (const T& numerator , const T& denominator)
50 {
51 return detail :: AnyRemainderImpl (numerator ,
52 denominator ,
53 typename vtkm :: TypeTraits <T >:: NumericTag (),
54 typename vtkm :: TypeTraits <T >:: DimensionalityTag ());
55 }

6.6.2 Vector Traits

The templated vtkm::Vec class contains several items for introspection (such as the component type and its
size). However, there are other types that behave similarly to Vec objects but have different ways to perform
this introspection.

For example, VTK-m contains Vec-like objects that essentially behave the same but might have different features.
Also, there may be reason to interchangeably use basic scalar values, like an integer or floating point number, with
vectors. To provide a consistent interface to access these multiple types that represents vectors, the vtkm::-
VecTraits <T> templated class provides information and accessors to vector types.It contains the following
elements.

ComponentType This type is set to the type for each component in the vector. For example, a vtkm::Id3 has
ComponentType defined as vtkm::Id.

IsSizeStatic This type is set to either vtkm::VecTraitsTagSizeStatic if the vector has a static number of
components that can be determined at compile time or set to vtkm::VecTraitsTagSizeVariable if the
size of the vector is determined at run time. If IsSizeStatic is set to VecTraitsTagSizeVariable, then
VecTraits will be missing some information that cannot be determined at compile time.

HasMultipleComponents This type is set to either vtkm::VecTraitsTagSingleComponent if the vector length
is size 1 or vtkm::VecTraitsTagMultipleComponents otherwise. This tag can be useful for creating spe-
cialized functions when a vector is really just a scalar. If the vector type is of variable size (that is,
IsSizeStatic is VecTraitsTagSizeVariable), then HasMultipleComponents might be VecTraitsTag-
MultipleComponents even when at run time there is only one component.

NUM COMPONENTS An integer specifying how many components are contained in the vector. NUM COMPONENTS is
not available for vector types of variable size (that is, IsSizeStatic is VecTraitsTagSizeVariable).

GetNumberOfComponents A static method that takes an instance of a vector and returns the number of compo-
nents the vector contains. The result of GetNumberOfComponents is the same value of NUM COMPONENTS
for vector types that have a static size (that is, IsSizeStatic is VecTraitsTagSizeStatic). But unlike
NUM COMPONENTS, GetNumberOfComponents works for vectors of any type.

GetComponent A static method that takes a vector and returns a particular component.

SetComponent A static method that takes a vector and sets a particular component to a given value.

Chapter 6. Basic Provisions 73

DRAFT

6.6. Traits

CopyInto A static method that copies the components of a vector to a vtkm::Vec.

The definition of vtkm::VecTraits for vtkm::Id3 could look something like this.

Example 6.13: Definition of vtkm::VecTraits <vtkm::Id3 >.
1 namespace vtkm {
2
3 template <>
4 struct VecTraits <vtkm ::Id3 >
5 {
6 using ComponentType = vtkm :: Id;
7 static const int NUM_COMPONENTS = 3;
8 using IsSizeStatic = vtkm :: VecTraitsTagSizeStatic ;
9 using HasMultipleComponents = vtkm :: VecTraitsTagMultipleComponents ;

10
11 VTKM_EXEC_CONT
12 static vtkm :: IdComponent GetNumberOfComponents (const vtkm :: Id3 &)
13 {
14 return NUM_COMPONENTS ;
15 }
16
17 VTKM_EXEC_CONT
18 static const vtkm :: Id& GetComponent (const vtkm :: Id3& vector , int component)
19 {
20 return vector [component];
21 }
22 VTKM_EXEC_CONT
23 static vtkm :: Id& GetComponent (vtkm :: Id3& vector , int component)
24 {
25 return vector [component];
26 }
27
28 VTKM_EXEC_CONT
29 static void SetComponent (vtkm :: Id3& vector , int component , vtkm :: Id value)
30 {
31 vector [component] = value ;
32 }
33
34 template <vtkm :: IdComponent DestSize >
35 VTKM_EXEC_CONT static void CopyInto (const vtkm :: Id3& src ,
36 vtkm ::Vec <vtkm ::Id , DestSize >& dest)
37 {
38 for (vtkm :: IdComponent index = 0; (index < NUM_COMPONENTS) && (index < DestSize);
39 index ++)
40 {
41 dest[index] = src[index];
42 }
43 }
44 };
45
46 } // namespace vtkm

The real power of vector traits is that they simplify creating generic operations on any type that can look like
a vector. This includes operations on scalar values as if they were vectors of size one. The following code uses
vector traits to simplify the implementation of less functors that define an ordering that can be used for sorting
and other operations.

Example 6.14: Using VecTraits for less functors.
1 # include <vtkm/ VecTraits .h>
2
3 // This functor provides a total ordering of vectors . Every compared vector
4 // will be either less , greater , or equal (assuming all the vector components

74 Chapter 6. Basic Provisions

DRAFT

6.7. List Tags

5 // also have a total ordering).
6 template < typename T>
7 struct LessTotalOrder
8 {
9 VTKM_EXEC_CONT

10 bool operator ()(const T& left , const T& right)
11 {
12 for (int index = 0; index < vtkm :: VecTraits <T >:: NUM_COMPONENTS ; index ++)
13 {
14 using ComponentType = typename vtkm :: VecTraits <T >:: ComponentType ;
15 const ComponentType & leftValue = vtkm :: VecTraits <T >:: GetComponent (left , index);
16 const ComponentType & rightValue =
17 vtkm :: VecTraits <T >:: GetComponent (right , index);
18 if (leftValue < rightValue)
19 {
20 return true;
21 }
22 if (rightValue < leftValue)
23 {
24 return false ;
25 }
26 }
27 // If we are here , the vectors are equal (or at least equivalent).
28 return false ;
29 }
30 };
31
32 // This functor provides a partial ordering of vectors . It returns true if and
33 // only if all components satisfy the less operation . It is possible for
34 // vectors to be neither less , greater , nor equal , but the transitive closure
35 // is still valid .
36 template < typename T>
37 struct LessPartialOrder
38 {
39 VTKM_EXEC_CONT
40 bool operator ()(const T& left , const T& right)
41 {
42 for (int index = 0; index < vtkm :: VecTraits <T >:: NUM_COMPONENTS ; index ++)
43 {
44 using ComponentType = typename vtkm :: VecTraits <T >:: ComponentType ;
45 const ComponentType & leftValue = vtkm :: VecTraits <T >:: GetComponent (left , index);
46 const ComponentType & rightValue =
47 vtkm :: VecTraits <T >:: GetComponent (right , index);
48 if (!(leftValue < rightValue))
49 {
50 return false ;
51 }
52 }
53 // If we are here , all components satisfy less than relation .
54 return true;
55 }
56 };

6.7 List Tags

VTK-m internally uses template metaprogramming, which utilizes C++ templates to run source-generating
programs, to customize code to various data and compute platforms. One basic structure often uses with
template metaprogramming is a list of class names (also sometimes called a tuple or vector, although both of
those names have different meanings in VTK-m).

Chapter 6. Basic Provisions 75

DRAFT

6.7. List Tags

Many VTK-m users only need predefined lists, such as the type lists specified in Section 6.7.2. Those users
can skip most of the details of this section. However, it is sometimes useful to modify lists, create new lists, or
operate on lists, and these usages are documented here.

VTK-m uses a tag-based mechanism for defining lists, which differs significantly from lists in many other template
metaprogramming libraries such as with boost::mpl::vector or boost::vector. Rather than enumerating all
list entries as template arguments, the list is referenced by a single tag class with a descriptive name. The intention
is to make fully resolved types shorter and more readable. (Anyone experienced with template programming
knows how insanely long and unreadable types can get in compiler errors and warnings.)

6.7.1 Building List Tags

List tags are constructed in VTK-m by defining a struct that publicly inherits from another list tags. The base
list tags are defined in the vtkm/ListTag.h header.

The most basic list is defined with vtkm::ListTagEmpty. This tag represents an empty list.

vtkm::ListTagBase <T, ...> represents a list of the types given as template parameters. vtkm::ListTagBase
supports a variable number of parameters with the maximum specified by VTKM MAX BASE LIST.

Finally, lists can be combined together with vtkm::ListTagJoin <ListTag1,ListTag2>, which concatinates
two lists together.

The following example demonstrates how to build list tags using these base lists classes. Note first that all the
list tags are defined as struct rather than class. Although these are roughly synonymous in C++, struct
inheritance is by default public, and public inheritance is important for the list tags to work. Note second that
these tags are created by inheritance rather than using a type alias. Although a type alias defined with using
will work, it will lead to much uglier type names defined by the compiler.

Example 6.15: Creating list tags.
1 # include <vtkm/ ListTag .h>
2
3 // Placeholder classes representing things that might be in a template
4 // metaprogram list.
5 class Foo;
6 class Bar;
7 class Baz;
8 class Qux;
9 class Xyzzy ;

10
11 // The names of the following tags are indicative of the lists they contain .
12
13 struct FooList : vtkm :: ListTagBase <Foo >
14 {
15 };
16
17 struct FooBarList : vtkm :: ListTagBase <Foo , Bar >
18 {
19 };
20
21 struct BazQuxXyzzyList : vtkm :: ListTagBase <Baz , Qux , Xyzzy >
22 {
23 };
24
25 struct QuxBazBarFooList : vtkm :: ListTagBase <Qux , Baz , Bar , Foo >
26 {
27 };
28
29 struct FooBarBazQuxXyzzyList : vtkm :: ListTagJoin < FooBarList , BazQuxXyzzyList >

76 Chapter 6. Basic Provisions

DRAFT

6.7. List Tags

30 {
31 };

6.7.2 Type Lists

One of the major use cases for template metaprogramming lists in VTK-m is to identify a set of potential data
types for arrays. The vtkm/TypeListTag.h header contains predefined lists for known VTK-m types. Although
technically all these lists are of C++ types, the types we refer to here are those data types stored in data arrays.
The following lists are provided.

vtkm::TypeListTagId Contains the single item vtkm::Id.

vtkm::TypeListTagId2 Contains the single item vtkm::Id2.

vtkm::TypeListTagId3 Contains the single item vtkm::Id3.

vtkm::TypeListTagIndex A list of all types used to index arrays. Contains vtkm::Id, vtkm::Id2, and vtkm::-
Id3.

vtkm::TypeListTagFieldScalar A list containing types used for scalar fields. Specifically, it contains floating
point numbers of different widths (i.e. vtkm::Float32 and vtkm::Float64).

vtkm::TypeListTagFieldVec2 A list containing types for values of fields with 2 dimensional vectors. All these
vectors use floating point numbers.

vtkm::TypeListTagFieldVec3 A list containing types for values of fields with 3 dimensional vectors. All these
vectors use floating point numbers.

vtkm::TypeListTagFieldVec4 A list containing types for values of fields with 4 dimensional vectors. All these
vectors use floating point numbers.

vtkm::TypeListTagField A list containing all the types generally used for fields. It is the combination of
vtkm::TypeListTagFieldScalar, vtkm::TypeListTagFieldVec2, vtkm::TypeListTagFieldVec3, and
vtkm::TypeListTagFieldVec4.

vtkm::TypeListTagScalarAll A list of all scalar types. It contains signed and unsigned integers of widths
from 8 to 64 bits. It also contains floats of 32 and 64 bit widths.

vtkm::TypeListTagVecCommon A list of the most common vector types. It contains all vtkm::Vec class of size
2 through 4 containing components of unsigned bytes, signed 32-bit integers, signed 64-bit integers, 32-bit
floats, or 64-bit floats.

vtkm::TypeListTagVecAll A list of all vtkm::Vec classes with standard integers or floating points as compo-
nents and lengths between 2 and 4.

vtkm::TypeListTagAll A list of all types included in vtkm/Types.h with vtkm::Vec s with up to 4 components.

vtkm::TypeListTagCommon A list containing only the most used types in visualization. This includes signed
integers and floats that are 32 or 64 bit. It also includes 3 dimensional vectors of floats. This is the default
list used when resolving the type in variant arrays (described in Chapter 10).

If these lists are not sufficient, it is possible to build new type lists using the existing type lists and the list bases
from Section 6.7.1 as demonstrated in the following example.

Chapter 6. Basic Provisions 77

DRAFT

6.7. List Tags

Example 6.16: Defining new type lists.
1 # define VTKM_DEFAULT_TYPE_LIST_TAG MyCommonTypes
2
3 # include <vtkm/ ListTag .h>
4 # include <vtkm/ TypeListTag .h>
5
6 // A list of 2D vector types .
7 struct Vec2List : vtkm :: ListTagBase <vtkm ::Id2 ,
8 vtkm ::Vec <vtkm :: Float32 , 2>,
9 vtkm ::Vec <vtkm :: Float64 , 2>>

10 {
11 };
12
13 // An application that uses 2D geometry might commonly encounter this list of
14 // types .
15 struct MyCommonTypes : vtkm :: ListTagJoin <Vec2List , vtkm :: TypeListTagCommon >
16 {
17 };

The vtkm/TypeListTag.h header also defines a macro named VTKM DEFAULT TYPE LIST TAG that defines a de-
fault list of types to use in classes like vtkm::cont::VariantArrayHandle (Chapter 10). This list can be
overridden by defining the VTKM DEFAULT TYPE LIST TAG macro before any VTK-m headers are included. If
included after a VTK-m header, the list is not likely to take effect. Do not ignore compiler warnings about the
macro being redefined, which you will not get if defined correctly. Example 6.16 also contains an example of
overriding the VTKM DEFAULT TYPE LIST TAG macro.

6.7.3 Operating on Lists

VTK-m template metaprogramming lists are typically just passed to VTK-m methods that internally operate
on the lists. Although not typically used outside of the VTK-m library, these operations are also available.

The vtkm/ListTag.h header comes with a vtkm::ListForEach function that takes a functor object and a list tag.
It then calls the functor object with the default object of each type in the list. This is most typically used with
C++ run-time type information to convert a run-time polymorphic object to a statically typed (and possibly
inlined) call.

The following example shows a rudimentary version of coverting a dynamically-typed array to a statically-typed
array similar to what is done in VTK-m classes like vtkm::cont::VariantArrayHandle (which is documented
in Chapter 10).

Example 6.17: Converting dynamic types to static types with ListForEach.
1 struct MyArrayBase
2 {
3 // A virtual destructor makes sure C++ RTTI will be generated . It also helps
4 // ensure subclass destructors are called .
5 virtual ˜ MyArrayBase () {}
6 };
7
8 template < typename T>
9 struct MyArrayImpl : public MyArrayBase

10 {
11 std :: vector <T> Array ;
12 };
13
14 template < typename T>
15 void PrefixSum (std :: vector <T >& array)
16 {
17 T sum(typename vtkm :: VecTraits <T >:: ComponentType (0));
18 for (typename std :: vector <T >:: iterator iter = array . begin (); iter != array .end ();

78 Chapter 6. Basic Provisions

DRAFT

6.8. Error Handling

19 iter ++)
20 {
21 sum = sum + *iter;
22 *iter = sum;
23 }
24 }
25
26 struct PrefixSumFunctor
27 {
28 MyArrayBase * ArrayPointer ;
29
30 PrefixSumFunctor (MyArrayBase * arrayPointer)
31 : ArrayPointer (arrayPointer)
32 {
33 }
34
35 template < typename T>
36 void operator ()(T)
37 {
38 using ConcreteArrayType = MyArrayImpl <T >;
39 ConcreteArrayType * concreteArray =
40 dynamic_cast < ConcreteArrayType *>(this -> ArrayPointer);
41 if (concreteArray != NULL)
42 {
43 PrefixSum (concreteArray -> Array);
44 }
45 }
46 };
47
48 void DoPrefixSum (MyArrayBase * array)
49 {
50 PrefixSumFunctor functor = PrefixSumFunctor (array);
51 vtkm :: ListForEach (functor , vtkm :: TypeListTagCommon ());
52 }

6.8 Error Handling

VTK-m uses exceptions to report errors. All exceptions thrown by VTK-m will be a subclass of vtkm::cont::-
Error. For simple error reporting, it is possible to simply catch a vtkm::cont::Error and report the error
message string reported by the Error::GetMessage method.

Example 6.18: Simple error reporting.
1 int main(int argc , char ** argv)
2 {
3 try
4 {
5 // Do something cool with VTK -m
6 // ...
7 }
8 catch (const vtkm :: cont :: Error & error)
9 {

10 std :: cout << error . GetMessage () << std :: endl;
11 return 1;
12 }
13 return 0;
14 }

There are several subclasses to vtkm::cont::Error. The specific subclass gives an indication of the type of
error that occured when the exception was thrown. Catching one of these subclasses may help a program better

Chapter 6. Basic Provisions 79

DRAFT

6.8. Error Handling

recover from errors.

vtkm::cont::ErrorBadAllocation Thrown when there is a problem accessing or manipulating memory. Often
this is thrown when an allocation fails because there is insufficient memory, but other memory access errors
can cause this to be thrown as well.

vtkm::cont::ErrorBadType Thrown when VTK-m attempts to perform an operation on an object that is of
an incompatible type.

vtkm::cont::ErrorBadValue Thrown when a VTK-m function or method encounters an invalid value that
inhibits progress.

vtkm::cont::ErrorExecution Throw when an error is signaled in the execution environment for example when
a worklet is being executed.

vtkm::cont::ErrorInternal Thrown when VTK-m detects an internal state that should never be reached.
This error usually indicates a bug in VTK-m or, at best, VTK-m failed to detect an invalid input it should
have.

vtkm::io::ErrorIO Thrown by a reader or writer when a file error is encountered.

In addition to the aforementioned error signaling, the vtkm/Assert.h header file defines a macro named VTKM -
ASSERT. This macro behaves the same as the POSIX assert macro. It takes a single argument that is a condition
that is expected to be true. If it is not true, the program is halted and a message is printed. Asserts are useful
debugging tools to ensure that software is behaving and being used as expected.

Example 6.19: Using VTKM ASSERT.
1 template < typename T>
2 VTKM_CONT T GetArrayValue (vtkm :: cont :: ArrayHandle <T> arrayHandle , vtkm :: Id index)
3 {
4 VTKM_ASSERT (index >= 0);
5 VTKM_ASSERT (index < arrayHandle . GetNumberOfValues ());

Like the POSIX assert, if the NDEBUG macro is defined, then VTKM ASSERT will become an empty expres-
sion. Typically NDEBUG is defined with a compiler flag (like -DNDEBUG) for release builds to better optimize
the code. CMake will automatically add this flag for release builds.

Did you know?

A helpful warning provided by many compilers alerts you of unused variables. (This warning is commonly
enabled on VTK-m regression test nightly builds.) If a function argument is used only in a VTKM ASSERT,
then it will be required for debug builds and be unused in release builds. To get around this problem, add
a statement to the function of the form (void)variableName ;. This statement will have no effect on the
code generated but will suppress the warning for release builds.

Common Errors

80 Chapter 6. Basic Provisions

DRAFT

6.9. VTK-m Version

Because VTK-m makes heavy use of C++ templates, it is possible that these templates could be used with
inappropriate types in the arguments. Using an unexpected type in a template can lead to very confusing errors,
so it is better to catch such problems as early as possible. The VTKM STATIC ASSERT macro, defined in vtkm/-
StaticAssert.h makes this possible. This macro takes a constant expression that can be evaluated at compile time
and verifies that the result is true.

In the following example, VTKM STATIC ASSERT and its sister macro VTKM STATIC ASSERT MSG, which allows
you to give a descriptive message for the failure, are used to implement checks on a templated function that is
designed to work on any scalar type that is represented by 32 or more bits.

Example 6.20: Using VTKM STATIC ASSERT.
1 template < typename T>
2 VTKM_EXEC_CONT void MyMathFunction (T& value)
3 {
4 VTKM_STATIC_ASSERT ((std :: is_same < typename vtkm :: TypeTraits <T >:: DimensionalityTag ,
5 vtkm :: TypeTraitsScalarTag >:: value));
6
7 VTKM_STATIC_ASSERT_MSG (sizeof (T) >= 4,
8 " MyMathFunction needs types with at least 32 bits .");

In addition to the several trait template classes provided by VTK-m to introspect C++ types, the C++
standard type traits header file contains several helpful templates for general queries on types. Example 6.20
demonstrates the use of one such template: std::is same.

Did you know?

Many templates used to introspect types resolve to the tags std::true type and std::false type rather
than the constant values true and false that VTKM STATIC ASSERT expects. The std::true type and
std::false type tags can be converted to the Boolean literal by adding ::value to the end of them.
Failing to do so will cause VTKM STATIC ASSERT to behave incorrectly. Example 6.20 demonstrates getting
the Boolean literal from the result of std::is same.

Common Errors

6.9 VTK-m Version

As the VTK-m code evolves, changes to the interface and behavior will inevitably happen. Consequently, code
that links into VTK-m might need a specific version of VTK-m or changes its behavior based on what version of
VTK-m it is using. To facilitate this, VTK-m software is managed with a versioning system and advertises its
version in multiple ways. As with many software products, VTK-m has three version numbers: major, minor, and
patch. The major version represents significant changes in the VTK-m implementation and interface. Changes
in the major version include backward incompatible changes. The minor version represents added functionality.
Generally, changes in the minor version to not introduce changes to the API (although the early 1.X versions of
VTK-m violate this). The patch version represents fixes provided after a release occurs. Patch versions represent
minimal change and do not add features.

Chapter 6. Basic Provisions 81

DRAFT

6.10. Logging

If you are writing a software package that is managed by CMake and load VTK-m with the find package
command as described in Section 2.4, then you can query the VTK-m version directly in the CMake config-
uration. When you load VTK-m with find package, CMake sets the variables VTKm VERSION MAJOR,
VTKm VERSION MINOR, and VTKm VERSION PATCH to the major, minor, and patch versions, respectively.
Additionally, VTKm VERSION is set to the “major.minor” version number and VTKm VERSION FULL is set
to the “major.minor.patch” version number. If the current version of VTK-m is actually a development version
that is in between releases of VTK-m, then and abbreviated SHA of the git commit is also included as part of
VTKm VERSION FULL.

If you have a specific version of VTK-m required for your software, you can also use the version option to
the find package CMake command. The find package command takes an optional version argument
that causes the command to fail if the wrong version of the package is found.

Did you know?

It is also possible to query the VTK-m version directly in your code through preprocessor macros. The vtkm/-
Version.h header file defines the following preprocessor macros to identify the VTK-m version. VTKM VERSION -
MAJOR, VTKM VERSION MINOR, and VTKM VERSION PATCH are set to integer numbers representing the major,
minor, and patch versions, respectively. Additionally, VTKM VERSION is set to the “major.minor” version number
as a string and VTKM VERSION FULL is set to the “major.minor.patch” version number (also as a string). If the
current version of VTK-m is actually a development version that is in between releases of VTK-m, then and
abbreviated SHA of the git commit is also included as part of VTKM VERSION FULL.

Note that the CMake variables all begin with VTKm (lowercase “m”) whereas the preprocessor macros begin
with VTKM (all uppercase). This follows the respective conventions of CMake variables and preprocessor
macros.

Common Errors

Note that vtkm/Version.h does not include any other VTK-m header files. This gives your code a chance to load,
query, and react to the VTK-m version before loading any VTK-m code proper.

6.10 Logging

VTK-m features a logging system that allows status updates and timing. VTK-m uses the loguru project to
provide runtime logging facilities.2 Logging is enabled by setting the CMake variable VTKm ENABLE LOGGING.
When this flag is enabled, any messages logged to the Info, Warn, Error, and Fatal levels are printed to stderr
by default.

6.10.1 Initializing Logging

Additional logging features are enabled by calling vtkm::cont::Initialize as described in Section 6.4. Exam-
ple 6.21 in the following section provides an example of initializing the logging. Although calling Initialize is
not strictly necessary for output messages, initialization adds the following features.

2A sample of the log output can be found at https://gitlab.kitware.com/snippets/427.

82 Chapter 6. Basic Provisions

https://gitlab.kitware.com/snippets/427

DRAFT

6.10. Logging

• Set human-readable names for the log levels in the output.

• Allow the stderr logging level to be set at runtime by passing a -v [level] argument to the executable
(if provided).

• Name the main thread.

• Print a preamble with details of the program’s startup (args, etc).

• Install signal handlers to automatically print stack traces and error contexts (Linux only) on crashes.

The logging implementation is thread-safe. When working in a multithreaded environment, each thread may
be assigned a human-readable name using vtkm::cont::SetThreadName (which can later be retrieved with
vtkm::cont::GetThreadName. This name will appear in the log output so that per-thread messages can be
easily tracked.

6.10.2 Logging Levels

The logging in VTK-m provides several “levels” of logging. Logging levels are ordered by precedence. When
selecting which log message to output, a single logging level is provided. Any logging message with that or a
higher precedence is output. For example, if warning messages are on, then error messages are also outputted
because errors are a higher precedence than warnings. Likewise, if information messages are on, then error and
warning messages are also outputted.

All logging levels are assigned a number, and logging levels with a higher precedence actually have a smaller
number.

Common Errors

All logging levels are listed in the vtkm::cont::LogLevel enum. The available logging levels, in order of
precedence, are as follows.

Off A placeholder used to silence all logging.

Fatal Fatal errors that should abort execution.

Error Important but non-fatal errors, such as device fail-over.

Warn Less important user errors, such as out-of-bounds parameters.

Info Information messages (detected hardware, etc) and temporary debugging output.

UserFirst The first in a range of logging levels reserved for code that uses VTK-m. Internal VTK-m code will
not log on these levels but will report these logs.

UserLast The last in a range of logging levels reserved for code that uses VTK-m.

Perf General timing data and algorithm flow information, such as filter execution, worklet dispatches, and device
algorithm calls.

MemCont Host-side resource memory allocations and frees such as ArrayHandle control buffers.

Chapter 6. Basic Provisions 83

DRAFT

6.10. Logging

MemExec Device-side resource memory allocations and frees such as ArrayHandle device buffers)

MemTransfer Transferring of data between a host and device.

Cast Report when a dynamic object is (or is not) resolved via a CastAndCall or other casting method.

UserVerboseFirst The first in a range of logging levels reserved for code that uses VTK-m. Internal VTK-m
code will not log on these levels but will report these logs. These are used similarly to those in the
UserFirst range but are at a lower precedence that also includes more verbose reporting from VTK-m.

UserVerboseLast The last in a range of logging levels reserved for code that uses VTK-m.

When VTK-m outputs an entry in its log, it annotates the message with the logging level. VTK-m will auto-
matically provide descriptions for all log levels described in vtkm::cont::LogLevel. A custom log level can be
described by calling the vtkm::cont::SetLogLevelName function. (The log name can likewise be retrieved with
vtkm::cont::GetLogLevelName.)

The SetLogLevelName function must be called before vtkm::cont::Initialize to have an effect.

Common Errors

The descriptions for each log level are only set up if vtkm::cont::Initialize is called. If it is not, then
all log levels will be represented with a numerical value.

Common Errors

If vtkm::cont::Initialize is called with argc/argv, then the user can control the logging level with the “-v”
command line argument. Alternatively, you can control which logging levels are reported with the vtkm::-
cont::SetStderrLogLevel.

Example 6.21: Initializing logging.
1 static const vtkm :: cont :: LogLevel CustomLogLevel = vtkm :: cont :: LogLevel :: UserFirst ;
2
3 int main(int argc , char ** argv)
4 {
5 vtkm :: cont :: SetLogLevelName (CustomLogLevel , " custom ");
6
7 // For this example we will set the log level manually .
8 // The user can override this with the -v command line flag.
9 vtkm :: cont :: SetStderrLogLevel (CustomLogLevel);

10
11 vtkm :: cont :: Initialize (argc , argv);
12
13 // Do interesting stuff ...

6.10.3 Log Entries

Log entries are created with a collection of macros provided in vtkm/cont/Logging.h. In addition to basic log
entries, VTK-m logging can also provide conditional logging, scope levels of logs, and generate special logs on
crashes.

84 Chapter 6. Basic Provisions

DRAFT

6.10. Logging

Basic Log Entries

The main logging entry points are the macros VTKM LOG S and VTKM LOG F, which use C++ stream and printf
syntax, respectively. Both macros take a logging level as the first argument. The remaining arguments specify
the message printed to the log. VTKM LOG S takes a single argument with a C++ stream expression (so <<
operators can exist in the expression). VTKM LOG F takes a C string as its second argument that has printf-style
formatting codes. The remaining arguments fulfill those codes.

Example 6.22: Basic logging.
1 VTKM_LOG_F (vtkm :: cont :: LogLevel :: Info ,
2 "Base VTK -m version : %d.%d",
3 VTKM_VERSION_MAJOR ,
4 VTKM_VERSION_MINOR);
5 VTKM_LOG_S (vtkm :: cont :: LogLevel :: Info ,
6 "Full VTK -m version : " << VTKM_VERSION_FULL);

Conditional Log Entries

The macros VTKM LOG IF S VTKM LOG IF F behave similarly to VTKM LOG S and VTKM LOG F, respectively,
except they have an extra argument that contains the condition. If the condition is true, then the log entry is
created. If the condition is false, then the statement is ignored and nothing is recorded in the log.

Example 6.23: Conditional logging.
1 for (size_t i = 0; i < 5; i++)
2 {
3 VTKM_LOG_IF_S (
4 vtkm :: cont :: LogLevel :: Info , i % 2 == 0, " Found an even number : " << i);
5 }

Scoped Log Entries

The logging back end supports the concept of scopes. Scopes allow the nesting of log messages, which allows a
complex operation to report when it starts, when it ends, and what log messages happen in the middle. Scoped
log entries are also timed so you can get an idea of how long operations take. Scoping can happen to arbitrary
depths.

Although the timing reported in scoped log entries can give an idea of the time each operation takes, the
reported time should not be considered accurate in regards to timing parallel operations. If a parallel
algorithm is invoked inside a log scope, the program may return from that scope before the parallel algorithm
is complete. See Chapter 9 for information on more accurate timers.

Common Errors

Scoped log entries follow the same scoping of your C++ code. A scoped log can be created with the VTKM -
LOG SCOPE macro. This macro behaves similarly to VTKM LOG F except that it creates a scoped log that starts
when VTKM LOG SCOPE and ends when the program leaves the given scope.

Example 6.24: Scoped logging.
1 for (vtkm :: IdComponent trial = 0; trial < numTrials ; ++ trial)

Chapter 6. Basic Provisions 85

DRAFT

6.10. Logging

2 {
3 VTKM_LOG_SCOPE (CustomLogLevel , " Trial %d", trial);
4
5 VTKM_LOG_F (CustomLogLevel , "Do thing 1");
6
7 VTKM_LOG_F (CustomLogLevel , "Do thing 2");
8
9 //...

10 }

It is also common, and typically good code structure, to structure scoped concepts around functions or methods.
Thus, VTK-m provides VTKM LOG SCOPE FUNCTION. When placed at the beginning of a function or macro,
VTKM LOG SCOPE FUNCTION will automatically create a scoped log around it.

Example 6.25: Scoped logging in a function.
1 void TestFunc ()
2 {
3 VTKM_LOG_SCOPE_FUNCTION (vtkm :: cont :: LogLevel :: Info);
4 VTKM_LOG_S (vtkm :: cont :: LogLevel :: Info , " Showcasing function logging ");
5 }

Error Context

The VTK-m logging is capable of capturing some crashes and writing information to the log before the program
terminates. The VTKM LOG ERROR CONTEXT can be used to record some information that should be reported if
an error occurs. If the program terminates successfully, then information is never recorded to the log.

Example 6.26: Providing an error context for logging.
1 // This message is only logged if a crash occurs
2 VTKM_LOG_ERROR_CONTEXT (" Some variable value ", 42);

6.10.4 Helper Functions

The vtkm/cont/Logging.h header file also contains several helper functions that provide useful functions when
reporting information about the system.

Although provided with the logging utilities, these functions can be useful in contexts outside of the logging
as well. These functions are available even if VTK-m is compiled with logging off.

Did you know?

The vtkm::cont::TypeToString function provides RTTI based type-name information. TypeToString is a
templated function for which you have to explicitly declare the type. TypeToString returns a std::string
containing a representation of the type provided. When logging is enabled, TypeToString uses the logging back
end to demangle symbol names on supported platforms.

The vtkm::cont::GetHumanReadableSize takes a size of memory in bytes and returns a human readable string
(for example ”64 bytes”, ”1.44 MiB”, ”128 GiB”, etc). vtkm::cont::GetSizeString is a similar function that
returns the same thing as GetHumanReadableSize followed by “(# bytes)” (with # replaced with the number
passed to the function). Both GetHumanReadableSize and GetSizeString take an optional second argument
that is the number of digits of precision to display. By default, they display 2 digits of precision.

86 Chapter 6. Basic Provisions

DRAFT

6.10. Logging

The vtkm::cont::GetStackTrace function returns a string containing a trace of the stack, which can be helpful
for debugging. GetStackTrace takes an optional argument for the number of stack frames to skip. Reporting
the stack trace is not available on all platforms. On platforms that are not supported, a simple string reporting
that the stack trace is unavailable is returned.

Example 6.27: Helper log functions.
1 template < typename T>
2 void DoSomething (T&& x)
3 {
4 VTKM_LOG_S (CustomLogLevel ,
5 " Doing something with type " << vtkm :: cont :: TypeToString <T >());
6
7 vtkm :: Id arraySize = 100000 * sizeof (T);
8 VTKM_LOG_S (CustomLogLevel ,
9 "Size of array is " << vtkm :: cont :: GetHumanReadableSize (arraySize));

10 VTKM_LOG_S (CustomLogLevel ,
11 "More precisely it is " << vtkm :: cont :: GetSizeString (arraySize , 4));
12
13 VTKM_LOG_S (CustomLogLevel , " Stack location : " << vtkm :: cont :: GetStackTrace ());

Chapter 6. Basic Provisions 87

DRAFT

DRAFT
CHAPTER

SEVEN

ARRAY HANDLES

An array handle, implemented with the vtkm::cont::ArrayHandle class, manages an array of data that can
be accessed or manipulated by VTK-m algorithms. It is typical to construct an array handle in the control
environment to pass data to an algorithm running in the execution environment. It is also typical for an
algorithm running in the execution environment to allocate and populate an array handle, which can then be
read back in the control environment. It is also possible for an array handle to manage data created by one
VTK-m algorithm and passed to another, remaining in the execution environment the whole time and never
copied to the control environment.

The array handle may have up to two copies of the array, one for the control environment and one for
the execution environment. However, depending on the device and how the array is being used, the array
handle will only have one copy when possible. Copies between the environments are implicit and lazy. They
are copied only when an operation needs data in an environment where the data is not.

Did you know?

vtkm::cont::ArrayHandle behaves like a shared smart pointer in that when the C++ object is copied, each
copy holds a reference to the same array. These copies are reference counted so that when all copies of the
vtkm::cont::ArrayHandle are destroyed, any allocated memory is released.

An ArrayHandle defines the following methods.

GetNumberOfValues Returns the number of entries in the array.

Allocate Resizes the array to include the number of entries given. Any previously stored data might be
discarded.

Shrink Resizes the array to the number of entries given. Any data stored in the array is preserved. The number
of entries must be less than those given in the last call to Allocate.

ReleaseResourcesExecution If the ArrayHandle is holding any data on a device (such as a GPU), that memory
is released to be used elsewhere. No data is lost from this call. Any data on the released resources is copied
to the control environment (the local CPU) before the memory is released.

ReleaseResources Releases all memory managed by this ArrayHandle. Any data in this memory is lost.

SyncControlArray Makes sure any data in the execution environment is also available in the control environ-
ment. This method is useful when timing parallel algorithms and you want to include the time to transfer
data between parallel devices and their hosts.

DRAFT

7.1. Creating Array Handles

GetPortalControl Returns an array portal that can be used to access the data in the array handle in the control
environment. Array portals are described in Section 7.2.

GetPortalConstControl Like ArrayHandle::GetPortalControl but returns a read-only array portal rather
than a read/write array portal.

PrepareForInput Readies the data as input to a parallel algorithm. See Section 7.8 for more details.

PrepareForOutput Readies the data as output to a parallel algorithm. See Section 7.8 for more details.

PrepareForInPlace Readies the data as input and output to a parallel algorithm. See Section 7.8 for more
details.

GetDeviceAdapterId Returns a vtkm::cont::DeviceAdapterId describing on which device adapter, if any, the
array h andle’s data is available. Device adapter ids are described in Section 8.2.

GetStorage Returns the vtkm::cont::Storage object that manages the data. The type of the storage object
is defined by the storage tag template parameter of the ArrayHandle. Storage objects are described in
detail in Chapter 18.

7.1 Creating Array Handles

vtkm::cont::ArrayHandle is a templated class with two template parameters. The first template parameter
is the only one required and specifies the base type of the entries in the array. The second template parameter
specifies the storage used when storing data in the control environment. Storage objects are discussed later in
Chapter 18, and for now we will use the default value.

Example 7.1: Declaration of the vtkm::cont::ArrayHandle templated class.
1 template <
2 typename T,
3 typename StorageTag = VTKM_DEFAULT_STORAGE_TAG >
4 class ArrayHandle ;

There are multiple ways to create and populate an array handle. The default vtkm::cont::ArrayHandle con-
structor will create an empty array with nothing allocated in either the control or execution environment. This
is convenient for creating arrays used as the output for algorithms.

Example 7.2: Creating an ArrayHandle for output data.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > outputArray ;

Constructing an ArrayHandle that points to a provided C array or std::vector is straightforward with the
vtkm::cont::make ArrayHandle functions. These functions will make an array handle that points to the array
data that you provide.

Example 7.3: Creating an ArrayHandle that points to a provided C array.
1 vtkm :: Float32 dataBuffer [50];
2 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
3
4 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray =
5 vtkm :: cont :: make_ArrayHandle (dataBuffer , 50);

Example 7.4: Creating an ArrayHandle that points to a provided std::vector.
1 std :: vector <vtkm :: Float32 > dataBuffer ;
2 // Populate dataBuffer with meaningful data. Perhaps read data from a file.

90 Chapter 7. Array Handles

DRAFT

7.1. Creating Array Handles

3
4 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray =
5 vtkm :: cont :: make_ArrayHandle (dataBuffer);

Be aware that vtkm::cont::make ArrayHandle makes a shallow pointer copy. This means that if you change or
delete the data provided, the internal state of ArrayHandle becomes invalid and undefined behavior can ensue.
The most common manifestation of this error happens when a std::vector goes out of scope. This subtle
interaction will cause the vtkm::cont::ArrayHandle to point to an unallocated portion of the memory heap.
For example, if the code in Example 7.4 where to be placed within a callable function or method, it could cause
the vtkm::cont::ArrayHandle to become invalid.

Because ArrayHandle does not manage data provided by make ArrayHandle, you should only use these as
temporary objects. Example 7.5 demonstrates a method of copying one of these temporary arrays into safe
managed memory, and Section 7.3 describes how to put data directly into an ArrayHandle object.

Common Errors

Example 7.5: Invalidating an ArrayHandle by letting the source std::vector leave scope.
1 VTKM_CONT
2 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > BadDataLoad ()
3 {
4 std :: vector <vtkm :: Float32 > dataBuffer ;
5 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
6
7 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray =
8 vtkm :: cont :: make_ArrayHandle (dataBuffer);
9

10 return inputArray ;
11 // THIS IS WRONG ! At this point dataBuffer goes out of scope and deletes its
12 // memory . However , inputArray has a pointer to that memory , which becomes an
13 // invalid pointer in the returned object . Bad things will happen when the
14 // ArrayHandle is used.
15 }
16
17 VTKM_CONT
18 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > SafeDataLoad ()
19 {
20 std :: vector <vtkm :: Float32 > dataBuffer ;
21 // Populate dataBuffer with meaningful data. Perhaps read data from a file.
22
23 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > tmpArray =
24 vtkm :: cont :: make_ArrayHandle (dataBuffer);
25
26 // This copies the data from one ArrayHandle to another (in the execution
27 // environment). Although it is an extraneous copy , it is usually pretty fast
28 // on a parallel device . Another option is to make sure that the buffer in
29 // the std :: vector never goes out of scope before all the ArrayHandle
30 // references , but this extra step allows the ArrayHandle to manage its own
31 // memory and ensure everything is valid .
32 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > inputArray ;
33 vtkm :: cont :: ArrayCopy (tmpArray , inputArray);
34
35 return inputArray ;
36 // This is safe.
37 }

Chapter 7. Array Handles 91

DRAFT

7.2. Array Portals

7.2 Array Portals

An array handle defines auxiliary structures called array portals that provide direct access into its data. An
array portal is a simple object that is somewhat functionally equivalent to an STL-type iterator, but with a
much simpler interface. Array portals can be read-only (const) or read-write and they can be accessible from
either the control environment or the execution environment. All these variants have similar interfaces although
some features that are not applicable can be left out.

An array portal object contains each of the following:

ValueType The type for each item in the array.

GetNumberOfValues A method that returns the number of entries in the array.

Get A method that returns the value at a given index.

Set A method that changes the value at a given index. This method does not need to exist for read-only (const)
array portals.

The following code example defines an array portal for a simple C array of scalar values. This definition has no
practical value (it is covered by the more general vtkm::cont::internal::ArrayPortalFromIterators), but
demonstrates the function of each component.

Example 7.6: A simple array portal implementation.
1 template < typename T>
2 class SimpleScalarArrayPortal
3 {
4 public :
5 using ValueType = T;
6
7 // There is no specification for creating array portals , but they generally
8 // need a constructor like this to be practical .
9 VTKM_EXEC_CONT

10 SimpleScalarArrayPortal (ValueType * array , vtkm :: Id numberOfValues)
11 : Array (array)
12 , NumberOfValues (numberOfValues)
13 {
14 }
15
16 VTKM_EXEC_CONT
17 SimpleScalarArrayPortal ()
18 : Array (NULL)
19 , NumberOfValues (0)
20 {
21 }
22
23 VTKM_EXEC_CONT
24 vtkm :: Id GetNumberOfValues () const { return this -> NumberOfValues ; }
25
26 VTKM_EXEC_CONT
27 ValueType Get(vtkm :: Id index) const { return this -> Array [index]; }
28
29 VTKM_EXEC_CONT
30 void Set(vtkm :: Id index , ValueType value) const { this -> Array [index] = value ; }
31
32 private :
33 ValueType * Array ;
34 vtkm :: Id NumberOfValues ;
35 };

92 Chapter 7. Array Handles

DRAFT

7.2. Array Portals

Although array portals are simple to implement and use, and array portals’ functionality is similar to iterators,
there exists a great deal of code already based on STL iterators and it is often convienient to interface with an
array through an iterator rather than an array portal. The vtkm::cont::ArrayPortalToIterators class can
be used to convert an array portal to an STL-compatible iterator. The class is templated on the array portal
type and has a constructor that accepts an instance of the array portal. It contains the following features.

IteratorType The type of an STL-compatible random-access iterator that can provide the same access as the
array portal.

GetBegin A method that returns an STL-compatible iterator of type IteratorType that points to the beginning
of the array.

GetEnd A method that returns an STL-compatible iterator of type IteratorType that points to the end of the
array.

Example 7.7: Using ArrayPortalToIterators.
1 template < typename PortalType >
2 VTKM_CONT std :: vector < typename PortalType :: ValueType > CopyArrayPortalToVector (
3 const PortalType & portal)
4 {
5 using ValueType = typename PortalType :: ValueType ;
6 std :: vector <ValueType > result (
7 static_cast <std :: size_t >(portal . GetNumberOfValues ()));
8
9 vtkm :: cont :: ArrayPortalToIterators < PortalType > iterators (portal);

10
11 std :: copy(iterators . GetBegin (), iterators . GetEnd (), result . begin ());
12
13 return result ;
14 }

As a convenience, vtkm/cont/ArrayPortalToIterators.h also defines a pair of functions named vtkm::cont::Ar-
rayPortalToIteratorBegin() and vtkm::cont::ArrayPortalToIteratorEnd() that each take an array portal
as an argument and return a begin and end iterator, respectively.

Example 7.8: Using ArrayPortalToIteratorBegin and ArrayPortalToIteratorEnd.
1 std :: vector <vtkm :: Float32 > myContainer (
2 static_cast <std :: size_t >(portal . GetNumberOfValues ()));
3
4 std :: copy(vtkm :: cont :: ArrayPortalToIteratorBegin (portal),
5 vtkm :: cont :: ArrayPortalToIteratorEnd (portal),
6 myContainer . begin ());

ArrayHandle contains two internal type definitions for array portal types that are capable of interfacing with the
underlying data in the control environment. These are PortalControl and PortalConstControl, which define
read-write and read-only (const) array portals, respectively.

ArrayHandle also contains similar type definitions for array portals in the execution environment. Because these
types are dependent on the device adapter used for execution, these type definitions are embedded in a tem-
plated class named ExecutionTypes. Within ExecutionTypes are the type definitions Portal and PortalConst
defining the read-write and read-only (const) array portals, respectively, for the execution environment for the
given device adapter tag.

Because vtkm::cont::ArrayHandle is control environment object, it provides the methods GetPortalControl
and GetPortalConstControl to get the associated array portal objects. These methods also have the side effect
of refreshing the control environment copy of the data as if you called SyncControlArray. Be aware that calling
GetPortalControl will invalidate any copy in the execution environment, meaning that any subsequent use will
cause the data to be copied back again.

Chapter 7. Array Handles 93

DRAFT

7.3. Allocating and Populating Array Handles

Example 7.9: Using portals from an ArrayHandle.
1 template < typename T>
2 void SortCheckArrayHandle (vtkm :: cont :: ArrayHandle <T> arrayHandle)
3 {
4 using PortalType = typename vtkm :: cont :: ArrayHandle <T >:: PortalControl ;
5 using PortalConstType = typename vtkm :: cont :: ArrayHandle <T >:: PortalConstControl ;
6
7 PortalType readwritePortal = arrayHandle . GetPortalControl ();
8 // This is actually pretty dumb. Sorting would be generally faster in
9 // parallel in the execution environment using the device adapter algorithms .

10 std :: sort(vtkm :: cont :: ArrayPortalToIteratorBegin (readwritePortal),
11 vtkm :: cont :: ArrayPortalToIteratorEnd (readwritePortal));
12
13 PortalConstType readPortal = arrayHandle . GetPortalConstControl ();
14 for (vtkm :: Id index = 1; index < readPortal . GetNumberOfValues (); index ++)
15 {
16 if (readPortal .Get(index - 1) > readPortal .Get(index))
17 {
18 std :: cout << " Sorting is wrong !" << std :: endl;
19 break ;
20 }
21 }
22 }

Most operations on arrays in VTK-m should really be done in the execution environment. Keep in mind
that whenever doing an operation using a control array portal, that operation will likely be slow for large
arrays. However, some operations, like performing file I/O, make sense in the control environment.

Did you know?

7.3 Allocating and Populating Array Handles

vtkm::cont::ArrayHandle is capable of allocating its own memory. The most straightforward way to allocate
memory is to call the ArrayHandle::Allocate method. The Allocate method takes a single argument, which
is the number of elements to make the array.

Example 7.10: Allocating an ArrayHandle.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > arrayHandle ;
2
3 const vtkm :: Id ARRAY_SIZE = 50;
4 arrayHandle . Allocate (ARRAY_SIZE);

The ability to allocate memory is a key difference between ArrayHandle and many other common forms
of smart pointers. When one ArrayHandle allocates new memory, all other ArrayHandles pointing to
the same managed memory get the newly allocated memory. This can be particularly surprising when the
originally managed memory is empty. For example, older versions of std::vector initialized all its values
by setting them to the same object. When a vector of ArrayHandles was created and one entry was

Common Errors

94 Chapter 7. Array Handles

DRAFT

7.4. Fancy Arrays

allocated, all entries changed to the same allocation.

Once an ArrayHandle is allocated, it can be populated by using the portal returned from ArrayHandle::-
GetPortalControl, as described in Section 7.2. This is roughly the method used by the readers in the I/O
package (Chapter 3).

Example 7.11: Populating a newly allocated ArrayHandle.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > arrayHandle ;
2
3 const vtkm :: Id ARRAY_SIZE = 50;
4 arrayHandle . Allocate (ARRAY_SIZE);
5
6 using PortalType = vtkm :: cont :: ArrayHandle <vtkm :: Float32 >:: PortalControl ;
7 PortalType portal = arrayHandle . GetPortalControl ();
8
9 for (vtkm :: Id index = 0; index < ARRAY_SIZE ; index ++)

10 {
11 portal .Set(index , GetValueForArray (index));
12 }

7.4 Fancy Arrays

One of the features of using ArrayHandles is that they hide the implementation and layout of the array behind
a generic interface. This gives us the opportunity to replace a simple C array with some custom definition of the
data and the code using the ArrayHandle is none the wiser.

This gives us the opportunity to implement fancy arrays that do more than simply look up a value in an array. For
example, arrays can be augmented on the fly by mutating their indices or values. Or values could be computed
directly from the index so that no storage is required for the array at all.

VTK-m provides many of the fancy arrays, which we explore in this section. Later in Chapter 18 we explore
how to create custom arrays that adapt new memory layouts or augment other types of arrays.

One of the advantages of VTK-m’s implementation of fancy arrays is that they can define whole arrays
without actually storing and values. For example, ArrayHandleConstant, ArrayHandleCounting, and
ArrayHandleIndex do not store data in any array in memory. Rather, they construct the value for an
index at runtime. Likewise, arrays like ArrayHandlePermute construct new arrays from the values of
other arrays without having to create a copy of the data.

Did you know?

7.4.1 Constant Arrays

A constant array is a fancy array handle that has the same value in all of its entries. The constant array provides
this array without actually using any memory.

Specifying a constant array in VTK-m is straightforward. VTK-m has a class named vtkm::cont::ArrayHan-
dleConstant. ArrayHandleConstant is a templated class with a single template argument that is the type of
value for each element in the array. The constructor for ArrayHandleConstant takes the value to provide by

Chapter 7. Array Handles 95

DRAFT

7.4. Fancy Arrays

the array and the number of values the array should present. The following example is a simple demonstration
of the constant array handle.

Example 7.12: Using ArrayHandleConstant.
1 // Create an array of 50 entries , all containing the number 3. This could be
2 // used , for example , to represent the sizes of all the polygons in a set
3 // where we know all the polygons are triangles .
4 vtkm :: cont :: ArrayHandleConstant <vtkm ::Id > constantArray (3, 50);

The vtkm/cont/ArrayHandleConstant.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleConstant that takes a value and a size for the array. This function can sometimes be used
to avoid having to declare the full array type.

Example 7.13: Using make ArrayHandleConstant.
1 // Create an array of 50 entries , all containing the number 3.
2 vtkm :: cont :: make_ArrayHandleConstant (3, 50)

7.4.2 ArrayHandleView

An array handle view is a fancy array handle that returns a subset of an already existing array handle. The
array handle view uses the same memory as the existing array handle the view was created from. This means
that changes to the data in the array handle view will also change the data in the original array handle.

To use the ArrayHandleView you must supply an ArrayHandle to the vtkm::cont::ArrayHandleView class
constructor. ArrayHandleView is a templated class with a single template argument that is the ArrayHandle
type of the array that the view is being created from. The constructor for ArrayHandleView takes a target array,
starting index, and length. The follwing example shows a simple usage of the array handle view.

Example 7.14: Using ArrayHandleView.
1 vtkm :: cont :: ArrayHandle <vtkm ::Id > sourceArray ;
2 vtkm :: cont :: ArrayCopy (vtkm :: cont :: ArrayHandleIndex (10) , sourceArray);
3 // sourceArray has [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
4
5 vtkm :: cont :: ArrayHandleView <vtkm :: cont :: ArrayHandle <vtkm ::Id >> viewArray (
6 sourceArray , 3, 5);
7 // viewArray has [3, 4, 5, 6, 7]

The vtkm/cont/ArrayHandleView.h header contains a templated convenience function vtkm::cont::make Ar-
rayHandleView that takes a target array, index, and length.

Example 7.15: Using make ArrayHandleView.
1 vtkm :: cont :: make_ArrayHandleView (sourceArray , 3, 5)

7.4.3 Counting Arrays

A counting array is a fancy array handle that provides a sequence of numbers. These fancy arrays can represent
the data without actually using any memory.

VTK-m provides two versions of a counting array. The first version is an index array that provides a specialized
but common form of a counting array called an index array. An index array has values of type vtkm::Id that
start at 0 and count up by 1 (i.e. 0,1,2,3, . . .). The index array mirrors the array’s index.

Specifying an index array in VTK-m is done with a class named vtkm::cont::ArrayHandleIndex. The construc-
tor for ArrayHandleIndex takes the size of the array to create. The following example is a simple demonstration
of the index array handle.

96 Chapter 7. Array Handles

DRAFT

7.4. Fancy Arrays

Example 7.16: Using ArrayHandleIndex.
1 // Create an array containing [0, 1, 2, 3, ... , 49].
2 vtkm :: cont :: ArrayHandleIndex indexArray (50);

The vtkm::cont::ArrayHandleCounting class provides a more general form of counting. ArrayHandleCounting
is a templated class with a single template argument that is the type of value for each element in the array.
The constructor for ArrayHandleCounting takes three arguments: the start value (used at index 0), the step
from one value to the next, and the length of the array. The following example is a simple demonstration of the
counting array handle.

Example 7.17: Using ArrayHandleCounting.
1 // Create an array containing [-1.0 , -0.9, -0.8, ... , 0.9 , 1.0]
2 vtkm :: cont :: ArrayHandleCounting <vtkm :: Float32 > sampleArray (-1.0f, 0.1f, 21);

In addition to being simpler to declare, ArrayHandleIndex is slightly faster than ArrayHandleCounting.
Thus, when applicable, you should prefer using ArrayHandleIndex.

Did you know?

The vtkm/cont/ArrayHandleCounting.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleCounting that also takes the start value, step, and length as arguments. This function can
sometimes be used to avoid having to declare the full array type.

Example 7.18: Using make ArrayHandleCounting.
1 // Create an array of 50 entries , all containing the number 3.
2 vtkm :: cont :: make_ArrayHandleCounting (-1.0f, 0.1f, 21)

There are no fundamental limits on how ArrayHandleCounting counts. For example, it is possible to count
backwards.

Example 7.19: Counting backwards with ArrayHandleCounting.
1 // Create an array containing [49 , 48, 47, 46, ... , 0].
2 vtkm :: cont :: ArrayHandleCounting <vtkm ::Id > backwardIndexArray (49 , -1, 50);

It is also possible to use ArrayHandleCounting to make sequences of vtkm::Vec values with piece-wise counting
in each of the components.

Example 7.20: Using ArrayHandleCounting with vtkm::Vec objects.
1 // Create an array containg [(0 , -3 ,75) , (1 ,2 ,25) , (3 ,7 , -25)]
2 vtkm :: cont :: make_ArrayHandleCounting (
3 vtkm :: make_Vec (0, -3, 75) , vtkm :: make_Vec (1, 5, -50), 3)

7.4.4 Cast Arrays

A cast array is a fancy array that changes the type of the elements in an array. The cast array provides this
re-typed array without actually copying or generating any data. Instead, casts are performed as the array is
accessed.

VTK-m has a class named vtkm::cont::ArrayHandleCast to perform this implicit casting. ArrayHandleCast
is a templated class with two template arguments. The first argument is the type to cast values to. The second
argument is the type of the original ArrayHandle. The constructor to ArrayHandleCast takes the ArrayHandle
to modify by casting.

Chapter 7. Array Handles 97

DRAFT

7.4. Fancy Arrays

Example 7.21: Using ArrayHandleCast.
1 template < typename T>
2 VTKM_CONT void Foo(const std :: vector <T >& inputData)
3 {
4 vtkm :: cont :: ArrayHandle <T> originalArray = vtkm :: cont :: make_ArrayHandle (inputData);
5
6 vtkm :: cont :: ArrayHandleCast <vtkm :: Float64 , vtkm :: cont :: ArrayHandle <T>> castArray (
7 originalArray);

The vtkm/cont/ArrayHandleCast.h header also contains the templated convenience function vtkm::cont::make -
ArrayHandleCast that constructs the cast array. The first argument is the original ArrayHandle original array
to cast. The optional second argument is of the type to cast to (or you can optionally specify the cast-to type
as a template argument.

Example 7.22: Using make ArrayHandleCast.
1 vtkm :: cont :: make_ArrayHandleCast <vtkm :: Float64 >(originalArray)

7.4.5 Discard Arrays

It is sometimes the case where you will want to run an operation in VTK-m that fills values in two (or more)
arrays, but you only want the values that are stored in one of the arrays. It is possible to allocate space for both
arrays and then throw away the values that you do not want, but that is a waste of memory. It is also possible
to rewrite the functionality to output only what you want, but that is a poor use of developer time.

To solve this problem easily, VTK-m provides vtkm::cont::ArrayHandleDiscard. This array behaves similar
to a regular ArrayHandle in that it can be “allocated” and has size, but any values that are written to it are
immediately discarded. ArrayHandleDiscard takes up no memory.

Example 7.23: Using ArrayHandleDiscard.
1 template < typename InputArrayType ,
2 typename OutputArrayType1 ,
3 typename OutputArrayType2 >
4 VTKM_CONT void DoFoo (InputArrayType input ,
5 OutputArrayType1 output1 ,
6 OutputArrayType2 output2);
7
8 template < typename InputArrayType >
9 VTKM_CONT inline vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > DoBar (

10 InputArrayType input)
11 {
12 VTKM_IS_ARRAY_HANDLE (InputArrayType);
13
14 vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > keepOutput ;
15
16 vtkm :: cont :: ArrayHandleDiscard <vtkm :: FloatDefault > discardOutput ;
17
18 DoFoo (input , keepOutput , discardOutput);
19
20 return keepOutput ;
21 }

7.4.6 Permuted Arrays

A permutation array is a fancy array handle that reorders the elements in an array. Elements in the array can
be skipped over or replicated. The permutation array provides this reordered array without actually coping any
data. Instead, indices are adjusted as the array is accessed.

98 Chapter 7. Array Handles

DRAFT

7.4. Fancy Arrays

Specifying a permutation array in VTK-m is straightforward. VTK-m has a class named vtkm::cont::Array-
HandlePermutation that takes two arrays: an array of values and an array of indices that maps an index in the
permutation to an index of the original values. The index array is specified first. The following example is a
simple demonstration of the permutation array handle.

Example 7.24: Using ArrayHandlePermutation.
1 using IdArrayType = vtkm :: cont :: ArrayHandle <vtkm ::Id >;
2 using IdPortalType = IdArrayType :: PortalControl ;
3
4 using ValueArrayType = vtkm :: cont :: ArrayHandle <vtkm :: Float64 >;
5 using ValuePortalType = ValueArrayType :: PortalControl ;
6
7 // Create array with values [0.0 , 0.1 , 0.2 , 0.3]
8 ValueArrayType valueArray ;
9 valueArray . Allocate (4);

10 ValuePortalType valuePortal = valueArray . GetPortalControl ();
11 valuePortal .Set (0, 0.0);
12 valuePortal .Set (1, 0.1);
13 valuePortal .Set (2, 0.2);
14 valuePortal .Set (3, 0.3);
15
16 // Use ArrayHandlePermutation to make an array = [0.3 , 0.0 , 0.1].
17 IdArrayType idArray1 ;
18 idArray1 . Allocate (3);
19 IdPortalType idPortal1 = idArray1 . GetPortalControl ();
20 idPortal1 .Set (0, 3);
21 idPortal1 .Set (1, 0);
22 idPortal1 .Set (2, 1);
23 vtkm :: cont :: ArrayHandlePermutation < IdArrayType , ValueArrayType > permutedArray1 (
24 idArray1 , valueArray);
25
26 // Use ArrayHandlePermutation to make an array = [0.1 , 0.2 , 0.2 , 0.3 , 0.0]
27 IdArrayType idArray2 ;
28 idArray2 . Allocate (5);
29 IdPortalType idPortal2 = idArray2 . GetPortalControl ();
30 idPortal2 .Set (0, 1);
31 idPortal2 .Set (1, 2);
32 idPortal2 .Set (2, 2);
33 idPortal2 .Set (3, 3);
34 idPortal2 .Set (4, 0);
35 vtkm :: cont :: ArrayHandlePermutation < IdArrayType , ValueArrayType > permutedArray2 (
36 idArray2 , valueArray);

The vtkm/cont/ArrayHandlePermutation.h header also contains the templated convenience function vtkm::-
cont::make ArrayHandlePermutation that takes instances of the index and value array handles and returns a
permutation array. This function can sometimes be used to avoid having to declare the full array type.

Example 7.25: Using make ArrayHandlePermutation.
1 vtkm :: cont :: make_ArrayHandlePermutation (idArray , valueArray)

When using an ArrayHandlePermutation, take care that all the provided indices in the index array point
to valid locations in the values array. Bad indices can cause reading from or writing to invalid memory
locations, which can be difficult to debug.

Common Errors

Chapter 7. Array Handles 99

DRAFT

7.4. Fancy Arrays

You can write to a ArrayHandlePermutation by, for example, using it as an output array. Writes to
the ArrayHandlePermutation will go to the respective location in the source array. However, ArrayHan-
dlePermutation cannot be resized.

Did you know?

7.4.7 Zipped Arrays

A zip array is a fancy array handle that combines two arrays of the same size to pair up the corresponding values.
Each element in the zipped array is a vtkm::Pair containing the values of the two respective arrays. These pairs
are not stored in their own memory space. Rather, the pairs are generated as the array is used. Writing a pair
to the zipped array writes the values in the two source arrays.

Specifying a zipped array in VTK-m is straightforward. VTK-m has a class named vtkm::cont::ArrayHan-
dleZip that takes the two arrays providing values for the first and second entries in the pairs. The following
example is a simple demonstration of creating a zip array handle.

Example 7.26: Using ArrayHandleZip.
1 using ArrayType1 = vtkm :: cont :: ArrayHandle <vtkm ::Id >;
2 using PortalType1 = ArrayType1 :: PortalControl ;
3
4 using ArrayType2 = vtkm :: cont :: ArrayHandle <vtkm :: Float64 >;
5 using PortalType2 = ArrayType2 :: PortalControl ;
6
7 // Create an array of vtkm :: Id with values [3, 0, 1]
8 ArrayType1 array1 ;
9 array1 . Allocate (3);

10 PortalType1 portal1 = array1 . GetPortalControl ();
11 portal1 .Set (0, 3);
12 portal1 .Set (1, 0);
13 portal1 .Set (2, 1);
14
15 // Create a second array of vtkm :: Float32 with values [0.0 , 0.1 , 0.2]
16 ArrayType2 array2 ;
17 array2 . Allocate (3);
18 PortalType2 portal2 = array2 . GetPortalControl ();
19 portal2 .Set (0, 0.0);
20 portal2 .Set (1, 0.1);
21 portal2 .Set (2, 0.2);
22
23 // Zip the two arrays together to create an array of
24 // vtkm :: Pair <vtkm ::Id , vtkm :: Float64 > with values [(3 ,0.0) , (0 ,0.1) , (1 ,0.2)]
25 vtkm :: cont :: ArrayHandleZip < ArrayType1 , ArrayType2 > zipArray (array1 , array2);

The vtkm/cont/ArrayHandleZip.h header also contains the templated convenience function vtkm::cont::make -
ArrayHandleZip that takes instances of the two array handles and returns a zip array. This function can
sometimes be used to avoid having to declare the full array type.

Example 7.27: Using make ArrayHandleZip.
1 vtkm :: cont :: make_ArrayHandleZip (array1 , array2)

7.4.8 Coordinate System Arrays

Many of the data structures we use in VTK-m are described in a 3D coordinate system. Although, as we will
see in Chapter 11, we can use any ArrayHandle to store point coordinates, including a raw array of 3D vectors,

100 Chapter 7. Array Handles

DRAFT

7.4. Fancy Arrays

there are some common patterns for point coordinates that we can use specialized arrays to better represent the
data.

There are two fancy array handles that each handle a special form of coordinate system. The first such array
handle is vtkm::cont::ArrayHandleUniformPointCoordinates, which represents a uniform sampling of space.
The constructor for ArrayHandleUniformPointCoordinates takes three arguments. The first argument is a
vtkm::Id3 that specifies the number of samples in the x, y, and z directions. The second argument, which is
optional, specifies the origin (the location of the first point at the lower left corner). If not specified, the origin
is set to [0,0,0]. The third argument, which is also optional, specifies the distance between samples in the x, y,
and z directions. If not specified, the spacing is set to 1 in each direction.

Example 7.28: Using ArrayHandleUniformPointCoordinates.
1 // Create a set of point coordinates for a uniform grid in the space between
2 // -5 and 5 in the x direction and -3 and 3 in the y and z directions . The
3 // uniform sampling is spaced in 0.08 unit increments in the x direction (for
4 // 126 samples), 0.08 unit increments in the y direction (for 76 samples) and
5 // 0.24 unit increments in the z direction (for 26 samples). That makes
6 // 248 ,976 values in the array total .
7 vtkm :: cont :: ArrayHandleUniformPointCoordinates uniformCoordinates (
8 vtkm :: Id3 (126 , 76, 26) ,
9 vtkm ::Vec <vtkm :: FloatDefault , 3>{ -5.0f, -3.0f, -3.0f },

10 vtkm ::Vec <vtkm :: FloatDefault , 3>{ 0.08f, 0.08f, 0.24f });

The second fancy array handle for special coordinate systems is vtkm::cont::ArrayHandleCartesianProduct,
which represents a rectilinear sampling of space where the samples are axis aligned but have variable spacing.
Sets of coordinates of this type are most efficiently represented by having a separate array for each component
of the axis, and then for each [i, j,k] index of the array take the value for each component from each array using
the respective index. This is equivalent to performing a Cartesian product on the arrays.

ArrayHandleCartesianProduct is a templated class. It has three template parameters, which are the types of
the arrays used for the x, y, and z axes. The constructor for ArrayHandleCartesianProduct takes the three
arrays.

Example 7.29: Using a ArrayHandleCartesianProduct.
1 using AxisArrayType = vtkm :: cont :: ArrayHandle <vtkm :: Float32 >;
2 using AxisPortalType = AxisArrayType :: PortalControl ;
3
4 // Create array for x axis coordinates with values [0.0 , 1.1 , 5.0]
5 AxisArrayType xAxisArray ;
6 xAxisArray . Allocate (3);
7 AxisPortalType xAxisPortal = xAxisArray . GetPortalControl ();
8 xAxisPortal .Set (0, 0.0f);
9 xAxisPortal .Set (1, 1.1f);

10 xAxisPortal .Set (2, 5.0f);
11
12 // Create array for y axis coordinates with values [0.0 , 2.0]
13 AxisArrayType yAxisArray ;
14 yAxisArray . Allocate (2);
15 AxisPortalType yAxisPortal = yAxisArray . GetPortalControl ();
16 yAxisPortal .Set (0, 0.0f);
17 yAxisPortal .Set (1, 2.0f);
18
19 // Create array for z axis coordinates with values [0.0 , 0.5]
20 AxisArrayType zAxisArray ;
21 zAxisArray . Allocate (2);
22 AxisPortalType zAxisPortal = zAxisArray . GetPortalControl ();
23 zAxisPortal .Set (0, 0.0f);
24 zAxisPortal .Set (1, 0.5f);
25
26 // Create point coordinates for a " rectilinear grid" with axis - aligned points

Chapter 7. Array Handles 101

DRAFT

7.4. Fancy Arrays

27 // with variable spacing by taking the Cartesian product of the three
28 // previously defined arrays . This generates the following 3x2x2 = 12 values :
29 //
30 // [0.0 , 0.0 , 0.0] , [1.1 , 0.0 , 0.0] , [5.0 , 0.0 , 0.0] ,
31 // [0.0 , 2.0 , 0.0] , [1.1 , 2.0 , 0.0] , [5.0 , 2.0 , 0.0] ,
32 // [0.0 , 0.0 , 0.5] , [1.1 , 0.0 , 0.5] , [5.0 , 0.0 , 0.5] ,
33 // [0.0 , 2.0 , 0.5] , [1.1 , 2.0 , 0.5] , [5.0 , 2.0 , 0.5]
34 vtkm :: cont ::
35 ArrayHandleCartesianProduct < AxisArrayType , AxisArrayType , AxisArrayType >
36 rectilinearCoordinates (xAxisArray , yAxisArray , zAxisArray);

The vtkm/cont/ArrayHandleCartesianProduct.h/header also contains the templated convenience function vtkm::-
cont::make ArrayHandleCartesianProduct that takes the three axis arrays and returns an array of the Carte-
sian product. This function can sometimes be used to avoid having to declare the full array type.

Example 7.30: Using make ArrayHandleCartesianProduct.
1 vtkm :: cont :: make_ArrayHandleCartesianProduct (xAxisArray , yAxisArray , zAxisArray)

These specialized arrays for coordinate systems greatly reduce the code duplication in VTK-m. Most sci-
entific visualization systems need separate implementations of algorithms for uniform, rectilinear, and un-
structured grids. But in VTK-m an algorithm can be written once and then applied to all these different
grid structures by using these specialized array handles and letting the compiler’s templates optimize the
code.

Did you know?

7.4.9 Composite Vector Arrays

A composite vector array is a fancy array handle that combines two to four arrays of the same size and value
type and combines their corresponding values to form a vtkm::Vec. A composite vector array is similar in
nature to a zipped array (described in Section 7.4.7) except that values are combined into vtkm::Vec s instead
of vtkm::Pair s. The created vtkm::Vec s are not stored in their own memory space. Rather, the Vecs are
generated as the array is used. Writing Vecs to the composite vector array writes values into the components of
the source arrays.

A composite vector array can be created using the vtkm::cont::ArrayHandleCompositeVector class. This
class has a variadic template argument that is a “signature” for the arrays to be combined. The constructor for
ArrayHandleCompositeVector takes instances of the array handles to combine.

Example 7.31: Using ArrayHandleCompositeVector.
1 // Create an array with [0, 1, 2, 3, 4]
2 using ArrayType1 = vtkm :: cont :: ArrayHandleIndex ;
3 ArrayType1 array1 (5);
4
5 // Create an array with [3, 1, 4, 1, 5]
6 using ArrayType2 = vtkm :: cont :: ArrayHandle <vtkm ::Id >;
7 ArrayType2 array2 ;
8 array2 . Allocate (5);
9 ArrayType2 :: PortalControl arrayPortal2 = array2 . GetPortalControl ();

10 arrayPortal2 .Set (0, 3);
11 arrayPortal2 .Set (1, 1);
12 arrayPortal2 .Set (2, 4);
13 arrayPortal2 .Set (3, 1);

102 Chapter 7. Array Handles

DRAFT

7.4. Fancy Arrays

14 arrayPortal2 .Set (4, 5);
15
16 // Create an array with [2, 7, 1, 8, 2]
17 using ArrayType3 = vtkm :: cont :: ArrayHandle <vtkm ::Id >;
18 ArrayType3 array3 ;
19 array3 . Allocate (5);
20 ArrayType2 :: PortalControl arrayPortal3 = array3 . GetPortalControl ();
21 arrayPortal3 .Set (0, 2);
22 arrayPortal3 .Set (1, 7);
23 arrayPortal3 .Set (2, 1);
24 arrayPortal3 .Set (3, 8);
25 arrayPortal3 .Set (4, 2);
26
27 // Create an array with [0, 0, 0, 0]
28 using ArrayType4 = vtkm :: cont :: ArrayHandleConstant <vtkm ::Id >;
29 ArrayType4 array4 (0, 5);
30
31 // Use ArrayhandleCompositeVector to create the array
32 // [(0 ,3 ,2 ,0) , (1 ,1 ,7 ,0) , (2 ,4 ,1 ,0) , (3 ,1 ,8 ,0) , (4 ,5 ,2 ,0)].
33 using CompositeArrayType = vtkm :: cont ::
34 ArrayHandleCompositeVector < ArrayType1 , ArrayType2 , ArrayType3 , ArrayType4 >;
35 CompositeArrayType compositeArray (array1 , array2 , array3 , array4);

The vtkm/cont/ArrayHandleCompositeVector.h header also contains the templated convenience function vtkm::-
cont::make ArrayHandleCompositeVector which takes a variable number of array handles and returns an
ArrayHandleCompositeVector. This function can sometimes be used to avoid having to declare the full array
type. ArrayHandleCompositeVector is also often used to combine scalar arrays into vector arrays.

Example 7.32: Using make ArrayHandleCompositeVector.
1 vtkm :: cont :: make_ArrayHandleCompositeVector (array1 , array2 , array3 , array4)

7.4.10 Extract Component Arrays

Component extraction allows access to a single component of an ArrayHandle with a vtkm::Vec ValueType.
vtkm::cont::ArrayHandleExtractComponent allows one component of a vector array to be extracted without
creating a copy of the data. ArrayHandleExtractComponent can also be combined with ArrayHandleCompos-
iteVector (described in Section 7.4.9) to arbitrarily stitch several components from multiple arrays together.

As a simple example, consider an ArrayHandle containing 3D coordinates for a collection of points and a filter
that only operates on the points’ elevations (Z, in this example). We can easily create the elevation array
on-the-fly without allocating a new array as in the following example.

Example 7.33: Extracting components of Vecs in an array with ArrayHandleExtractComponent.
1 using ValueArrayType = vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: Float64 , 3>>;
2
3 // Create array with values [(0.0 , 0.1 , 0.2) , (1.0 , 1.1 , 1.2) , (2.0 , 2.1 , 2.2)]
4 ValueArrayType valueArray ;
5 valueArray . Allocate (3);
6 auto valuePortal = valueArray . GetPortalControl ();
7 valuePortal .Set (0, vtkm :: make_Vec (0.0 , 0.1 , 0.2));
8 valuePortal .Set (1, vtkm :: make_Vec (1.0 , 1.1 , 1.2));
9 valuePortal .Set (2, vtkm :: make_Vec (2.0 , 2.1 , 2.2));

10
11 // Use ArrayHandleExtractComponent to make an array = [1.3 , 2.3 , 3.3].
12 vtkm :: cont :: ArrayHandleExtractComponent < ValueArrayType > extractedComponentArray (
13 valueArray , 2);

Chapter 7. Array Handles 103

DRAFT

7.4. Fancy Arrays

The vtkm/cont/ArrayHandleExtractComponent.h header also contains the templated convenience function
vtkm::cont::make ArrayHandleExtractComponent that takes an ArrayHandle of Vecs and vtkm::IdCompo-
nent which returns an appropriately typed ArrayHandleExtractComponent containing the values for a specified
component. The index of the component to extract is provided as an argument to make ArrayHandleExtract-
Component, which is required. The use of make ArrayHandleExtractComponent can be used to avoid having to
declare the full array type.

Example 7.34: Using make ArrayHandleExtractComponent.
1 vtkm :: cont :: make_ArrayHandleExtractComponent (valueArray , 2)

7.4.11 Swizzle Arrays

It is often useful to reorder or remove specific components from an ArrayHandle with a vtkm::Vec ValueType.
vtkm::cont::ArrayHandleSwizzle provides an easy way to accomplish this.

The template parameters of ArrayHandleSwizzle specify a “component map,” which defines the swizzle opera-
tion. This map consists of the components from the input ArrayHandle, which will be exposed in the ArrayHan-
dleSwizzle. For instance, vtkm::cont::ArrayHandleSwizzle <Some3DArrayType, 3> with Some3DArray and
vtkm::Vec <vtkm::IdComponent, 3>(0, 2, 1) as constructor arguments will allow access to a 3D array, but with
the Y and Z components exchanged. This rearrangement does not create a copy, and occurs on-the-fly as data
are accessed through the ArrayHandleSwizzle’s portal. This fancy array handle can also be used to eliminate
unnecessary components from an ArrayHandle’s data, as shown below.

Example 7.35: Swizzling components of Vecs in an array with ArrayHandleSwizzle.
1 using ValueArrayType = vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: Float64 , 4>>;
2
3 // Create array with values
4 // [(0.0 , 0.1 , 0.2 , 0.3) , (1.0 , 1.1 , 1.2 , 1.3) , (2.0 , 2.1 , 2.2 , 2.3)]
5 ValueArrayType valueArray ;
6 valueArray . Allocate (3);
7 auto valuePortal = valueArray . GetPortalControl ();
8 valuePortal .Set (0, vtkm :: make_Vec (0.0 , 0.1 , 0.2 , 0.3));
9 valuePortal .Set (1, vtkm :: make_Vec (1.0 , 1.1 , 1.2 , 1.3));

10 valuePortal .Set (2, vtkm :: make_Vec (2.0 , 2.1 , 2.2 , 2.3));
11
12 // Use ArrayHandleSwizzle to make an array of Vec -3 with x,y,z,w swizzled to z,x,w
13 // [(0.2 , 0.0 , 0.3) , (1.2 , 1.0 , 1.3) , (2.2 , 2.0 , 2.3)]
14 vtkm :: cont :: ArrayHandleSwizzle < ValueArrayType , 3> swizzledArray (
15 valueArray , vtkm ::Vec <vtkm :: IdComponent , 3>(2, 0, 3));

The vtkm/cont/ArrayHandleSwizzle.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleSwizzle that takes an ArrayHandle of Vecs and returns an appropriately typed ArrayHan-
dleSwizzle containing swizzled vectors. The indices of the swizzled components are provided as arguments
to make ArrayHandleSwizzle after the ArrayHandle. The use of make ArrayHandleSwizzle can be used to
avoid having to declare the full array type.

Example 7.36: Using make ArrayHandleSwizzle.
1 vtkm :: cont :: make_ArrayHandleSwizzle (valueArray , 2, 0, 3)

7.4.12 Grouped Vector Arrays

A grouped vector array is a fancy array handle that groups consecutive values of an array together to form
a vtkm::Vec. The source array must be of a length that is divisible by the requested Vec size. The created

104 Chapter 7. Array Handles

DRAFT

7.4. Fancy Arrays

vtkm::Vec s are not stored in their own memory space. Rather, the Vecs are generated as the array is used.
Writing Vecs to the grouped vector array writes values into the the source array.

A grouped vector array is created using the vtkm::cont::ArrayHandleGroupVec class. This templated class
has two template arguments. The first argument is the type of array being grouped and the second argument is
an integer specifying the size of the Vecs to create (the number of values to group together).

Example 7.37: Using ArrayHandleGroupVec.
1 // Create an array containing [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
2 using ArrayType = vtkm :: cont :: ArrayHandleIndex ;
3 ArrayType sourceArray (12);
4
5 // Create an array containing [(0 ,1) , (2 ,3) , (4 ,5) , (6 ,7) , (8 ,9) , (10 ,11)]
6 vtkm :: cont :: ArrayHandleGroupVec <ArrayType , 2> vec2Array (sourceArray);
7
8 // Create an array containing [(0 ,1 ,2) , (3 ,4 ,5) , (6 ,7 ,8) , (9 ,10 ,11)]
9 vtkm :: cont :: ArrayHandleGroupVec <ArrayType , 3> vec3Array (sourceArray);

The vtkm/cont/ArrayHandleGroupVec.h header also contains the templated convenience function vtkm::cont::-
make ArrayHandleGroupVec that takes an instance of the array to group into Vecs. You must specify the size
of the Vecs as a template parameter when using vtkm::cont::make ArrayHandleGroupVec.

Example 7.38: Using make ArrayHandleGroupVec.
1 // Create an array containing [(0 ,1 ,2 ,3) , (4 ,5 ,6 ,7) , (8 ,9 ,10 ,11)]
2 vtkm :: cont :: make_ArrayHandleGroupVec <4 >(sourceArray)

ArrayHandleGroupVec is handy when you need to build an array of vectors that are all of the same length, but
what about when you need an array of vectors of different lengths? One common use case for this is if you are
defining a collection of polygons of different sizes (triangles, quadrilaterals, pentagons, and so on). We would like
to define an array such that the data for each polygon were stored in its own Vec (or, rather, Vec-like) object.
vtkm::cont::ArrayHandleGroupVecVariable does just that.

ArrayHandleGroupVecVariable takes two arrays. The first array, identified as the “source” array, is a flat
representation of the values (much like the array used with ArrayHandleGroupVec). The second array, iden-
tified as the “offsets” array, provides for each vector the index into the source array where the start of the
vector is. The offsets array must be monotonically increasing. The first and second template parameters to
ArrayHandleGroupVecVariable are the types for the source and offset arrays, respectively.

It is often the case that you will start with a group of vector lengths rather than offsets into the source array.
If this is the case, then the vtkm::cont::ConvertNumComponentsToOffsets helper function can convert an
array of vector lengths to an array of offsets. The first argument to this function is always the array of vector
lengths. The second argument, which is optional, is a reference to a ArrayHandle into which the offsets should
be stored. If this offset array is not specified, an ArrayHandle will be returned from the function instead. The
third argument, which is also optional, is a reference to a vtkm::Id into which the expected size of the source
array is put. Having the size of the source array is often helpful, as it can be used to allocate data for the source
array or check the source array’s size. It is also OK to give the expected size reference but not the offset array
reference.

Example 7.39: Using ArrayHandleGroupVecVariable.
1 // Create an array of counts containing [4, 2, 3, 3]
2 vtkm :: IdComponent countBuffer [4] = { 4, 2, 3, 3 };
3 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > countArray =
4 vtkm :: cont :: make_ArrayHandle (countBuffer , 4);
5
6 // Convert the count array to an offset array [0, 4, 6, 9]
7 // Returns the number of total components : 12
8 vtkm :: Id sourceArraySize ;

Chapter 7. Array Handles 105

DRAFT

7.5. Virtual Arrays

9 using OffsetArrayType = vtkm :: cont :: ArrayHandle <vtkm ::Id >;
10 OffsetArrayType offsetArray =
11 vtkm :: cont :: ConvertNumComponentsToOffsets (countArray , sourceArraySize);
12
13 // Create an array containing [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
14 using SourceArrayType = vtkm :: cont :: ArrayHandleIndex ;
15 SourceArrayType sourceArray (sourceArraySize);
16
17 // Create an array containing [(0 ,1 ,2 ,3) , (4 ,5) , (6 ,7 ,8) , (9 ,10 ,11)]
18 vtkm :: cont :: ArrayHandleGroupVecVariable < SourceArrayType , OffsetArrayType >
19 vecVariableArray (sourceArray , offsetArray);

The vtkm/cont/ArrayHandleGroupVecVariable.h header also contains the templated convenience function vtkm::-
cont::make ArrayHandleGroupVecVariable that takes an instance of the source array to group into Vec-like
objects and the offset array.

Example 7.40: Using MakeArrayHandleGroupVecVariable.
1 // Create an array containing [(0 ,1 ,2 ,3) , (4 ,5) , (6 ,7 ,8) , (9 ,10 ,11)]
2 vtkm :: cont :: make_ArrayHandleGroupVecVariable (sourceArray , offsetArray)

You can write to ArrayHandleGroupVec and ArrayHandleGroupVecVariable by, for example, using it as
an output array. Writes to these arrays will go to the respective location in the source array. ArrayHandle-
GroupVec can also be allocated and resized (which in turn causes the source array to be allocated). However,
ArrayHandleGroupVecVariable cannot be resized and the source array must be pre-allocated. You can use
the source array size value returned from ConvertNumComponentsToOffsets to allocate source arrays.

Did you know?

Keep in mind that the values stored in a ArrayHandleGroupVecVariable are not actually vtkm::Vec
objects. Rather, they are “Vec-like” objects, which has some subtle but important ramifications. First, the
type will not match the vtkm::Vec template, and there is no automatic conversion to vtkm::Vec objects.
Thus, many functions that accept vtkm::Vec objects as parameters will not accept the Vec-like object.
Second, the size of Vec-like objects are not known until runtime. See Sections 6.5.2 and 6.6.2 for more
information on the difference between vtkm::Vec and Vec-like objects.

Common Errors

7.5 Virtual Arrays

One of the complications that all the variations to array handle described in Section 7.4 introduces is that the
actual type of the array might not be known. That can be problematic when writing functions or methods that
operate on arrays. Often this issue can be resolved by simply making a templated argument that accepts any
object that looks like an ArrayHandle. VTK-m provides the macro VTKM IS ARRAY HANDLE to verify that a
template type is in fact an array handle.

Example 7.41: Using templates for generic array handles.

106 Chapter 7. Array Handles

DRAFT

7.5. Virtual Arrays

1 // NOTE: There are faster ways to sum large arrays in VTK -m.
2 template < typename ArrayHandleType >
3 VTKM_CONT vtkm :: Float64 SumArrayHandle (const ArrayHandleType & arrayHandle)
4 {
5 VTKM_IS_ARRAY_HANDLE (ArrayHandleType);
6
7 typename ArrayHandleType :: PortalConstControl portal =
8 arrayHandle . GetPortalConstControl ();
9 vtkm :: Float64 sum = 0.0;

10 for (vtkm :: Id index = 0; index < portal . GetNumberOfValues (); ++ index)
11 {
12 sum += portal .Get(index);
13 }
14
15 return sum;
16 }

However, in some cases using a template in this way is not feasible. For example, what if you are calling a virtual
method, which cannot be practically templated like this? Or what if you need to store the arrays in a secondary
object that cannot be practically templated on all possible array types? Or what if you need to return an array
handle, but you do not know the specific type of array handle until runtime?

Example 7.42: A problem that can occur when an array handle type is not known.
1 std :: vector <vtkm :: cont :: ArrayHandle <vtkm :: Float64 >> vectorOfArrays ;
2
3 // Make basic array .
4 vtkm :: cont :: ArrayHandle <vtkm :: Float64 > basicArray ;
5 // Fill basicArray ...
6 vectorOfArrays . push_back (basicArray); // Works fine
7 // The previous line works fine because you are passing a standard ArrayHandle
8 // to a method that expects a standard ArrayHandle of the same type.
9

10 // Make fancy array .
11 vtkm :: cont :: ArrayHandleCounting <vtkm :: Float64 > fancyArray (-1.0 , 0.1 , ARRAY_SIZE);
12 vectorOfArrays . push_back (fancyArray); // ERROR !!!!
13 // The previous line fails to compile because it is passing an ArrayHandleCounting
14 // to a method that expects a standard ArrayHandle , and you cannot directly make
15 // this cast.

To get around this problem, VTK-m provides the vtkm::cont::ArrayHandleVirtual class. ArrayHandleVir-
tual is a special type of array handle that can be wrapped around a ArrayHandle, any of the fancy array handles
described in Section 7.4, or any other possible custom array that can be created.

ArrayHandleVirtual can be used like any other array handle.

Example 7.43: Using an ArrayHandleVirtual.
1 VTKM_CONT std :: vector <vtkm :: Float64 > SumSeveralArrayHandles (
2 const std :: vector <vtkm :: cont :: ArrayHandleVirtual <vtkm :: Float64 >>& vectorOfArrays)
3 {
4 std :: vector <vtkm :: Float64 > sums;
5 for (auto && arrayHandle : vectorOfArrays)
6 {
7 sums. push_back (SumArrayHandle (arrayHandle));
8 }
9

10 return sums;
11 }
12
13 VTKM_CONT void DoStuff ()
14 {
15 std :: vector <vtkm :: cont :: ArrayHandleVirtual <vtkm :: Float64 >> vectorOfArrays ;
16

Chapter 7. Array Handles 107

DRAFT

7.5. Virtual Arrays

17 // Make basic array .
18 vtkm :: cont :: ArrayHandle <vtkm :: Float64 > basicArray ;
19 // Fill basicArray ...
20 vectorOfArrays . push_back (basicArray);
21
22 // Make fancy array .
23 vtkm :: cont :: ArrayHandleCounting <vtkm :: Float64 > fancyArray (-1.0 , 0.1 , ARRAY_SIZE);
24 vectorOfArrays . push_back (fancyArray);
25
26 std :: vector <vtkm :: Float64 > sums = SumSeveralArrayHandles (vectorOfArrays);
27 }

ArrayHandleVirtual can be used when you do not know what kind of array you are working with. However,
you still need to know the type of value stored in the array (floating point, integer, vector, ect.). vtkm::-
cont::VariantArrayHandle, described in Chapter 10, can instead be used in the case where you do not
know the type of values in the array.

Did you know?

The ArrayHandleVirtual class also comes with some special methods to work with types that are not known
until runtime.

NewInstance Creates a new array of the same type.

IsType Given an array handle type, returns true if the array stored in the ArrayHandleVirtual is the same
type as the one given.

Cast Given an array handle type, casts the array to that type and returns it. If the stored array is of the wrong
type, and exception is thrown.

One common use case for querying the type stored in a ArrayHandleVirtual is to create “fast paths” for common
types. The following example demonstrates using casting to create a fast path for a basic ArrayHandle but also
providing a fallback using the virtual interface, which may be slower due to calling virtual methods to get values.

Example 7.44: Casting a ArrayHandleVirtual to a known type.
1 VTKM_CONT vtkm :: Float64 SumArrayHandleVirtual (
2 const vtkm :: cont :: ArrayHandleVirtual <vtkm :: Float64 >& virtualArray)
3 {
4 if (virtualArray .IsType <vtkm :: cont :: ArrayHandle <vtkm :: Float64 > >())
5 {
6 // Fast path for basic array storage (direct access to memory)
7 vtkm :: cont :: ArrayHandle <vtkm :: Float64 > basicArray =
8 virtualArray .Cast <vtkm :: cont :: ArrayHandle <vtkm :: Float64 > >();
9 return SumArrayHandle (basicArray);

10 }
11 else
12 {
13 // Slower path to go through general virtual interface
14 return SumArrayHandle (virtualArray);
15 }
16 }

108 Chapter 7. Array Handles

DRAFT

7.6. Deep Array Copies

7.6 Deep Array Copies

As stated previously, an ArrayHandle object behaves as a smart pointer that copies references to the data
without copying the data itself. This is clearly faster and more memory efficient than making copies of the data
itself and usually the behavior desired. However, it is sometimes the case that you need to make a separate copy
of the data.

To simplify copying the data, VTK-m comes with the vtkm::cont::ArrayCopy convenience function defined in
vtkm/cont/ArrayCopy.h. ArrayCopy takes the array to copy from (the source) as its first argument and the array
to copy to (the destination) as its second argument. The destination array will be properly reallocated to the
correct size.

Example 7.45: Using ArrayCopy.
1 vtkm :: cont :: ArrayCopy (tmpArray , inputArray);

ArrayCopy will copy data in parallel. If desired, you can specify the device as the third argument to
ArrayCopy using either a device adapter tag or a runtime device tracker. Both the tags and tracker are
described in Chapter 8.

Did you know?

7.7 Compute Array Range

It is common to need to know the minimum and/or maximum values in an array. To help find these values,
VTK-m provides the vtkm::cont::ArrayRangeCompute convenience function defined in vtkm/cont/ArrayRange-
Compute.h. ArrayRangeCompute simply takes an ArrayHandle on which to find the range of values.

If given an array with vtkm::Vec values, ArrayRangeCompute computes the range separately for each component
of the Vec. The return value for ArrayRangeCompute is vtkm::cont::ArrayHandle <vtkm::Range >. This
returned array will have one value for each component of the input array’s type. So for example if you call
ArrayRangeCompute on a vtkm::cont::ArrayHandle <vtkm::Id3 >, the returned array of Ranges will have 3
values in it. Of course, when ArrayRangeCompute is run on an array of scalar types, you get an array with a
single value in it.

Each value of vtkm::Range holds the minimum and maximum value for that component. The Range object is
documented in Section 6.5.4.

Example 7.46: Using ArrayRangeCompute.
1 vtkm :: cont :: ArrayHandle <vtkm :: Range > rangeArray =
2 vtkm :: cont :: ArrayRangeCompute (arrayHandle);
3 auto rangePortal = rangeArray . GetPortalConstControl ();
4 for (vtkm :: Id index = 0; index < rangePortal . GetNumberOfValues (); ++ index)
5 {
6 vtkm :: Range componentRange = rangePortal .Get(index);
7 std :: cout << " Values for component " << index << " go from "
8 << componentRange .Min << " to " << componentRange .Max << std :: endl;
9 }

Chapter 7. Array Handles 109

DRAFT

7.8. Interface to Execution Environment

ArrayRangeCompute will compute the minimum and maximum values in parallel. If desired, you can specify
the parallel hardware device used for the computation as an optional second argument to ArrayRangeCom-
pute. You can specify the device using a runtime device tracker, which is documented in Section 8.3.

Did you know?

7.8 Interface to Execution Environment

One of the main functions of the array handle is to allow an array to be defined in the control environment and
then be used in the execution environment. When using an ArrayHandle with filters or worklets, this transition
is handled automatically. However, it is also possible to invoke the transfer for use in your own scheduled
algorithms.

The ArrayHandle class manages the transition from control to execution with a set of three methods that
allocate, transfer, and ready the data in one operation. These methods all start with the prefix Prepare and are
meant to be called before some operation happens in the execution environment. The methods are as follows.

ArrayHandle::PrepareForInput Copies data from the control to the execution environment, if necessary, and
readies the data for read-only access.

ArrayHandle::PrepareForInPlace Copies the data from the control to the execution environment, if necessary,
and readies the data for both reading and writing.

ArrayHandle::PrepareForOutput Allocates space (the size of which is given as a parameter) in the execution
environment, if necessary, and readies the space for writing.

The PrepareForInput and PrepareForInPlace methods each take a single argument that is the device adapter
tag where execution will take place (see Section 8.1 for more information on device adapter tags). Prepare-
ForOutput takes two arguments: the size of the space to allocate and the device adapter tag. Each of these meth-
ods returns an array portal that can be used in the execution environment. PrepareForInput returns an object
of type ArrayHandle::ExecutionTypes<DeviceAdapterTag¿::PortalConst whereas PrepareForInPlace and
PrepareForOutput each return an object of type ArrayHandle::ExecutionTypes<DeviceAdapterTag¿::Por-
tal.

Although these Prepare methods are called in the control environment, the returned array portal can only
be used in the execution environment. Thus, the portal must be passed to an invocation of the execution
environment.

Most of the time, the passing of ArrayHandle data to the execution environment is handled automatically by
VTK-m. The most common need to call one of these Prepare methods is to build execution objects (Section
12.9) or to construct derived array types (Section 18.2.3). Examples of using these Prepare methods are in those
respective sections.

There are many operations on ArrayHandle that can invalidate the array portals, so do not keep them
around indefinitely. It is generally better to keep a reference to the ArrayHandle and use one of the

Common Errors

110 Chapter 7. Array Handles

DRAFT

7.8. Interface to Execution Environment

Prepare methods each time the data are accessed in the execution environment.

Chapter 7. Array Handles 111

DRAFT

DRAFT
CHAPTER

EIGHT

DEVICE ADAPTERS

As multiple vendors vie to provide accelerator-type processors, a great variance in the computer architecture
exists. Likewise, there exist multiple compiler environments and libraries for these devices such as CUDA,
OpenMP, and various threading libraries. These compiler technologies also vary from system to system.

To make porting among these systems at all feasible, we require a base language support, and the language we
use is C++. The majority of the code in VTK-m is constrained to the standard C++ language constructs to
minimize the specialization from one system to the next.

Each device and device technology requires some level of code specialization, and that specialization is encapsu-
lated in a unit called a device adapter. Thus, porting VTK-m to a new architecture can be done by adding only
a device adapter.

The device adapter is shown diagrammatically as the connection between the control and execution environments
in Figure 6.1 on page 62. The functionality of the device adapter comprises two main parts: a collection of parallel
algorithms run in the execution environment and a module to transfer data between the control and execution
environments.

This chapter describes how tags are used to specify which devices to use for operations within VTK-m. The
chapter also outlines the features provided by a device adapter that allow you to directly control a device. Finally,
we document how to create a new device adapter to port or specialize VTK-m for a different device or system.

8.1 Device Adapter Tag

A device adapter is identified by a device adapter tag. This tag, which is simply an empty struct type, is used as
the template parameter for several classes in the VTK-m control environment and causes these classes to direct
their work to a particular device. The following device adapter tags are available in VTK-m.

vtkm::cont::DeviceAdapterTagSerial Performs all computation on the same single thread as the control
environment. This device is useful for debugging. This device is always available. This tag is defined in
vtkm/cont/DeviceAdapterSerial.h.

vtkm::cont::DeviceAdapterTagCuda Uses a CUDA capable GPU device. For this device to work, VTK-m
must be configured to use CUDA and the code must be compiled by the CUDA nvcc compiler. This tag is
defined in vtkm/cont/cuda/DeviceAdapterCuda.h.

vtkm::cont::DeviceAdapterTagOpenMP Uses OpenMP compiler extensions to run algorithms on multiple
threads. For this device to work, VTK-m must be configured to use OpenMP and the code must be
compiled with a compiler that supports OpenMP pragmas. This tag is defined in vtkm/cont/openmp/De-
viceAdapterOpenMP.h.

DRAFT

8.1. Device Adapter Tag

vtkm::cont::DeviceAdapterTagTBB Uses the Intel Threading Building Blocks library to run algorithms on
multiple threads. For this device to work, VTK-m must be configured to use TBB and the executable must
be linked to the TBB library. This tag is defined in vtkm/cont/tbb/DeviceAdapterTBB.h.

The following example uses the tag for the Intel Threading Building blocks device adapter to prepare an output
array for that device. In this case, the device adapter tag is passed as a parameter for the ArrayHandle::-
PrepareForOutput method.

Example 8.1: Specifying a device using a device adapter tag.
1 arrayHandle . PrepareForOutput (50 , vtkm :: cont :: DeviceAdapterTagTBB ());

Functions, methods, and classes that directly use device adapter tags are usually templated on the device adapter
tag. This allows the function or class to be applied to any type of device specified at compile time.

Example 8.2: Specifying a device using template parameters.
1 template < typename Device >
2 struct SetPortalFunctor : vtkm :: exec :: FunctorBase
3 {
4 VTKM_IS_DEVICE_ADAPTER_TAG (Device);
5
6 using ExecPortalType =
7 typename vtkm :: cont :: ArrayHandle <vtkm ::Id >:: ExecutionTypes <Device >:: Portal ;
8 ExecPortalType Portal ;
9

10 VTKM_CONT
11 SetPortalFunctor (vtkm :: cont :: ArrayHandle <vtkm ::Id > array , vtkm :: Id size)
12 : Portal (array . PrepareForOutput (size , Device ()))
13 {
14 }
15
16 VTKM_EXEC
17 void operator ()(vtkm :: Id index) const
18 {
19 using ValueType = typename ExecPortalType :: ValueType ;
20 this -> Portal .Set(index , TestValue (index , ValueType ()));
21 }
22 };

A device adapter tag is a class just like every other type in C++. Thus it is possible to accidently use a
type that is not a device adapter tag when one is expected as a template argument. This leads to unexpected
errors in strange parts of the code. To help identify these errors, it is good practice to use the VTKM IS -
DEVICE ADAPTER TAG macro to verify the type is a valid device adapter tag. Example 8.2 uses this macro
on line 4.

Common Errors

Using a device adapter tag directly means that the type of device needs to be known at compile time. To store
a device adapter type at run time, one can instead use vtkm::cont::DeviceAdapterId. DeviceAdapterId is
a superclass to all the device adapter tags, and any device adapter tag can be “stored” in a DeviceAdapterId.
Thus, it is more common for functions and classes to use DeviceAdapterId then to try to track a specific device
with templated code.

In addition to the provided device adapter tags listed previously, a DeviceAdapterId can store some special
device adapter tags that do not directly specify a specific device.

114 Chapter 8. Device Adapters

DRAFT

8.2. Device Adapter Traits

vtkm::cont::DeviceAdapterTagAny Used to specify that any device may be used for an operation. In practice
this is limited to devices that are currently available.

vtkm::cont::DeviceAdapterTagUndefined Used to avoid specifying a device. Useful as a placeholder when a
device can be specified but none is given.

8.2 Device Adapter Traits

In Section 6.6 we see that VTK-m defines multiple traits classes to publish and retrieve information about types.
In addition to traits about basic data types, VTK-m also has instances of defining traits for other features. One
such traits class is vtkm::cont::DeviceAdapterTraits, which provides some basic information about a device
adapter tag. The DeviceAdapterTraits class provides the following features.

GetId A static method taking no arguments that returns a unique integer identifier for the device adapter.
The integer identifier is stored in a type named vtkm::cont::DeviceAdapterId, which is currently aliased
to vtkm::Int8. The device adapter id is useful for storing run time information about a device without
directly compiling for the class.

GetName A static method that returns a string description for the device adapter. The string is stored in
a type named vtkm::cont::DeviceAdapterNameType, which is currently aliased to std::string. The
device adapter name is useful for printing information about a device being used.

Valid A static const bool that is true if the implementation of the device is available. The valid flag is useful
for conditionally compiling code depending on whether a device is available.

The following example demonstrates using the vtkm::cont::DeviceAdapterId to check whether an array al-
ready has its data available on a particular device. Code like this can be used to attempt find a device on
which data is already available to avoid moving data across devices. For simplicity, this example just outputs a
message.

Example 8.3: Using DeviceAdapterTraits.
1 template < typename ArrayHandleType , typename DeviceAdapterTag >
2 void CheckArrayHandleDevice (const ArrayHandleType & array , DeviceAdapterTag)
3 {
4 VTKM_IS_ARRAY_HANDLE (ArrayHandleType);
5 VTKM_IS_DEVICE_ADAPTER_TAG (DeviceAdapterTag);
6
7 vtkm :: cont :: DeviceAdapterId currentDevice = array . GetDeviceAdapterId ();
8 if (currentDevice == DeviceAdapterTag ())
9 {

10 std :: cout << " Array is already on device " << DeviceAdapterTag (). GetName ()
11 << std :: endl;
12 }
13 else
14 {
15 std :: cout << " Copying array to device " << DeviceAdapterTag (). GetName ()
16 << std :: endl;
17 array . PrepareForInput (DeviceAdapterTag ());
18 }
19 }

VTK-m contains multiple devices that might not be available for a variety of reasons. For example, the CUDA
device is only available when code is being compiled with the special nvcc compiler. To make it easier to

Chapter 8. Device Adapters 115

DRAFT

8.2. Device Adapter Traits

manage devices that may be available in some configurations but not others, VTK-m always defines the de-
vice adapter tag structure, but signals whether the device features are available through the DeviceAdapter-
Traits::Valid flag. For example, VTK-m always provides the vtkm/cont/cuda/DeviceAdapterCuda.h header file
and the vtkm::cont::DeviceAdapterTagCuda tag defined in it. However, vtkm::cont::DeviceAdapterTraits
<vtkm::cont::DeviceAdapterTagCuda >::Valid is true if and only if VTK-m was configured to use CUDA and
the code is being compiled with nvcc. The following example uses DeviceAdapterTraits to wrap the function
defined in Exampleex:DeviceAdapterTraits in a safer version of the function that checks whether the device is
valid and will compile correctly in either case.

Example 8.4: Managing invalid devices without compile time errors.
1 namespace detail
2 {
3
4 template < typename ArrayHandleType , typename DeviceAdapterTag >
5 void SafeCheckArrayHandleDeviceImpl (const ArrayHandleType & array ,
6 DeviceAdapterTag ,
7 std :: true_type)
8 {
9 CheckArrayHandleDevice (array , DeviceAdapterTag ());

10 }
11
12 template < typename ArrayHandleType , typename DeviceAdapterTag >
13 void SafeCheckArrayHandleDeviceImpl (const ArrayHandleType &,
14 DeviceAdapterTag ,
15 std :: false_type)
16 {
17 std :: cout << " Device " << DeviceAdapterTag (). GetName () << " is not available "
18 << std :: endl;
19 }
20
21 } // namespace detail
22
23 template < typename ArrayHandleType , typename DeviceAdapterTag >
24 void SafeCheckArrayHandleDevice (const ArrayHandleType & array , DeviceAdapterTag)
25 {
26 static const bool deviceValid = DeviceAdapterTag :: IsEnabled ;
27 detail :: SafeCheckArrayHandleDeviceImpl (
28 array , DeviceAdapterTag (), std :: integral_constant <bool , deviceValid >());
29 }

Note that Example 8.4 makes use of std::integral constant to make it easier to overload a function based
on a bool value. The example also makes use of std::true type and std::false type, which are aliases of
true and false Boolean integral constants. They save on typing and make the code more clear.

It is rare that you have to directly query whether a particular device is valid. If you wish to write functions
that support multiple devices, it is common to wrap them in a vtkm::cont::TryExecute, which takes care
of invalid devices for you. TryExecute is described in Chapter19.

Did you know?

116 Chapter 8. Device Adapters

DRAFT

8.3. Runtime Device Tracker

Be aware that even though supported VTK-m devices always have a tag and associated traits defined, the
rest of the implementation will likely be missing for devices that are not valid. Thus, you are likely to
get errors in code that uses an invalid tag in any class that is not DeviceAdapterTraits. For example,
you might be tempted to implement the behavior of Example 8.4 by simply adding an if condition to the
function in Example 8.3. However, if you did that, then you would get compile errors in other if branches
that use the invalid device tag (even though they can never be reached). This is why Example 8.4 instead
uses function overloading to avoid compiling any code that attempts to use an invalid device adapter.

Common Errors

8.3 Runtime Device Tracker

It is often the case that you are agnostic about what device VTK-m algorithms run so long as they complete
correctly and as fast as possible. Thus, rather than directly specify a device adapter, you would like VTK-m to
try using the best available device, and if that does not work try a different device. Because of this, there are
many features in VTK-m that behave this way. For example, you may have noticed that running filters, as in
the examples of Chapter 4, you do not need to specify a device; they choose a device for you.

However, even though we often would like VTK-m to choose a device for us, we still need a way to manage device
preferences. VTK-m also needs a mechanism to record runtime information about what devices are available so
that it does not have to continually try (and fail) to use devices that are not available at runtime. These needs
are met with the vtkm::cont::RuntimeDeviceTracker class. RuntimeDeviceTracker maintains information
about which devices can and should be run on. RuntimeDeviceTracker has the following methods.

CanRunOn Takes a device adapter tag and returns true if VTK-m was configured for the device and it has not
yet been marked as disabled.

DisableDevice Takes a device adapter tag and marks that device to not be used. Future calls to CanRunOn for
this device will return false until that device is reset.

ResetDevice Takes a vtkm::cont::DeviceAdapterTag and resets the state for that device to its default value.
Each device defaults to on as long as VTK-m is configured to use that device and a basic runtime check
finds a viable device.

Reset Resets all devices. This equivocally calls ResetDevice for all devices supported by VTK-m.

ForceDevice Takes a device adapter tag and enables that device. All other devices are disabled. This method
throws a vtkm::cont::ErrorBadValue if the requested device cannot be enabled.

DeepCopy RuntimeDeviceTracker behaves like a smart pointer for its state. That is, if you copy a RuntimeDe-
viceTracker and then change the state of one (by, for example, calling DisableDevice on one), then the
state changes for both. If you want to copy the state of a RuntimeDeviceTracker but do not want future
changes to effect each other, then use DeepCopy. There are two versions of DeepCopy. The first version
takes no arguments and returns a new RuntimeDeviceTracker. The second version takes another instance
of a RuntimeDeviceTracker and copies its state into this class.

ReportAllocationFailure A device might have less working memory available than the main CPU. If this is
the case, memory allocation errors are more likely to happen. This method is used to report a vtkm::-
cont::ErrorBadAllocation and disables the device for future execution.

Chapter 8. Device Adapters 117

DRAFT

8.3. Runtime Device Tracker

ReportBadDeviceFailure It is possible that a device may throw a vtkm::cont::ErrorBadDevice failure caused
by some erroneous device issue. If this occurs, it is possible to catch the vtkm::cont::ErrorBadDevice
exception and pass it to ReportBadDeviceFailure along with the vtkm::cont::DeviceAdapterId to
forcefully disable a device.

A RuntimeDeviceTracker can be used to specify which devices to consider for a particular operation. For
example, let us say that we want to perform a deep copy of an array using the vtkm::cont::ArrayCopy method
(described in Section 7.6). However, we do not want to do the copy on a CUDA device because we happen to know
the data is not on that device and we do not want to spend the time to transfer the data to that device. Since
each thread maintains a RuntimeDeviceTracker, we can simply disable the device before calling ArrayCopy to
guarantee that data transfer does not occur on the CUDA device. This is best achieved using a vtkm::cont::-
ScopedRuntimeDeviceTracker so that the disabled device is automatically restored once the program leaves its
current scope. [TODO: The documentation of RuntimeDeviceAdapter should be redone to actually
document ScopedRuntimeDeviceTracker and favor its use.]

Example 8.5: Disabling a device with RuntimeDeviceTracker.
1 vtkm :: cont :: ScopedRuntimeDeviceTracker tracker (
2 vtkm :: cont :: DeviceAdapterTagCuda (),
3 vtkm :: cont :: RuntimeDeviceTrackerMode :: Disable);
4
5 vtkm :: cont :: ArrayCopy (srcArray , destArray);

Section 8.2 warned that using device adapter tags for devices that are not available can cause compile time
errors when used with most features of VTK-m. This is not the case for RuntimeDeviceTracker. You
may pass RuntimeDeviceTracker any device adapter tag regardless of whether VTK-m is configured for
that device or whether the current compiler supports that device. This allows you to set up a RuntimeDe-
viceTracker in a translation unit that does not support a particular device and pass it to function compiled
in a unit that does.

Did you know?

It can be tedious to maintain your own RuntimeDeviceTracker and pass it to every function that chooses a
device. To make this easier, VTK-m maintains a per thread runtime device tracker, which can be retrieved with
the vtkm::cont::GetRuntimeDeviceTracker function. Specifying a RuntimeDeviceTracker is almost always
optional, and the per thread runtime device tracker is used if none is specified.

One of the nice features about having a per thread runtime device tracker is that when an algorithm encounters
a problem with a device, it can be marked as disabled and future algorithms can skip over that non-functioning
device. This information can be shared between various VTK-m threads and helps minimize the time spent
checking for malfunctioning devices. That said, it may be the case where you want to re-enable a device
previously marked as disabled. For example, an algorithm may disable a device in the tracker because that
device ran out of memory. However, your code might want to re-enable such devices if moving on to a different
data set. This can be done by simply calling a reset method on the global runtime device tracker.

Example 8.6: Resetting the Thread Local RuntimeDeviceTracker.
1 vtkm :: cont :: GetRuntimeDeviceTracker (). Reset ();

It is also possible to restrict devices that are used through the global runtime device adapter. For example, if
you are debugging some code, you might find it useful to restrict VTK-m to use the serial device.

Example 8.7: Restricting which devices VTK-m uses per thread.
1 vtkm :: cont :: GetRuntimeDeviceTracker (). ForceDevice (
2 vtkm :: cont :: DeviceAdapterTagSerial ());

118 Chapter 8. Device Adapters

DRAFT

8.4. Predicates and Operators

8.4 Predicates and Operators

VTK-m follows certain design philosophies consistent with the functional programming paradigm. This assists
in making implementations device agnostic and ensuring that various functions operate correctly and efficiently
in multiple environments. Many basic operations, such as binary and unary comparisons and predicates, are
implemented as templated functors. These are mostly re-implementations of basic C++ STL functors that can
be used in the VTK-m execution environment.

Strictly using a functor by itself adds little in the way of functionality to the code. Their use is demonstrated more
when used as parameters to one of the vtkm::cont::Algorithm (discussed in detail in Section 8.5). Currenly,
VTK-m provides 3 categories of functors: Unary Predicates, Binary Predicates, and Binary Operators.

8.4.1 Unary Predicates

Unary Predicates are functors that take a single parameter and return a Boolean value. These types of functors
are useful in determining if values have been initialized or zeroed out correctly.

vtkm::IsZeroInitialized Returns True if argument is the identity of its type.

vtkm::NotZeroInitialized Returns True if the argument is not the identify of its type.

vtkm::LogicalNot Returns True iff the argument is False. Requires that the argument type is convertible to
a Boolean or implements the ! operator.

Example 8.8: Basic Unary Predicate.
1 vtkm :: IsZeroInitialized zero_initialized ;
2 vtkm :: NotZeroInitialized not_zero_initialized ;
3 vtkm :: LogicalNot logical_not ;
4
5 bool zeroed = zero_initialized (vtkm :: TypeTraits <vtkm ::Id >:: ZeroInitialization ());
6 bool notZeroed = not_zero_initialized (vtkm :: Id (1));
7 bool logicalNot = logical_not (false);

8.4.2 Binary Predicates

Binary Predicates take two parameters and return a single Boolean value. These types of functors are used
when comparing two different parameters for some sort of condition.

vtkm::Equal Returns True iff the first argument is equal to the second argument. Requires that the argument
type implements the == operator.

vtkm::NotEqual Returns True iff the first argument is not equal to the second argument. Requires that the
argument type implements the != operator.

vtkm::SortLess Returns True iff the first argument is less than the second argument. Requires that the
argument type implements the < operator.

vtkm::SortGreater Returns True iff the first argument is greater than the second argument. Requires that
the argument type implements the < operator (the comparison is inverted internally).

vtkm::LogicalAnd Returns True iff the first argument and the second argument are True. Requires that the
argument type is convertible to a Boolean or implements the && operator.

Chapter 8. Device Adapters 119

DRAFT

8.4. Predicates and Operators

vtkm::LogicalOr Returns True iff the first argument or the second argument is True. Requires that the
argument type is convertible to a Boolean or implements the || operator.

Example 8.9: Basic Binary Predicate.
1 vtkm :: Equal equal_ ;
2 vtkm :: NotEqual not_equal ;
3 vtkm :: SortLess sort_less ;
4 vtkm :: SortGreater sort_greater ;
5 vtkm :: LogicalAnd logical_and ;
6 vtkm :: LogicalOr logical_or ;
7
8 bool equal = equal_ (vtkm :: Id (1) , vtkm :: Id (1));
9 bool notEqual = not_equal (vtkm :: Id (1) , vtkm :: Id (2));

10 bool sortLess = sort_less (vtkm :: Id (1) , vtkm :: Id (2));
11 bool sortGreater = sort_greater (vtkm :: Id (2) , vtkm :: Id (1));
12 bool logicalAnd = logical_and (true , true);
13 bool logicalOr = logical_or (true , false);

8.4.3 Binary Operators

Binary Operators take two parameters and return a single value (usually of the same type as the input argu-
ments). These types of functors are useful when performing reductions or transformations of a dataset.

vtkm::Sum Returns the sum of two arguments. Requires that the argument type implements the + operator.

vtkm::Product Returns the product (multiplication) of two arguments. Requires that the argument type
implements the * operator.

vtkm::Maximum Returns the larger of two arguments. Requires that the argument type implements the <
operator.

vtkm::Minimum Returns the smaller of two arguments. Requires that the argument type implements the <
operator.

vtkm::MinAndMax Returns a vtkm::Vector<T,2> that represents the minimum and maximum values. Requires
that the argument type implements the vtkm::Min and vtkm::Max functions.

vtkm::BitwiseAnd Returns the bitwise and of two arguments. Requires that the argument type implements
the & operator.

vtkm::BitwiseOr Returns the bitwise or of two arguments. Requires that the argument type implements the
| operator.

vtkm::BitwiseXor Returns the bitwise xor of two arguments. Requires that the argument type implements
the ˆ operator.

Example 8.10: Basic Binary Operator.
1 vtkm :: Sum sum_;
2 vtkm :: Product product_ ;
3 vtkm :: Maximum maximum_ ;
4 vtkm :: Minimum minimum_ ;
5 vtkm :: MinAndMax <vtkm ::Id > min_and_max ;
6 vtkm :: BitwiseAnd bitwise_and ;
7 vtkm :: BitwiseOr bitwise_or ;
8 vtkm :: BitwiseXor bitwise_xor ;

120 Chapter 8. Device Adapters

DRAFT

8.5. Device Adapter Algorithms

9
10 vtkm :: Id sum = sum_(vtkm :: Id (1) , vtkm :: Id (1));
11 vtkm :: Id product = product_ (vtkm :: Id (2) , vtkm :: Id (2));
12 vtkm :: Id max = maximum_ (vtkm :: Id (1) , vtkm :: Id (2));
13 vtkm :: Id min = minimum_ (vtkm :: Id (1) , vtkm :: Id (2));
14 vtkm ::Vec <vtkm ::Id , 2> minAndMax = min_and_max (vtkm :: Id (3) , vtkm :: Id (4));
15 vtkm :: Id bitwiseAnd = bitwise_and (vtkm :: Id (1) , vtkm :: Id (3));
16 vtkm :: Id bitwiseOr = bitwise_or (vtkm :: Id (1) , vtkm :: Id (2));
17 vtkm :: Id bitwiseXor = bitwise_xor (vtkm :: Id (7) , vtkm :: Id (4));

8.4.4 Creating Custom Comparators

In addition to using the built in operators and predicates, it is possible to create your own custom functors to
be used in one of the vtkm::cont::Algorithm. Custom operator and predicate functors can be used to apply
specific logic used to manipulate your data. The following example creates a unary predicate that checks if the
input is a power of 2.

Example 8.11: Custom Unary Predicate Implementation.
1 struct PowerOfTwo
2 {
3 VTKM_EXEC_CONT bool operator ()(const vtkm :: Id& x) const
4 {
5 if (x <= 0)
6 {
7 return false ;
8 }
9 vtkm :: BitwiseAnd bitwise_and ;

10 return bitwise_and (x, vtkm :: Id(x - 1)) == 0;
11 }
12 };

Example 8.12: Custom Unary Predicate Usage.
1 PowerOfTwo power_of_two ;
2
3 bool powerOfTwo = power_of_two (vtkm :: Id (4)); // returns true
4 powerOfTwo = power_of_two (vtkm :: Id (5)); // returns false

8.5 Device Adapter Algorithms

VTK-m comes with the templated class vtkm::cont::Algorithm that provides a set of algorithms that can be
invoked in the control environment and are run on the execution environment. All algorithms also accept an
optional device adapter argument.

Example 8.13: Prototype for vtkm::cont::Algorithm.
1 namespace vtkm
2 {
3 namespace cont
4 {
5
6 struct Algorithm ;
7 }
8 } // namespace vtkm

Algorithm contains no state. It only has a set of static methods that implement its algorithms. The following
methods are available.

Chapter 8. Device Adapters 121

DRAFT

8.5. Device Adapter Algorithms

Many of the following device adapter algorithms take input and output ArrayHandles, and these functions
will handle their own memory management. This means that it is unnecessary to allocate output arrays. For
example, it is unnecessary to call ArrayHandle::Allocate for the output array passed to the Algorithm::-
Copy method.

Did you know?

8.5.1 Copy

The Algorithm::Copy method copies data from an input array to an output array. The copy takes place in the
execution environment.

Example 8.14: Using the Copy algorithm.
1 std :: vector <vtkm :: Int32 > inputBuffer { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
2 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
3 vtkm :: cont :: make_ArrayHandle (inputBuffer);
4
5 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > output ;
6
7 vtkm :: cont :: Algorithm :: Copy(input , output);
8
9 // output has { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 }

8.5.2 CopyIf

The Algorithm::CopyIf method selectively removes values from an array. The copy if algorithm is also some-
times referred to as stream compact. The first argument, the input, is an ArrayHandle to be compacted (by
removing elements). The second argument, the stencil, is an ArrayHandle of equal size with flags indicating
whether the corresponding input value is to be copied to the output. The third argument is an output Array-
Handle whose length is set to the number of true flags in the stencil and the passed values are put in order to
the output array.

Algorithm::CopyIf also accepts an optional fourth argument that is a unary predicate to determine what
values in the stencil (second argument) should be considered true. See Section 8.4 for more information on
unary predicates. The unary predicate determines the true/false value of the stencil that determines whether a
given entry is copied. If no unary predicate is given, then CopyIf will copy all values whose stencil value is not
equal to 0 (or the closest equivalent to it). More specifically, it copies values not equal to vtkm::TypeTraits::-
ZeroInitialization.

Example 8.15: Using the CopyIf algorithm.
1 std :: vector <vtkm :: Int32 > inputBuffer { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
2 std :: vector <vtkm :: UInt8 > stencilBuffer { 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1 };
3 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
4 vtkm :: cont :: make_ArrayHandle (inputBuffer);
5 vtkm :: cont :: ArrayHandle <vtkm :: UInt8 > stencil =
6 vtkm :: cont :: make_ArrayHandle (stencilBuffer);
7
8 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > output ;
9

10 vtkm :: cont :: Algorithm :: CopyIf (input , stencil , output);
11
12
13 // output has { 0, 5, 3, 8, 3 }

122 Chapter 8. Device Adapters

DRAFT

8.5. Device Adapter Algorithms

14
15 struct LessThan5
16 {
17 VTKM_EXEC_CONT bool operator ()(vtkm :: Int32 x) const { return x < 5; }
18 };
19
20 vtkm :: cont :: Algorithm :: CopyIf (input , input , output , LessThan5 ());
21
22 // output has { 0, 1, 1, 4, 3, 3 }

8.5.3 CopySubRange

The Algorithm::CopySubRange method copies the contents of a section of one ArrayHandle to another. The
first argument is the input ArrayHandle. The second argument is the index from which to start copying data.
The third argument is the number of values to copy from the input to the output. The fourth argument is the
output ArrayHandle, which will be grown if it is not large enough. The fifth argument, which is optional, is the
index in the output array to start copying data to. If the output index is not specified, data are copied to the
beginning of the output array.

Example 8.16: Using the CopySubRange algorithm.
1 std :: vector <vtkm :: Int32 > inputBuffer { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
2 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
3 vtkm :: cont :: make_ArrayHandle (inputBuffer);
4
5 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > output ;
6
7 vtkm :: cont :: Algorithm :: CopySubRange (input , 1, 7, output);
8
9 // output has { 0, 1, 1, 5, 5, 4, 3 }

8.5.4 LowerBounds

The Algorithm::LowerBounds method takes three arguments. The first argument is an ArrayHandle of sorted
values. The second argument is another ArrayHandle of items to find in the first array. LowerBounds find the
index of the first item that is greater than or equal to the target value, much like the std::lower bound STL
algorithm. The results are returned in an ArrayHandle given in the third argument.

There are two specializations of Algorithm::LowerBounds. The first takes an additional comparison function
that defines the less-than operation. The second specialization takes only two parameters. The first is an
ArrayHandle of sorted vtkm::Id s and the second is an ArrayHandle of vtkm::Id to find in the first list. The
results are written back out to the second array. This second specialization is useful for inverting index maps.

Example 8.17: Using the LowerBounds algorithm.
1 std :: vector <vtkm :: Int32 > sortedBuffer { 0, 1, 1, 3, 3, 4, 5, 5, 7, 7, 8, 9 };
2 std :: vector <vtkm :: Int32 > valuesBuffer { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
3
4 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > sorted =
5 vtkm :: cont :: make_ArrayHandle (sortedBuffer);
6 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > values =
7 vtkm :: cont :: make_ArrayHandle (valuesBuffer);
8
9 vtkm :: cont :: ArrayHandle <vtkm ::Id > output ;

10
11 vtkm :: cont :: Algorithm :: LowerBounds (sorted , values , output);
12

Chapter 8. Device Adapters 123

DRAFT

8.5. Device Adapter Algorithms

13 // output has { 8, 0, 1, 1, 6, 6, 5, 3, 8, 10, 11, 3 }
14
15 std :: vector <vtkm :: Int32 > revSortedBuffer { 9, 8, 7, 7, 5, 5, 4, 3, 3, 1, 1, 0 };
16 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > reverseSorted =
17 vtkm :: cont :: make_ArrayHandle (revSortedBuffer);
18
19 vtkm :: cont :: Algorithm :: LowerBounds (
20 reverseSorted , values , output , vtkm :: SortGreater ());
21
22 // output has { 2, 11, 9, 9, 4, 4, 6, 7, 2, 1, 0, 7 }

8.5.5 Reduce

The Algorithm::Reduce method takes an input array, initial value, and a binary function and computes a “total”
of applying the binary function to all entries in the array. The provided binary function must be associative
(but it need not be commutative). There is a specialization of Reduce that does not take a binary function and
computes the sum.

Example 8.18: Using the Reduce algorithm.
1 std :: vector <vtkm :: Int32 > inputBuffer { 1, 1, 5, 5 };
2 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
3 vtkm :: cont :: make_ArrayHandle (inputBuffer);
4
5 vtkm :: Int32 sum = vtkm :: cont :: Algorithm :: Reduce (input , 0);
6
7 // sum is 12
8
9 vtkm :: Int32 product = vtkm :: cont :: Algorithm :: Reduce (input , 1, vtkm :: Multiply ());

10 // product is 25

8.5.6 ReduceByKey

The Algorithm::ReduceByKey method works similarly to the Reduce method except that it takes an additional
array of keys, which must be the same length as the values being reduced. The arrays are partitioned into
segments that have identical adjacent keys, and a separate reduction is performed on each partition. The unique
keys and reduced values are returned in separate arrays.

Example 8.19: Using the ReduceByKey algorithm.
1 std :: vector <vtkm ::Id > keyBuffer { 0, 0, 3, 3, 3, 3, 5, 6, 6, 6, 6, 6 };
2 std :: vector <vtkm :: Int32 > inputBuffer { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
3
4 vtkm :: cont :: ArrayHandle <vtkm ::Id > keys = vtkm :: cont :: make_ArrayHandle (keyBuffer);
5 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
6 vtkm :: cont :: make_ArrayHandle (inputBuffer);
7
8 vtkm :: cont :: ArrayHandle <vtkm ::Id > uniqueKeys ;
9 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > sums;

10
11 vtkm :: cont :: Algorithm :: ReduceByKey (keys , input , uniqueKeys , sums , vtkm :: Add ());
12
13 // uniqueKeys is { 0, 3, 5, 6 }
14 // sums is { 7, 12, 4, 30 }
15
16 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > products ;
17
18 vtkm :: cont :: Algorithm :: ReduceByKey (
19 keys , input , uniqueKeys , products , vtkm :: Multiply ());

124 Chapter 8. Device Adapters

DRAFT

8.5. Device Adapter Algorithms

20
21 // products is { 0, 25, 4, 4536 }

8.5.7 ScanExclusive

The Algorithm::ScanExclusive method takes an input and an output ArrayHandle and performs a running
sum on the input array. The first value in the output is always 0. The second value in the output is the same
as the first value in the input. The third value in the output is the sum of the first two values in the input. The
fourth value in the output is the sum of the first three values of the input, and so on. ScanExclusive returns
the sum of all values in the input. There are two forms of ScanExclusive. The first performs the sum using
addition. The second form accepts a custom binary functor to use as the “sum” operator and a custom initial
value (instead of 0).

Example 8.20: Using the ScanExclusive algorithm.
1 std :: vector <vtkm :: Int32 > inputBuffer { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
2 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
3 vtkm :: cont :: make_ArrayHandle (inputBuffer);
4
5 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningSum ;
6
7 vtkm :: cont :: Algorithm :: ScanExclusive (input , runningSum);
8
9 // runningSum is { 0, 7, 7, 8, 9, 14, 19, 23, 26, 33, 41, 50 }

10
11 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningMax ;
12
13 vtkm :: cont :: Algorithm :: ScanExclusive (input , runningMax , vtkm :: Maximum (), -1);
14
15 // runningMax is { -1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9 }

8.5.8 ScanExclusiveByKey

The Algorithm::ScanExclusiveByKey method works similarly to the ScanExclusive method except that it
takes an additional array of keys, which must be the same length as the values being scanned. The arrays are
partitioned into segments that have identical adjacent keys, and a separate scan is performed on each partition.
Only the scanned values are returned.

Example 8.21: Using ScanExclusiveByKey algorithm.
1 std :: vector <vtkm ::Id > keyBuffer { 0, 0, 3, 3, 3, 3, 5, 6, 6, 6, 6, 6 };
2 std :: vector <vtkm :: Int32 > inputBuffer { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
3
4 vtkm :: cont :: ArrayHandle <vtkm ::Id > keys = vtkm :: cont :: make_ArrayHandle (keyBuffer);
5 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
6 vtkm :: cont :: make_ArrayHandle (inputBuffer);
7
8 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningSums ;
9

10 vtkm :: cont :: Algorithm :: ScanExclusiveByKey (keys , input , runningSums);
11
12 // runningSums is { 0, 7, 0, 1, 2, 7, 0, 0, 3, 10, 18, 27 }
13
14 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningMaxes ;
15
16 vtkm :: cont :: Algorithm :: ScanExclusiveByKey (
17 keys , input , runningMaxes , -1, vtkm :: Maximum ());
18

Chapter 8. Device Adapters 125

DRAFT

8.5. Device Adapter Algorithms

19 // runningMax is { -1, 7, -1, 1, 1, 5, -1, -1, 3, 7, 8, 9 }

8.5.9 ScanInclusive

The Algorithm::ScanInclusive method takes an input and an output ArrayHandle and performs a running
sum on the input array. The first value in the output is the same as the first value in the input. The second
value in the output is the sum of the first two values in the input. The third value in the output is the sum of the
first three values of the input, and so on. ScanInclusive returns the sum of all values in the input. There are
two forms of ScanInclusive: one performs the sum using addition whereas the other accepts a custom binary
function to use as the sum operator.

Example 8.22: Using the ScanInclusive algorithm.
1 std :: vector <vtkm :: Int32 > inputBuffer { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
2 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
3 vtkm :: cont :: make_ArrayHandle (inputBuffer);
4
5 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningSum ;
6
7 vtkm :: cont :: Algorithm :: ScanInclusive (input , runningSum);
8
9 // runningSum is { 7, 7, 8, 9, 14, 19, 23, 26, 33, 41, 50, 53 }

10
11 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningMax ;
12
13 vtkm :: cont :: Algorithm :: ScanInclusive (input , runningMax , vtkm :: Maximum ());
14
15 // runningMax is { 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 9 }

8.5.10 ScanInclusiveByKey

The Algorithm::ScanInclusiveByKey method works similarly to the ScanInclusive method except that it
takes an additional array of keys, which must be the same length as the values being scanned. The arrays are
partitioned into segments that have identical adjacent keys, and a separate scan is performed on each partition.
Only the scanned values are returned.

Example 8.23: Using the ScanInclusiveByKey algorithm.
1 std :: vector <vtkm ::Id > keyBuffer { 0, 0, 3, 3, 3, 3, 5, 6, 6, 6, 6, 6 };
2 std :: vector <vtkm :: Int32 > inputBuffer { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
3
4 vtkm :: cont :: ArrayHandle <vtkm ::Id > keys = vtkm :: cont :: make_ArrayHandle (keyBuffer);
5 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
6 vtkm :: cont :: make_ArrayHandle (inputBuffer);
7
8 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningSums ;
9

10 vtkm :: cont :: Algorithm :: ScanInclusiveByKey (keys , input , runningSums);
11
12 // runningSums is { 7, 7, 1, 2, 7, 12, 4, 3, 10, 18, 27, 30 }
13
14 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > runningMaxes ;
15
16 vtkm :: cont :: Algorithm :: ScanInclusiveByKey (
17 keys , input , runningMaxes , vtkm :: Maximum ());
18
19 // runningMax is { 7, 7, 1, 1, 5, 5, 4, 3, 7, 8, 9, 9 }

126 Chapter 8. Device Adapters

DRAFT

8.5. Device Adapter Algorithms

8.5.11 Schedule

The Algorithm::Schedule method takes a functor as its first argument and invokes it a number of times specified
by the second argument. It should be assumed that each invocation of the functor occurs on a separate thread
although in practice there could be some thread sharing.

There are two versions of the Schedule method. The first version takes a vtkm::Id and invokes the functor that
number of times. The second version takes a vtkm::Id3 and invokes the functor once for every entry in a 3D
array of the given dimensions.

The functor is expected to be an object with a const overloaded parentheses operator. The operator takes as a
parameter the index of the invocation, which is either a vtkm::Id or a vtkm::Id3 depending on what version of
Schedule is being used. The functor must also subclass vtkm::exec::FunctorBase, which provides the error
handling facilities for the execution environment. FunctorBase contains a public method named RaiseError
that takes a message and will cause a vtkm::cont::ErrorExecution exception to be thrown in the control
environment.

8.5.12 Sort

The Algorithm::Sort method provides an unstable sort of an array. There are two forms of the Sort method.
The first takes an ArrayHandle and sorts the values in place. The second takes an additional argument that is
a functor that provides the comparison operation for the sort.

Example 8.24: Using the Sort algorithm.
1 std :: vector <vtkm :: Int32 > inputBuffer { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
2 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > array =
3 vtkm :: cont :: make_ArrayHandle (inputBuffer);
4
5 vtkm :: cont :: Algorithm :: Sort(array);
6
7 // array has { 0, 1, 1, 3, 3, 4, 5, 5, 7, 7, 8, 9 }
8
9 vtkm :: cont :: Algorithm :: Sort(array , vtkm :: SortGreater ());

10
11 // array has { 9, 8, 7, 7, 5, 5, 4, 3, 3, 1, 1, 0 }

8.5.13 SortByKey

The Algorithm::SortByKey method works similarly to the Sort method except that it takes two ArrayHandles:
an array of keys and a corresponding array of values. The sort orders the array of keys in ascending values and
also reorders the values so they remain paired with the same key. Like Sort, SortByKey has a version that sorts
by the default less-than operator and a version that accepts a custom comparison functor.

Example 8.25: Using the SortByKey algorithm.
1 std :: vector <vtkm :: Int32 > keyBuffer { 7, 0, 1, 5, 4, 8, 9, 3 };
2 std :: vector <vtkm ::Id > valueBuffer { 0, 1, 2, 3, 4, 5, 6, 7 };
3
4 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > keys =
5 vtkm :: cont :: make_ArrayHandle (keyBuffer);
6 vtkm :: cont :: ArrayHandle <vtkm ::Id > values =
7 vtkm :: cont :: make_ArrayHandle (valueBuffer);
8
9 vtkm :: cont :: Algorithm :: SortByKey (keys , values);

10
11 // keys has { 0, 1, 3, 4, 5, 7, 8, 9 }

Chapter 8. Device Adapters 127

DRAFT

8.5. Device Adapter Algorithms

12 // values has { 1, 2, 7, 4, 3, 0, 5, 6 }
13
14 vtkm :: cont :: Algorithm :: SortByKey (keys , values , vtkm :: SortGreater ());
15
16 // keys has { 9, 8, 7, 5, 4, 3, 1, 0 }
17 // values has { 6, 5, 0, 3, 4, 7, 2, 1 }

8.5.14 Synchronize

The Synchronize method waits for any asynchronous operations running on the device to complete and then
returns.

8.5.15 Unique

The Algorithm::Unique method removes all duplicate values in an ArrayHandle. The method will only find
duplicates if they are adjacent to each other in the array. The easiest way to ensure that duplicate values are
adjacent is to sort the array first.

There are two versions of Unique. The first uses the equals operator to compare entries. The second accepts a
binary functor to perform the comparisons.

Example 8.26: Using the Unique algorithm.
1 std :: vector <vtkm :: Int32 > valuesBuffer { 0, 1, 1, 3, 3, 4, 5, 5, 7, 7, 7, 9 };
2 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > values =
3 vtkm :: cont :: make_ArrayHandle (valuesBuffer);
4
5 vtkm :: cont :: Algorithm :: Unique (values);
6
7 // values has {0, 1, 3, 4, 5, 7, 9}
8
9 std :: vector <vtkm :: Float64 > fvaluesBuffer { 0.0 , 0.001 , 0.0 , 1.5 , 1.499 , 2.0 };

10 vtkm :: cont :: ArrayHandle <vtkm :: Float64 > fvalues =
11 vtkm :: cont :: make_ArrayHandle (fvaluesBuffer);
12
13 struct AlmostEqualFunctor
14 {
15 VTKM_EXEC_CONT bool operator ()(vtkm :: Float64 x, vtkm :: Float64 y) const
16 {
17 return (vtkm :: Abs(x - y) < 0.1);
18 }
19 };
20
21 vtkm :: cont :: Algorithm :: Unique (fvalues , AlmostEqualFunctor ());
22
23 // values has {0.0 , 1.5 , 2.0}

8.5.16 UpperBounds

The Algorithm::UpperBounds method takes three arguments. The first argument is an ArrayHandle of sorted
values. The second argument is another ArrayHandle of items to find in the first array. UpperBounds find the
index of the first item that is greater than to the target value, much like the std::upper bound STL algorithm.
The results are returned in an ArrayHandle given in the third argument.

There are two specializations of UpperBounds. The first takes an additional comparison function that defines
the less-than operation. The second takes only two parameters. The first is an ArrayHandle of sorted vtkm::Id

128 Chapter 8. Device Adapters

DRAFT

8.5. Device Adapter Algorithms

s and the second is an ArrayHandle of vtkm::Id s to find in the first list. The results are written back out to
the second array. This second specialization is useful for inverting index maps.

Example 8.27: Using the UpperBounds algorithm.
1 std :: vector <vtkm :: Int32 > sortedBuffer { 0, 1, 1, 3, 3, 4, 5, 5, 7, 7, 8, 9 };
2 std :: vector <vtkm :: Int32 > valuesBuffer { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
3
4 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > sorted =
5 vtkm :: cont :: make_ArrayHandle (sortedBuffer);
6 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > values =
7 vtkm :: cont :: make_ArrayHandle (valuesBuffer);
8
9 vtkm :: cont :: ArrayHandle <vtkm ::Id > output ;

10
11 vtkm :: cont :: Algorithm :: UpperBounds (sorted , values , output);
12
13 // output has { 10, 1, 3, 3, 8, 8, 6, 5, 10, 11, 12, 5 }
14
15 std :: vector <vtkm :: Int32 > revSortedBuffer { 9, 8, 7, 7, 5, 5, 4, 3, 3, 1, 1, 0 };
16 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > reverseSorted =
17 vtkm :: cont :: make_ArrayHandle (revSortedBuffer);
18
19 vtkm :: cont :: Algorithm :: UpperBounds (
20 reverseSorted , values , output , vtkm :: SortGreater ());
21
22 // output has { 4, 12, 11, 11, 6, 6, 7, 9, 4, 2, 1, 9 }

8.5.17 Specifying the Device Adapter

When you call a method in vtkm::cont::Algorithm, a device is automatically specified based on available
hardware and the VTK-m state. However, if you want to use a specific device, you can specify that device by
passing either a vtkm::cont::DeviceAdapterId or a device adapter tag as the first argument to any of these
methods.

Example 8.28: Using the DeviceAdapter with vtkm::cont::Algorithm.
1 std :: vector <vtkm :: Int32 > inputBuffer { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 };
2 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > input =
3 vtkm :: cont :: make_ArrayHandle (inputBuffer);
4
5 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > output_no_device_specified ;
6
7 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > output_device_specified ;
8
9 vtkm :: cont :: Algorithm :: Copy(input , output_no_device_specified);

10
11 // optional we can pass the device or int id number
12 vtkm :: cont :: Algorithm :: Copy(
13 vtkm :: cont :: DeviceAdapterTagSerial (), input , output_device_specified);
14
15 // output has { 7, 0, 1, 1, 5, 5, 4, 3, 7, 8, 9, 3 }

Chapter 8. Device Adapters 129

DRAFT

DRAFT
CHAPTER

NINE

TIMERS

It is often the case that you need to measure the time it takes for an operation to happen. This could be for
performing measurements for algorithm study or it could be to dynamically adjust scheduling.

Performing timing in a multi-threaded environment can be tricky because operations happen asynchronously.
In the VTK-m control environment timing is simplified because the control environment operates on a single
thread. However, operations invoked in the execution environment may run asynchronously to operations in the
control environment.

To ensure that accurate timings can be made, VTK-m provides a vtkm::cont::Timer class to provide an
accurate measurement of operations that happen on devices that VTK-m can use. By default, Timer will time
operations on all possible devices.

The timer is started by calling the Timer::Start method. The timer can subsequently be stopped by calling
Timer::Stop. The time elapsed between calls to Start and Stop (or the current time if Stop was not called) can
be retrieved with a call to the Timer::GetElapsedTime method. Subsequently calling Start again will restart
the timer.

Example 9.1: Using vtkm::cont::Timer.
1 vtkm :: filter :: PointElevation elevationFilter ;
2 elevationFilter . SetUseCoordinateSystemAsField (true);
3 elevationFilter . SetOutputFieldName (" elevation ");
4
5 vtkm :: cont :: Timer timer ;
6
7 timer . Start ();
8
9 vtkm :: cont :: DataSet result = elevationFilter . Execute (dataSet);

10
11 // This code makes sure data is pulled back to the host in a host/ device
12 // architecture .
13 vtkm :: cont :: ArrayHandle <vtkm :: Float64 > outArray ;
14 result . GetField (" elevation "). GetData (). CopyTo (outArray);
15 outArray . GetPortalConstControl ();
16
17 timer .Stop ();
18
19 vtkm :: Float64 elapsedTime = timer . GetElapsedTime ();
20
21 std :: cout << "Time to run: " << elapsedTime << std :: endl;

DRAFT
Some device require data to be copied between the host CPU and the device. In this case you might want
to measure the time to copy data back to the host. This can be done by “touching” the data on the host by
getting a control portal.

Common Errors

The VTK-m Timer does its best to capture the time it takes for all parallel operations run between calls to
Start and Stop to complete. It does so by synchronizing to concurrent execution on devices that might be in
use.

Because Timer synchronizes with devices (essentially waiting for the device to finish executing), that can
have an effect on how your program runs. Be aware that using a Timer can itself change the performance
of your code. In particular, starting and stopping the timer many times to measure the parts of a sequence
of operations can potentially make the whole operation run slower.

Common Errors

By default, Timer will synchronize with all active devices. However, if you want to measure the time for a
specific device, then you can pass the device adapter tag or id to vtkm::cont::Timer’s constructor. You can
also change the device being used by passing a device adapter tag or id to the Timer::Reset method. A device
can also be specified through an optional argument to the Timer::GetElapsedTime method.

The following methods are provided by vtkm::cont::Timer.

Start Causes the Timer to begin timing. The elapsed time will record an interval beginning when this method
is called.

Started Returns true if Start has been called. It is invalid to try to get the elapsed time if Started is not
true.

Stop Causes the Timer to finish timing. The elapsed time will record an interval ending when this method is
called. It is invalid to stop the timer if Started is not true.

Stopped Returns true if Stop has been called. If Stopped is true, then the elapsed time will no longer increase.
If Stopped is false and Started is true, then the timer is still running.

Ready Returns true if the timer has finished the synchronization required to get the timing result from the
device.

GetElapsedTime Returns the amount of time that has elapsed between calling Start and Stop. If Stop was not
called, then the amount of time between calling Start and GetElapsedTime is returned. GetElapsedTime
can optionally take a device adapter tag or id to specify for which device to return the elapsed time.

Reset Restores the initial state of the Timer. All previous recorded time is erased. Reset optionally takes a
device adapter tag or id that specifies on which device to time and synchronize.

GetDevice Returns the id of the device adapter for which this timer is synchronized. If the device adapter has
the same id as vtkm::cont::DeviceAdapterTagAny (the default), then the timer will synchronize on all
devices.

132 Chapter 9. Timers

DRAFT
CHAPTER

TEN

VARIANT ARRAY HANDLES

The ArrayHandle class uses templating to make very efficient and type-safe access to data. However, it is some-
times inconvenient or impossible to specify the element type and storage at run-time. The VariantArrayHandle
class provides a mechanism to manage arrays of data with unspecified types.

vtkm::cont::VariantArrayHandle holds a reference to an array. Unlike ArrayHandle, VariantArrayHandle
is not templated. Instead, it uses C++ run-type type information to store the array without type and cast it
when appropriate.

A VariantArrayHandle can be established by constructing it with or assigning it to an ArrayHandle. The
following example demonstrates how a VariantArrayHandle might be used to load an array whose type is not
known until run-time.

Example 10.1: Creating a VariantArrayHandle.
1 VTKM_CONT
2 vtkm :: cont :: VariantArrayHandle LoadVariantArray (const void * buffer ,
3 vtkm :: Id length ,
4 std :: string type)
5 {
6 vtkm :: cont :: VariantArrayHandle handle ;
7 if (type == " float ")
8 {
9 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > concreteArray =

10 vtkm :: cont :: make_ArrayHandle (reinterpret_cast < const vtkm :: Float32 *>(buffer),
11 length);
12 handle = concreteArray ;
13 }
14 else if (type == "int ")
15 {
16 vtkm :: cont :: ArrayHandle <vtkm :: Int32 > concreteArray =
17 vtkm :: cont :: make_ArrayHandle (reinterpret_cast < const vtkm :: Int32 *>(buffer),
18 length);
19 handle = concreteArray ;
20 }
21 return handle ;
22 }

10.1 Querying and Casting

Data pointed to by a VariantArrayHandle is not directly accessible. However, there are a few generic queries
you can make without directly knowing the data type. The GetNumberOfValues method returns the length of
the array with respect to its base data type. It is also common in VTK-m to use data types, such as vtkm::Vec,

DRAFT

10.1. Querying and Casting

with multiple components per value. The GetNumberOfComponents method returns the number of components
in a vector-like type (or 1 for scalars).

Example 10.2: Non type-specific queries on VariantArrayHandle.
1 std :: vector <vtkm :: Float32 > scalarBuffer (10);
2 vtkm :: cont :: VariantArrayHandle scalarDynamicHandle (
3 vtkm :: cont :: make_ArrayHandle (scalarBuffer));
4
5 // This returns 10.
6 vtkm :: Id scalarArraySize = scalarDynamicHandle . GetNumberOfValues ();
7
8 // This returns 1.
9 vtkm :: IdComponent scalarComponents = scalarDynamicHandle . GetNumberOfComponents ();

10
11 std :: vector <vtkm ::Vec <vtkm :: Float32 , 3>> vectorBuffer (20);
12 vtkm :: cont :: VariantArrayHandle vectorDynamicHandle (
13 vtkm :: cont :: make_ArrayHandle (vectorBuffer));
14
15 // This returns 20.
16 vtkm :: Id vectorArraySize = vectorDynamicHandle . GetNumberOfValues ();
17
18 // This returns 3.
19 vtkm :: IdComponent vectorComponents = vectorDynamicHandle . GetNumberOfComponents ();

It is also often desirable to create a new array based on the underlying type of a VariantArrayHandle. For
example, when a filter creates a field, it is common to make this output field the same type as the input. To
satisfy this use case, VariantArrayHandle has a method named NewInstance that creates a new empty array
with the same underlying type as the original array.

Example 10.3: Using NewInstance.
1 std :: vector <vtkm :: Float32 > scalarBuffer (10);
2 vtkm :: cont :: VariantArrayHandle variantHandle (
3 vtkm :: cont :: make_ArrayHandle (scalarBuffer));
4
5 // This creates a new empty array of type Float32 .
6 vtkm :: cont :: VariantArrayHandle newVariantArray = variantHandle . NewInstance ();

Before the data with a VariantArrayHandle can be accessed, the type of the array must be established. This
is usually done internally within VTK-m when a worklet or filter is invoked and the VariantArrayHandle is
converted into an ArrayHandleVirtual. However, it is also possible to query the types and cast to a concrete
ArrayHandle.

You can query the component type using the VariantArrayHandle::IsValueType method. IsValueType takes
a value type and returns whether that matches the underlying array. You can query the component type and
storage type using the VariantArrayHandle::IsType method. IsType takes an example array handle type and
returns whether the underlying array matches the given static array type.

Example 10.4: Querying the component and storage types of a VariantArrayHandle.
1 std :: vector <vtkm :: Float32 > scalarBuffer (10);
2 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > concreteHandle =
3 vtkm :: cont :: make_ArrayHandle (scalarBuffer);
4 vtkm :: cont :: VariantArrayHandle variantHandle (concreteHandle);
5
6 // This returns true
7 bool isFloat32Array = variantHandle .IsType < decltype (concreteHandle) >();
8
9 // This returns false

10 bool isIdArray = variantHandle .IsType <vtkm :: cont :: ArrayHandle <vtkm ::Id > >();

134 Chapter 10. Variant Array Handles

DRAFT

10.2. Casting to Unknown Types

Once the type of the VariantArrayHandle is known, it can be cast to either to ArrayHandleVirtual or a
concrete ArrayHandle, which has access to the data as described in Chapter 7. The easiest ways to do this is to
use AsVirtual when desiring an ArrayHandleVirtual or CopyTo method when wanting a concrete ArrayHandle.

The VariantArrayHandle::AsVirtual templated method takes a value type as a template parameter and
returns a array handle virtual that points to the array in VariantArrayHandle. If the given types are incorrect,
then AsVirtual throws a vtkm::cont::ErrorControlBadValue exception.

Example 10.5: Casting a VariantArrayHandle to a virtual ArrayHandle.
1 vtkm :: cont :: ArrayHandleVirtual <vtkm :: Float32 > virtualArray =
2 variantHandle .AsVirtual <vtkm :: Float32 >();

Remember that ArrayHandle and VariantArrayHandle represent pointers to the data, so this “copy” is a
shallow copy. There is still only one copy of the data, and if you change the data in one array handle that
change is reflected in the other.

Common Errors

The VariantArrayHandle::CopyTo templated method takes a reference to an ArrayHandle as an argument
and sets that array handle to point to the array in VariantArrayHandle. If the given types are incorrect, then
CopyTo throws a vtkm::cont::ErrorControlBadValue exception.

Example 10.6: Casting a VariantArrayHandle to a concrete ArrayHandle.
1 variantHandle . CopyTo (concreteHandle);

Remember that ArrayHandle and VariantArrayHandle represent pointers to the data, so this “copy” is a
shallow copy. There is still only one copy of the data, and if you change the data in one array handle that
change is reflected in the other.

Common Errors

10.2 Casting to Unknown Types

Using AsVirtual, and CopyTo are fine as long as the correct types are known, but often times they are not. For
this use case VariantArrayHandle has a method named CastAndCall that attempts to cast the array to some
set of types.

The CastAndCall method accepts a functor to run on the appropriately cast array. The functor must have an
overloaded const parentheses operator that accepts an ArrayHandle of the appropriate type.

Example 10.7: Operating on VariantArrayHandle with CastAndCall.
1 struct PrintArrayContentsFunctor
2 {
3 template < typename T, typename S>
4 VTKM_CONT void operator ()(const vtkm :: cont :: ArrayHandle <T, S >& array) const

Chapter 10. Variant Array Handles 135

DRAFT

10.3. Specifying Cast Lists

5 {
6 this -> PrintArrayPortal (array . GetPortalConstControl ());
7 }
8
9 private :

10 template < typename PortalType >
11 VTKM_CONT void PrintArrayPortal (const PortalType & portal) const
12 {
13 for (vtkm :: Id index = 0; index < portal . GetNumberOfValues (); index ++)
14 {
15 // All ArrayPortal objects have ValueType for the type of each value .
16 using ValueType = typename PortalType :: ValueType ;
17
18 ValueType value = portal .Get(index);
19
20 vtkm :: IdComponent numComponents =
21 vtkm :: VecTraits <ValueType >:: GetNumberOfComponents (value);
22 for (vtkm :: IdComponent componentIndex = 0; componentIndex < numComponents ;
23 componentIndex ++)
24 {
25 std :: cout << " "
26 << vtkm :: VecTraits <ValueType >:: GetComponent (value , componentIndex);
27 }
28 std :: cout << std :: endl;
29 }
30 }
31 };
32
33 template < typename VariantArrayType >
34 void PrintArrayContents (const VariantArrayType & array)
35 {
36 array . CastAndCall (PrintArrayContentsFunctor ());
37 }

It is possible to store any form of ArrayHandle in a VariantArrayHandle, but it is not possible for
CastAndCall to check every possible form of ArrayHandle. If CastAndCall cannot determine the Array-
Handle type, then an ErrorControlBadValue is thrown. The following section describes how to specify the
forms of ArrayHandle to try.

Common Errors

10.3 Specifying Cast Lists

The CastAndCall method can only check a finite number of value types. The default form of CastAndCall uses
a default set of common types. These default lists can be overridden using the VTK-m list tags facility, which
is discussed at length in Section 6.7.

Common type lists for value are defined in vtkm/TypeListTag.h and are documented in Section 6.7.2. This header
also defines VTKM DEFAULT TYPE LIST TAG, which defines the default list of value types tried in CastAndCall.

There is a form of CastAndCall that accepts a tag for the list of component types. This can be used when the
specific list is known at the time of the call. However, when creating generic operations like the PrintArray-
Contents function in Example 10.7, passing these tag is inconvenient at best.

136 Chapter 10. Variant Array Handles

DRAFT

10.3. Specifying Cast Lists

To address this use case, VariantArrayHandle has a method named ResetTypes. This method returns a new
object that behaves just like a VariantArrayHandle with identical state except that the cast and call functionality
uses the specified component types instead of the default. (Note that PrintArrayContents in Example 10.7 is
templated on the type of VariantArrayHandle. This is to accommodate using the objects from the ResetTypes
method, which have the same behavior but different type names.)

So the default component type list contains a subset of the basic VTK-m types. If you wanted to accommodate
more types, you could use ResetTypes.

Example 10.8: Trying all component types in a VariantArrayHandle.
1 PrintArrayContents (dynamicArray . ResetTypes (vtkm :: TypeListTagAll ()));

Likewise, if you happen to know a particular type of the variant array, that can be specified to reduce the amount
of object code created by templates in the compiler.

Example 10.9: Specifying a single component type in a VariantArrayHandle.
1 PrintArrayContents (dynamicArray . ResetTypes (vtkm :: TypeListTagId ()));

VariantArrayHandle::ResetTypes does not change the object. Rather, it returns a new object with dif-
ferent type information. This method has no effect unless you do something with the returned value.

Common Errors

ResetTypes works by returning a vtkm::cont::VariantArrayHandleBase object. VariantArrayHandleBase
specifies the value tag as a template argument and otherwise behaves just like VariantArrayHandle.

I lied earlier when I said at the beginning of this chapter that VariantArrayHandle is a class that is not
templated. This symbol is really just a type alias of VariantArrayHandleBase. Because the VariantAr-
rayHandle fully specifies the template arguments, it behaves like a class, but if you get a compiler error it
will show up as VariantArrayHandleBase.

Did you know?

Most code does not need to worry about working directly with VariantArrayHandleBase. However, it is
sometimes useful to declare it in templated functions that accept variant array handles so that works with every
type list. The function in Example 10.7 did this by making the variant array handle class itself the template
argument. This will work, but it is prone to error because the template will resolve to any type of argument.
When passing objects that are not variant array handles will result in strange and hard to diagnose errors.
Instead, we can define the same function using VariantArrayHandleBase so that the template will only match
variant array handle types.

Example 10.10: Using VariantArrayHandleBase to accept generic variant array handles.
1 template < typename TypeList >
2 void PrintArrayContents (const vtkm :: cont :: VariantArrayHandleBase <TypeList >& array)
3 {
4 array . CastAndCall (PrintArrayContentsFunctor ());
5 }

Chapter 10. Variant Array Handles 137

DRAFT

DRAFT
CHAPTER

ELEVEN

DATA SETS

A data set, implemented with the vtkm::cont::DataSet class, contains and manages the geometric data struc-
tures that VTK-m operates on. A data set comprises the following 3 data structures.

Cell Set A cell set describes topological connections. A cell set defines some number of points in space and how
they connect to form cells, filled regions of space. A data set must have at least one cell set, but can have
more than one cell set defined. This makes it possible to define groups of cells with different properties.
For example, a simulation might model some subset of elements as boundary that contain properties the
other elements do not. Another example is the representation of a molecule that requires atoms and bonds,
each having very different properties associated with them.

Field A field describes numerical data associated with the topological elements in a cell set. The field is
represented as an array, and each entry in the field array corresponds to a topological element (point, edge,
face, or cell). Together the cell set topology and discrete data values in the field provide an interpolated
function throughout the volume of space covered by the data set. A cell set can have any number of fields.

Coordinate System A coordinate system is a special field that describes the physical location of the points
in a data set. Although it is most common for a data set to contain a single coordinate system, VTK-m
supports data sets with no coordinate system such as abstract data structures like graphs that might not
have positions in a space. DataSet also supports multiple coordinate systems for data that have multiple
representations for position. For example, geospatial data could simultaneously have coordinate systems
defined by 3D position, latitude-longitude, and any number of 2D projections.

In addition to the base vtkm::cont::DataSet, VTK-m provides vtkm::cont::MultiBlock to represent multi-
block data sets. A MultiBlock is implemented as a collection of DataSet objects. Multi-block data sets are
described later in Section 11.5.

11.1 Building Data Sets

Before we go into detail on the cell sets, fields, and coordinate systems that make up a data set in VTK-m, let
us first discuss how to build a data set. One simple way to build a data set is to load data from a file using the
vtkm::io module. Reading files is discussed in detail in Chapter 3.

This section describes building data sets of different types using a set of classes named DataSetBuilder*, which
provide a convenience layer on top of vtkm::cont::DataSet to make it easier to create data sets.

DRAFT

11.1. Building Data Sets

11.1.1 Creating Uniform Grids

Uniform grids are meshes that have a regular array structure with points uniformly spaced parallel to the axes.
Uniform grids are also sometimes called regular grids or images.

The vtkm::cont::DataSetBuilderUniform class can be used to easily create 2- or 3-dimensional uniform grids.
DataSetBuilderUniform has several versions of a method named Create that takes the number of points in
each dimension, the origin, and the spacing. The origin is the location of the first point of the data (in the lower
left corner), and the spacing is the distance between points in the x, y, and z directions. The Create methods
also take an optional name for the coordinate system and an optional name for the cell set.

The following example creates a vtkm::cont::DataSet containing a uniform grid of 101×101×26 points.

Example 11.1: Creating a uniform grid.
1 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
2
3 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create (vtkm :: Id3 (101 , 101 , 26));

If not specified, the origin will be at the coordinates (0,0,0) and the spacing will be 1 in each direction. Thus,
in the previous example the width, height, and depth of the mesh in physical space will be 100, 100, and 25,
respectively, and the mesh will be centered at (50,50,12.5). Let us say we actually want a mesh of the same
dimensions, but we want the z direction to be stretched out so that the mesh will be the same size in each
direction, and we want the mesh centered at the origin.

Example 11.2: Creating a uniform grid with custom origin and spacing.
1 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
2
3 vtkm :: cont :: DataSet dataSet =
4 dataSetBuilder . Create (vtkm :: Id3 (101 , 101 , 26) ,
5 vtkm ::Vec <vtkm :: FloatDefault , 3 >(-50.0 , -50.0 , -50.0) ,
6 vtkm ::Vec <vtkm :: FloatDefault , 3 >(1.0 , 1.0 , 4.0));

11.1.2 Creating Rectilinear Grids

A rectilinear grid is similar to a uniform grid except that a rectilinear grid can adjust the spacing between
adjacent grid points. This allows the rectilinear grid to have tighter sampling in some areas of space, but the
points are still constrained to be aligned with the axes and each other. The irregular spacing of a rectilinear grid
is specified by providing a separate array each for the x, y, and z coordinates.

The vtkm::cont::DataSetBuilderRectilinear class can be used to easily create 2- or 3-dimensional rectilinear
grids. DataSetBuilderRectilinear has several versions of a method named Create that takes these coordinate
arrays and builds a vtkm::cont::DataSet out of them. The arrays can be supplied as either standard C arrays
or as std::vector objects, in which case the data in the arrays are copied into the DataSet. These arrays can
also be passed as ArrayHandle objects, in which case the data are shallow copied.

The following example creates a vtkm::cont::DataSet containing a rectilinear grid with 201×201×101 points
with different irregular spacing along each axis.

Example 11.3: Creating a rectilinear grid.
1 // Make x coordinates range from -4 to 4 with tighter spacing near 0.
2 std :: vector <vtkm :: Float32 > xCoordinates ;
3 for (vtkm :: Float32 x = -2.0f; x <= 2.0f; x += 0.02f)
4 {
5 xCoordinates . push_back (vtkm :: CopySign (x * x, x));
6 }
7

140 Chapter 11. Data Sets

DRAFT

11.1. Building Data Sets

8 // Make y coordinates range from 0 to 2 with tighter spacing near 2.
9 std :: vector <vtkm :: Float32 > yCoordinates ;

10 for (vtkm :: Float32 y = 0.0f; y <= 4.0f; y += 0.02f)
11 {
12 yCoordinates . push_back (vtkm :: Sqrt(y));
13 }
14
15 // Make z coordinates rangefrom -1 to 1 with even spacing .
16 std :: vector <vtkm :: Float32 > zCoordinates ;
17 for (vtkm :: Float32 z = -1.0f; z <= 1.0f; z += 0.02f)
18 {
19 zCoordinates . push_back (z);
20 }
21
22 vtkm :: cont :: DataSetBuilderRectilinear dataSetBuilder ;
23
24 vtkm :: cont :: DataSet dataSet =
25 dataSetBuilder . Create (xCoordinates , yCoordinates , zCoordinates);

11.1.3 Creating Explicit Meshes

An explicit mesh is an arbitrary collection of cells with arbitrary connections. It can have multiple different
types of cells. Explicit meshes are also known as unstructured grids.

The cells of an explicit mesh are defined by providing the shape, number of indices, and the points that comprise
it for each cell. These three things are stored in separate arrays. Figure 11.1 shows an example of an explicit
mesh and the arrays that can be used to define it.

0

1
2

3
4

5
6

7

0 1

2

3

4

Connectivity
0
2
1
0
4
3
2
1
2
5
2
3
7
6
5
3
4
7

Cell 0
Cell 1
Cell 2
Cell 3
Cell 4

vtk::CELL_SHAPE_TRIANGLE
vtk::CELL_SHAPE_QUAD
vtk::CELL_SHAPE_TRIANGLE
vtk::CELL_SHAPE_POLYGON
vtk::CELL_SHAPE_TRIANGLE

Shape
3

Num Indices

4
3
5
3

Figure 11.1: An example explicit mesh.

The vtkm::cont::DataSetBuilderExplicit class can be used to create data sets with explicit meshes.
DataSetBuilderExplicit has several versions of a method named Create. Generally, these methods take
the shapes, number of indices, and connectivity arrays as well as an array of point coordinates. These arrays
can be given in std::vector objects, and the data are copied into the DataSet created.

The following example creates a mesh like the one shown in Figure 11.1.

Chapter 11. Data Sets 141

DRAFT

11.1. Building Data Sets

Example 11.4: Creating an explicit mesh with DataSetBuilderExplicit.
1 // Array of point coordinates .
2 std :: vector <vtkm ::Vec <vtkm :: Float32 , 3>> pointCoordinates ;
3 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 , 3 >(1.1f, 0.0f, 0.0f));
4 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 , 3 >(0.2f, 0.4f, 0.0f));
5 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 , 3 >(0.9f, 0.6f, 0.0f));
6 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 , 3 >(1.4f, 0.5f, 0.0f));
7 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 , 3 >(1.8f, 0.3f, 0.0f));
8 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 , 3 >(0.4f, 1.0f, 0.0f));
9 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 , 3 >(1.0f, 1.2f, 0.0f));

10 pointCoordinates . push_back (vtkm ::Vec <vtkm :: Float32 , 3 >(1.5f, 0.9f, 0.0f));
11
12 // Array of shapes .
13 std :: vector <vtkm :: UInt8 > shapes ;
14 shapes . push_back (vtkm :: CELL_SHAPE_TRIANGLE);
15 shapes . push_back (vtkm :: CELL_SHAPE_QUAD);
16 shapes . push_back (vtkm :: CELL_SHAPE_TRIANGLE);
17 shapes . push_back (vtkm :: CELL_SHAPE_POLYGON);
18 shapes . push_back (vtkm :: CELL_SHAPE_TRIANGLE);
19
20 // Array of number of indices per cell.
21 std :: vector <vtkm :: IdComponent > numIndices ;
22 numIndices . push_back (3);
23 numIndices . push_back (4);
24 numIndices . push_back (3);
25 numIndices . push_back (5);
26 numIndices . push_back (3);
27
28 // Connectivity array .
29 std :: vector <vtkm ::Id > connectivity ;
30 connectivity . push_back (0); // Cell 0
31 connectivity . push_back (2);
32 connectivity . push_back (1);
33 connectivity . push_back (0); // Cell 1
34 connectivity . push_back (4);
35 connectivity . push_back (3);
36 connectivity . push_back (2);
37 connectivity . push_back (1); // Cell 2
38 connectivity . push_back (2);
39 connectivity . push_back (5);
40 connectivity . push_back (2); // Cell 3
41 connectivity . push_back (3);
42 connectivity . push_back (7);
43 connectivity . push_back (6);
44 connectivity . push_back (5);
45 connectivity . push_back (3); // Cell 4
46 connectivity . push_back (4);
47 connectivity . push_back (7);
48
49 // Copy these arrays into a DataSet .
50 vtkm :: cont :: DataSetBuilderExplicit dataSetBuilder ;
51
52 vtkm :: cont :: DataSet dataSet =
53 dataSetBuilder . Create (pointCoordinates , shapes , numIndices , connectivity);

Often it is awkward to build your own arrays and then pass them to DataSetBuilderExplicit. There also
exists an alternate builder class named vtkm::cont::DataSetBuilderExplicitIterative that allows you to
specify each cell and point one at a time rather than all at once. This is done by calling one of the versions of
AddPoint and one of the versions of AddCell for each point and cell, respectively. The next example also builds
the mesh shown in Figure 11.1 except this time using DataSetBuilderExplicitIterative.

Example 11.5: Creating an explicit mesh with DataSetBuilderExplicitIterative.
1 vtkm :: cont :: DataSetBuilderExplicitIterative dataSetBuilder ;

142 Chapter 11. Data Sets

DRAFT

11.1. Building Data Sets

2
3 dataSetBuilder . AddPoint (1.1 , 0.0 , 0.0);
4 dataSetBuilder . AddPoint (0.2 , 0.4 , 0.0);
5 dataSetBuilder . AddPoint (0.9 , 0.6 , 0.0);
6 dataSetBuilder . AddPoint (1.4 , 0.5 , 0.0);
7 dataSetBuilder . AddPoint (1.8 , 0.3 , 0.0);
8 dataSetBuilder . AddPoint (0.4 , 1.0 , 0.0);
9 dataSetBuilder . AddPoint (1.0 , 1.2 , 0.0);

10 dataSetBuilder . AddPoint (1.5 , 0.9 , 0.0);
11
12 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_TRIANGLE);
13 dataSetBuilder . AddCellPoint (0);
14 dataSetBuilder . AddCellPoint (2);
15 dataSetBuilder . AddCellPoint (1);
16
17 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_QUAD);
18 dataSetBuilder . AddCellPoint (0);
19 dataSetBuilder . AddCellPoint (4);
20 dataSetBuilder . AddCellPoint (3);
21 dataSetBuilder . AddCellPoint (2);
22
23 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_TRIANGLE);
24 dataSetBuilder . AddCellPoint (1);
25 dataSetBuilder . AddCellPoint (2);
26 dataSetBuilder . AddCellPoint (5);
27
28 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_POLYGON);
29 dataSetBuilder . AddCellPoint (2);
30 dataSetBuilder . AddCellPoint (3);
31 dataSetBuilder . AddCellPoint (7);
32 dataSetBuilder . AddCellPoint (6);
33 dataSetBuilder . AddCellPoint (5);
34
35 dataSetBuilder . AddCell (vtkm :: CELL_SHAPE_TRIANGLE);
36 dataSetBuilder . AddCellPoint (3);
37 dataSetBuilder . AddCellPoint (4);
38 dataSetBuilder . AddCellPoint (7);
39
40 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create ();

11.1.4 Add Fields

In addition to creating the geometric structure of a data set, it is usually important to add fields to the data.
Fields describe numerical data associated with the topological elements in a cell. They often represent a physical
quantity (such as temperature, mass, or volume fraction) but can also represent other information (such as
indices or classifications).

The easiest way to define fields in a data set is to use the vtkm::cont::DataSetFieldAdd class. This class works
on DataSets of any type. It has methods named AddPointField and AddCellField that define a field for either
points or cells. Every field must have an associated field name.

Both AddPointField and AddCellField are overloaded to accept arrays of data in different structures. Field
arrays can be passed as standard C arrays or as std::vectors, in which case the data are copied. Field arrays
can also be passed in a ArrayHandle, in which case the data are not copied.

The following (somewhat contrived) example defines fields for a uniform grid that identify which points and cells
are on the boundary of the mesh.

Example 11.6: Adding fields to a DataSet.
1 // Make a simple structured data set.

Chapter 11. Data Sets 143

DRAFT

11.2. Cell Sets

2 const vtkm :: Id3 pointDimensions (20 , 20, 10);
3 const vtkm :: Id3 cellDimensions = pointDimensions - vtkm :: Id3 (1, 1, 1);
4 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
5 vtkm :: cont :: DataSet dataSet = dataSetBuilder . Create (pointDimensions);
6
7 // This is the helper object to add fields to a data set.
8 vtkm :: cont :: DataSetFieldAdd dataSetFieldAdd ;
9

10 // Create a field that identifies points on the boundary .
11 std :: vector <vtkm :: UInt8 > boundaryPoints ;
12 for (vtkm :: Id zIndex = 0; zIndex < pointDimensions [2]; zIndex ++)
13 {
14 for (vtkm :: Id yIndex = 0; yIndex < pointDimensions [1]; yIndex ++)
15 {
16 for (vtkm :: Id xIndex = 0; xIndex < pointDimensions [0]; xIndex ++)
17 {
18 if ((xIndex == 0) || (xIndex == pointDimensions [0] - 1) || (yIndex == 0) ||
19 (yIndex == pointDimensions [1] - 1) || (zIndex == 0) ||
20 (zIndex == pointDimensions [2] - 1))
21 {
22 boundaryPoints . push_back (1);
23 }
24 else
25 {
26 boundaryPoints . push_back (0);
27 }
28 }
29 }
30 }
31
32 dataSetFieldAdd . AddPointField (dataSet , " boundary_points ", boundaryPoints);
33
34 // Create a field that identifies cells on the boundary .
35 std :: vector <vtkm :: UInt8 > boundaryCells ;
36 for (vtkm :: Id zIndex = 0; zIndex < cellDimensions [2]; zIndex ++)
37 {
38 for (vtkm :: Id yIndex = 0; yIndex < cellDimensions [1]; yIndex ++)
39 {
40 for (vtkm :: Id xIndex = 0; xIndex < cellDimensions [0]; xIndex ++)
41 {
42 if ((xIndex == 0) || (xIndex == cellDimensions [0] - 1) || (yIndex == 0) ||
43 (yIndex == cellDimensions [1] - 1) || (zIndex == 0) ||
44 (zIndex == cellDimensions [2] - 1))
45 {
46 boundaryCells . push_back (1);
47 }
48 else
49 {
50 boundaryCells . push_back (0);
51 }
52 }
53 }
54 }
55
56 dataSetFieldAdd . AddCellField (dataSet , " boundary_cells ", boundaryCells);

11.2 Cell Sets

A cell set determines the topological structure of the data in a data set. Fundamentally, any cell set is a
collection of cells, which typically (but not always) represent some region in space. 3D cells are made up of

144 Chapter 11. Data Sets

DRAFT

11.2. Cell Sets

points, edges, and faces. (2D cells have only points and edges, and 1D cells have only points.) Figure 11.2 shows
the relationship between a cell’s shape and these topological elements. The arrangement of these points, edges,
and faces is defined by the shape of the cell, which prescribes a specific ordering of each. The basic cell shapes
provided by VTK-m are discussed in detail in Section 14.1 starting on page 205.

Points

Edges
Face

Figure 11.2: The relationship between a cell shape and its topological elements (points, edges, and faces).

There are multiple ways to express the connections of a cell set, each with different benefits and restrictions.
These different cell set types are managed by different cell set classes in VTK-m. All VTK-m cell set classes
inherit from vtkm::cont::CellSet. The two basic types of cell sets are structured and explicit, and there are
several variations of these types.

11.2.1 Structured Cell Sets

A vtkm::cont::CellSetStructured defines a 1-, 2-, or 3-dimensional grid of points with lines, quadrilaterals,
or hexahedra, respectively, connecting them. The topology of a CellSetStructured is specified by simply
providing the dimensions, which is the number of points in the i, j, and k directions of the grid of points. The
number of points is implicitly i× j× k and the number of cells is implicitly (i− 1)× (j− 1)× (k− 1) (for 3D
grids). Figure 11.3 demonstrates this arrangement.

i

j

k

Cell

Point

Figure 11.3: The arrangement of points and cells in a 3D structured grid.

The big advantage of using vtkm::cont::CellSetStructured to define a cell set is that it is very space efficient

Chapter 11. Data Sets 145

DRAFT

11.2. Cell Sets

because the entire topology can be defined by the three integers specifying the dimensions. Also algorithms
can be optimized for CellSetStructured’s regular nature. However, CellSetStructured’s strictly regular grid
structure also limits its applicability. A structured cell set can only be a dense grid of lines, quadrilaterals, or
hexahedra. It cannot represent irregular data well.

Many data models in other software packages, such as the one for VTK, make a distinction between uniform,
rectilinear, and curvilinear grids. VTK-m’s cell sets do not. All three of these grid types are represented by
CellSetStructured. This is because in a VTK-m data set the cell set and the coordinate system are defined
independently and used interchangeably. A structured cell set with uniform point coordinates makes a uniform
grid. A structured cell set with point coordinates defined irregularly along coordinate axes makes a rectilinear
grid. And a structured cell set with arbitrary point coordinates makes a curvilinear grid. The point coordinates
are defined by the data set’s coordinate system, which is discussed in Section 11.4 starting on page 149.

11.2.2 Explicit Cell Sets

A vtkm::cont::CellSetExplicit defines an irregular collection of cells. The cells can be of different types and
connected in arbitrary ways. This is done by explicitly providing for each cell a sequence of points that defines
the cell.

An explicit cell set is defined with a minimum of three arrays. The first array identifies the shape of each cell.
(Cell shapes are discussed in detail in Section 14.1 starting on page 205.) The second array identifies how many
points are in each cell. The third array has a sequence of point indices that make up each cell. Figure 11.4 shows
a simple example of an explicit cell set.

0

1
2

3
4

5
6

7

0 1

2

3

4

Connectivity
0
2
1
0
4
3
2
1
2
5
2
3
7
6
5
3
4
7

Cell 0
Cell 1
Cell 2
Cell 3
Cell 4

vtk::CELL_SHAPE_TRIANGLE
vtk::CELL_SHAPE_QUAD
vtk::CELL_SHAPE_TRIANGLE
vtk::CELL_SHAPE_POLYGON
vtk::CELL_SHAPE_TRIANGLE

Shape
3

Num Indices

4
3
5
3

Figure 11.4: Example of cells in a CellSetExplict and the arrays that define them.

An explicit cell set may also have other topological arrays such as an array of offsets of each cell into the
connectivity array or an array of cells incident on each point. Although these arrays can be provided, they are
optional and can be internally derived from the shape, num indices, and connectivity arrays.

vtkm::cont::ExplicitCellSet is a powerful representation for a cell set because it can represent an arbitrary
collection of cells. However, because all connections must be explicitly defined, ExplicitCellSet requires a
significant amount of memory to represent the topology.

146 Chapter 11. Data Sets

DRAFT

11.2. Cell Sets

An important specialization of an explicit cell set is vtkm::cont::CellSetSingleType. CellSetSingleType is
an explicit cell set constrained to contain cells that all have the same shape and all have the same number of
points. So for example if you are creating a surface that you know will contain only triangles, CellSetSingleType
is a good representation for these data.

Using CellSetSingleType saves memory because the array of cell shapes and the array of point counts no longer
need to be stored. CellSetSingleType also allows VTK-m to skip some processing and other storage required
for general explicit cell sets.

11.2.3 Cell Set Permutations

A vtkm::cont::CellSetPermutation rearranges the cells of one cell set to create another cell set. This re-
structuring of cells is not done by copying data to a new structure. Rather, CellSetPermutation establishes a
look-up from one cell structure to another. Cells are permuted on the fly while algorithms are run.

A CellSetPermutation is established by providing a mapping array that for every cell index provides the
equivalent cell index in the cell set being permuted. CellSetPermutation is most often used to mask out cells
in a data set so that algorithms will skip over those cells when running.

Although CellSetPermutation can mask cells, it cannot mask points. All points from the original cell set
are available in the permuted cell set regardless of whether they are used.

Did you know?

The following example uses vtkm::cont::CellSetPermutation with a counting array to expose every tenth
cell. This provides a simple way to subsample a data set.

Example 11.7: Subsampling a data set with CellSetPermutation.
1 // Create a simple data set.
2 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
3 vtkm :: cont :: DataSet originalDataSet = dataSetBuilder . Create (vtkm :: Id3 (33 , 33, 26));
4 vtkm :: cont :: CellSetStructured <3> originalCellSet ;
5 originalDataSet . GetCellSet (). CopyTo (originalCellSet);
6
7 // Create a permutation array for the cells . Each value in the array refers
8 // to a cell in the original cell set. This particular array selects every
9 // 10 th cell.

10 vtkm :: cont :: ArrayHandleCounting <vtkm ::Id > permutationArray (0, 10, 2560);
11
12 // Create a permutation of that cell set containing only every 10 th cell.
13 vtkm :: cont :: CellSetPermutation <vtkm :: cont :: CellSetStructured <3>,
14 vtkm :: cont :: ArrayHandleCounting <vtkm ::Id >>
15 permutedCellSet (permutationArray , originalCellSet);

11.2.4 Dynamic Cell Sets

vtkm::cont::DataSet must hold an arbitrary collection of vtkm::cont::CellSet objects, which it cannot do
while knowing their types at compile time. To manage storing CellSets without knowing their types, DataSet
actually holds references using vtkm::cont::DynamicCellSet.

DynamicCellSet is similar in nature to VariantArrayHandle except that it, of course, holds CellSets instead
of ArrayHandles. The interface for the two classes is similar, and you should review the documentation for
VariantArrayHandle (in Chapter 10 starting on page 133) to understand DynamicCellSet.

Chapter 11. Data Sets 147

DRAFT

11.3. Fields

vtkm::cont::DynamicCellSet has a method named CastToBase that returns a const reference to the held cell
set as the abstract CellSet class. This can be used to easily access the virtual methods in the CellSet interface.
You can also create a new instance of a cell set with the same type using the DynamicCellSet::NewInstance
method.

The DynamicCellSet::IsType method can be used to determine whether the cell set held in the dynamic cell
set is of a given type. If the cell set type is known, DynamicCellSet::Cast can be used to safely downcast the
cell set object, or DynamicCellSet::CopyTo can be used to safely copy to a reference of the appropriate type.

When a typed version of the cell set stored in the DynamicCellSet is needed but the type is not known, which
happens regularly in the internal workings of VTK-m, the DynamicCellSet::CastAndCall method can be used
to make this transition. CastAndCall works by taking a functor and calls it with the appropriately cast cell set
object.

The CastAndCall method works by attempting to cast to a known set of types. This set of types used is defined by
the macro VTKM DEFAULT CELL SET LIST TAG, which is declared in vtkm/cont/CellSetListTag.h. This list can
be overridden globally by defining the VTKM DEFAULT CELL SET LIST TAG macro before any VTK-m headers
are included.

The set of types used in a CastAndCall can also be changed only for a particular instance of a dynamic cell set
by calling its ResetCellSetList. This method takes a list of cell types and returns a new variant array handle
of a slightly different type that will use this new list of cells for dynamic casting.

11.2.5 Blocks and Assemblies

Rather than just one cell set, a vtkm::cont::DataSet can hold multiple cell sets. This can be used to construct
multiblock data structures or assemblies of parts. Multiple cell sets can also be used to represent subsets of the
data with particular properties such as all cells filled with a material of a certain type. Or these multiple cells
might represent particular features in the data, such as the set of faces representing a boundary in the simulation.

11.2.6 Zero Cell Sets

It is also possible to construct a vtkm::cont::DataSet that contains no cell set objects whatsoever. This can
be used to manage data that does not contain any topological structure. For example, a collection of series that
come from columns in a table could be stored as multiple fields in a data set with no cell set.

11.3 Fields

A field on a data set provides a value on every point in space on the mesh. Fields are often used to describe
physical properties such as pressure, temperature, mass, velocity, and much more. Fields are represented in a
VTK-m data set as an array where each value is associated with a particular element type of a mesh (such as
points or cells). This association of field values to mesh elements and the structure of the cell set determines
how the field is interpolated throughout the space of the mesh.

Fields are manged by the vtkm::cont::Field class. Field holds its data with a VariantArrayHandle, which
itself is a container for an ArrayHandleVirtual. Field also maintains the association and, optionally, the name
of a cell set for which the field is valid.

The data array can be retrieved as a VariantArrayHandle using the GetData method of Field. Field also has
a convenience method named GetRange that finds the range of values stored in the field array. The returned
value of GetRange is an ArrayHandle containing vtkm::Range values. The ArrayHandle will have as many

148 Chapter 11. Data Sets

DRAFT

11.4. Coordinate Systems

values as components in the field. So, for example, calling GetRange on a scalar field will return an ArrayHandle
with exactly 1 entry in it. Calling GetRange on a field of 3D vectors will return an ArrayHandle with exactly 3
entries corresponding to each of the components in the range.

11.4 Coordinate Systems

A coordinate system determines the location of a mesh’s elements in space. The spatial location is described
by providing a 3D vector at each point that gives the coordinates there. The point coordinates can then be
interpolated throughout the mesh.

Coordinate systems are managed by the vtkm::cont::CoordinateSystem class. In actuality, a coordinate
system is just a field with a special meaning, and so the CoordinateSystem class inherits from the Field class.
CoordinateSystem constrains the field to be associated with points and typically has 3D floating point vectors
for values.

In addition to all the methods provided by the Field superclass, the CoordinateSystem also provides a Get-
Bounds convenience method that returns a vtkm::Bounds object giving the spatial bounds of the coordinate
system.

It is typical for a DataSet to have one coordinate system defined, but it is possible to define multiple coordinate
systems. This is helpful when there are multiple ways to express coordinates. For example, positions in geographic
may be expressed as Cartesian coordinates or as latitude-longitude coordinates. Both are valid and useful in
different ways.

It is also valid to have a DataSet with no coordinate system. This is useful when the structure is not rooted in
physical space. For example, if the cell set is representing a graph structure, there might not be any physical
space that has meaning for the graph.

11.5 Multi-Block Data

A multi-block data set, implemented with vtkm::cont::MultiBlock, comprises a set of vtkm::cont::DataSet
objects. The MultiBlock interface allows for adding, inserting, and replacing DataSets in its list with the
AddBlock (or AddBlocks), InsertBlock, and ReplaceBlock methods, respectively. The GetBlocks method
returns a list of DataSet objects in a std::vector.

The following example creates a vtkm::cont::MultiBlock containing two uniform grid data sets.

Example 11.8: Creating a MultiBlock.
1 // Create two uniform data sets
2 vtkm :: cont :: DataSetBuilderUniform dataSetBuilder ;
3
4 vtkm :: cont :: DataSet dataSet1 = dataSetBuilder . Create (vtkm :: Id3 (10 , 10, 10));
5 vtkm :: cont :: DataSet dataSet2 = dataSetBuilder . Create (vtkm :: Id3 (30 , 30, 30));
6
7 // Add the datasets to a multi block
8 vtkm :: cont :: MultiBlock multiBlock ;
9 multiBlock . AddBlock (dataSet1);

10 multiBlock . AddBlock (dataSet2);

It is always possible to retrieve the independent blocks in a MultiBlock, from which you can iterate and get
information about the data. However, VTK-m provides several helper functions to collect metadata information
about the collection as a whole. However, MultiBlock also offers several helper methods to collect metadata
information about the collection as a whole. Each function is in its own respective header file.

Chapter 11. Data Sets 149

DRAFT

11.5. Multi-Block Data

vtkm::cont::BoundsCompute Queries the bounds of all the DataSets contained in the given MultiBlock and
returns a vtkm::Bounds object encompassing the conglomerate data.

vtkm::cont::BoundsGlobalCompute An MPI version of BoundsCompute that also finds the bounds around the
conglomerate data across all processes. All MPI processes must call this method.

vtkm::cont::FieldRangeCompute Given a MultiBlock, the name of a field, and (optionally) an association of
the field, returns the minimum and maximum value of that field over all the contained blocks. The result
is returned in a ArrayHandle of vtkm::Range objects in the same manner as the vtkm::cont::Field::-
GetRange method (see Section 11.3).

vtkm::cont::FieldRangeGlobalCompute An MPI version of FieldRangeCompute that also finds the field
ranges over all blocks on all processes. All MPI processes must call this method.

The following example illustrates a spatial bounds query and a field range query on a vtkm::MultiBlock.

Example 11.9: Queries on a MultiBlock.
1 // Get the bounds of a multi - block data set
2 vtkm :: Bounds bounds = vtkm :: cont :: BoundsCompute (multiBlock);
3
4 // Get the overall min/max of a field named " cellvar "
5 vtkm :: cont :: ArrayHandle <vtkm :: Range > cellvarRanges =
6 vtkm :: cont :: FieldRangeCompute (multiBlock , " cellvar ");
7
8 // Assuming the " cellvar " field has scalar values , then cellvarRanges has one entry
9 vtkm :: Range cellvarRange = cellvarRanges . GetPortalConstControl (). Get (0);

The aforementioned functions for querying a MultiBlock object also work on DataSet objects. This is
particularly useful with the BoundsGlobalCompute and FieldRangeGlobalCompute to manage distributed
parallel objects.

Did you know?

Filters can be executed on MultiBlock objects in a similar way they are executed on DataSet objects. In both
cases, the Execute method is called on the filter giving data object as an argument.

Example 11.10: Applying a filter to multi block data.
1 vtkm :: filter :: CellAverage cellAverage ;
2 cellAverage . SetActiveField (" pointvar ", vtkm :: cont :: Field :: Association :: POINTS);
3
4 vtkm :: cont :: MultiBlock results = cellAverage . Execute (multiBlock);

[Need to re-add this if Policies survive the transition to dynamic objects.]

150 Chapter 11. Data Sets

DRAFTPart III

Developing with VTK-m

DRAFT

DRAFT
CHAPTER

TWELVE

WORKLETS

The simplest way to implement an algorithm in VTK-m is to create a worklet. A worklet is fundamentally a
functor that operates on an element of data. Thus, it is a class or struct that has an overloaded parenthesis
operator (which must be declared const for thread safety). However, worklets are also embedded with a sig-
nificant amount of metadata on how the data should be managed and how the execution should be structured.
This chapter explains the basic mechanics of defining and using worklets.

12.1 Worklet Types

Different operations in visualization can have different data access patterns, perform different execution flow,
and require different provisions. VTK-m manages these different accesses, execution, and provisions by grouping
visualization algorithms into common classes of operation and supporting each class with its own worklet type.

Each worklet type has a generic superclass that worklets of that particular type must inherit. This makes the
type of the worklet easy to identify. The following list describes each worklet type provided by VTK-m and the
superclass that supports it. Details on how to create worklets of each type are given in Section 12.5. It is also
possible to create new worklet types in VTK-m. This is an advanced topic covered in Chapter 23.

Field Map A worklet deriving vtkm::worklet::WorkletMapField performs a basic mapping operation that
applies a function (the operator in the worklet) on all the field values at a single point or cell and creates a
new field value at that same location. Although the intention is to operate on some variable over a mesh,
a WorkletMapField may actually be applied to any array. Thus, a field map can be used as a basic map
operation.

Topology Map A worklet deriving vtkm::worklet::WorkletMapTopology or one of its sibling classes performs
a mapping operation that applies a function (the operator in the worklet) on all elements of a particular
type (such as points or cells) and creates a new field for those elements. The basic operation is similar to
a field map except that in addition to access fields being mapped on, the worklet operation also has access
to incident fields.
There are multiple convenience classes available for the most common types of topology mapping. vtkm::-
worklet::WorkletMapPointToCell calls the worklet operation for each cell and makes every incident point
available. This type of map also has access to cell structures and can interpolate point fields. Likewise,
vtkm::worklet::WorkletMapCellToPoint calls the worklet operation for each point and makes every
incident cell available.

Point Neighborhood A worklet deriving from vtkm::worklet::WorkletPointNeighborhood performs a
mapping operation that applies a function (the operator in the worklet) on all points of a structured

DRAFT

12.2. Dispatchers

mesh. The basic operation is similar to a field map except that in addition to having access to the point
being operated on, you can get the field values of nearby points within a neighborhood of a given size.
Point neighborhood worklets can only applied to structured cell sets.

Reduce by Key A worklet deriving vtkm::worklet::WorkletReduceByKey operates on an array of keys and
one or more associated arrays of values. When a reduce by key worklet is invoked, all identical keys are
collected and the worklet is called once for each unique key. Each worklet invocation is given a Vec-like
containing all values associated with the unique key. Reduce by key worklets are very useful for combining
like items such as shared topology elements or coincident points.

12.2 Dispatchers

Worklets are instantiated in the control environment and run in the execution environment. This means that
the control environment must have a means to invoke worklets that start running in the execution environment.

This invocation is done through a set of dispatcher objects. A dispatcher object is an object in the control
environment that has an instance of a worklet and can invoke that worklet with a set of arguments. There are
multiple types of dispatcher objects, each corresponding to a type of worklet object. All dispatcher objects have
at least one template parameter: the worklet class being invoked, which is always the first argument.

All dispatcher objects must be constructed with an instance of the worklet they are to invoke. If no worklet is
provided to the constructor, a new worklet object is created with the default constructor. Many worklets do not
require any state, so allowing the dispatcher to construct its own is fine. However, if the worklet holds some
parameters (e.g. a threshold value), then you will have to construct a worklet and pass it to a dispatcher as it
is created.

All dispatcher classes have a method named Invoke that launches the worklet in the execution environment.
The arguments to Invoke must match those expected by the worklet, which is specified by something called a
control signature. The expected arguments for worklets provided by VTK-m are documented in Section 12.3.
Also, for any worklet, the Invoke arguments can be gleaned from the control signature, which is described in
Section 12.4.1.

The following is a list of the dispatchers defined in VTK-m. The dispatcher classes correspond to the list of
worklet types specified in Section 12.1. Many examples of using these dispatchers are provided in Section 12.3.

vtkm::worklet::DispatcherMapField The dispatcher used in conjunction with a worklet that subclasses
vtkm::worklet::WorkletMapField. The dispatcher class has one template argument: the worklet type.

vtkm::worklet::DispatcherMapTopology The dispatcher used in conjunction with a worklet that subclasses
vtkm::worklet::WorkletMapTopology or one of its sibling classes (such as vtkm::worklet::WorkletMap-
PointToCell). The dispatcher class has one template argument: the worklet type.

vtkm::worklet::DispatcherPointNeighborhood The dispatcher used in conjunction with a worklet that sub-
classes vtkm::worklet::WorkletPointNeighborhood. The dispatcher class has one template argument:
the worklet type.

vtkm::worklet::DispatcherReduceByKey The dispatcher used in conjunction with a worklet that subclasses
vtkm::worklet::WorkletReduceByKey. The dispatcher class has one template argument: the worklet
type.

154 Chapter 12. Worklets

DRAFT

12.3. Provided Worklets

12.3 Provided Worklets

VTK-m comes with several worklet implementations. These worklet implementations for the most part provide
the underlying implementations of the filters described in Chapter 4. The easiest way to execute a filter is to run
it from the associated filter class. However, if your data is not in a vtkm::cont::DataSet structure or you have
knowledge of the specific data types used in the DataSet, it might be more efficient to run the worklet directly.
Note that many of the filters use multiple worklets under the covers to implement the full functionality.

The following example demonstrates using the simple vtkm::worklet::PointElevation worklet directly.

Example 12.1: Using the provided PointElevation worklet.
1 VTKM_CONT
2 vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > ComputeAirPressure (
3 vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault , 3>> pointCoordinates)
4 {
5 vtkm :: worklet :: PointElevation elevationWorklet ;
6
7 // Use the elevation worklet to estimate atmospheric pressure based on the
8 // height of the point coordinates . Atmospheric pressure is 101325 Pa at
9 // sea level and drops about 12 Pa per meter .

10 elevationWorklet . SetLowPoint (vtkm ::Vec <vtkm :: Float64 , 3 >(0.0 , 0.0 , 0.0));
11 elevationWorklet . SetHighPoint (vtkm ::Vec <vtkm :: Float64 , 3 >(0.0 , 0.0 , 2000.0));
12 elevationWorklet . SetRange (101325.0 , 77325.0);
13
14 vtkm :: worklet :: DispatcherMapField <vtkm :: worklet :: PointElevation >
15 elevationDispatcher (elevationWorklet);
16
17 vtkm :: cont :: ArrayHandle <vtkm :: FloatDefault > pressure ;
18
19 elevationDispatcher . Invoke (pointCoordinates , pressure);
20
21 return pressure ;
22 }

12.4 Creating Worklets

A worklet is created by implementing a class or struct with the following features.

1. The class must contain a functional type named ControlSignature, which specifies what arguments are
expected when invoking the class with a dispatcher in the control environment.

2. The class must contain a functional type named ExecutionSignature, which specifies how the data gets
passed from the arguments in the control environment to the worklet running in the execution environment.

3. The class must contain a type named InputDomain, which identifies which input parameter defines the
input domain of the data.

4. The class may define a scatter operation to override a 1:1 mapping from input to output.

5. The class must contain an implementation of the parenthesis operator, which is the method that is executed
in the execution environment. The parenthesis operator must be declared const.

6. The class must publicly inherit from a base worklet class that specifies the type of operation being per-
formed.

Figure 12.1 demonstrates all of the required components of a worklet.

Chapter 12. Worklets 155

DRAFT

12.4. Creating Worklets

De�nes dispatching method

De�nes how input arrays and structures are interpreted

De�nes how data are
assigned to threads

Speci�es domain argument (optional)

De�nes mapping from
input domain to output
domain (optional)

Algorithms are just functions that
run on a single instance of the input

Figure 12.1: Annotated example of a worklet declaration.

12.4.1 Control Signature

The control signature of a worklet is a functional type named ControlSignature. The function prototype
matches the calling specification used with the dispatcher Invoke function.

Example 12.2: A ControlSignature.
1 using ControlSignature = void (FieldIn inputVectors , FieldOut outputMagnitudes);

The return type of the function prototype is always void because the dispatcher Invoke functions do not return
values. The parameters of the function prototype are tags that identify the type of data that is expected to be
passed to invoke. ControlSignature tags are defined by the worklet type and the various tags are documented
more fully in Section 12.5.

By convention, ControlSignature tag names start with the base concept (e.g. Field or Topology) followed by
the domain (e.g. Point or Cell) followed by In or Out. For example, FieldPointIn would specify values for a
field on the points of a mesh that are used as input (read only). Although they should be there in most cases,
some tag names might leave out the domain or in/out parts if they are obvious or ambiguous.

12.4.2 Execution Signature

Like the control signature, the execution signature of a worklet is a functional type named ExecutionSignature.
The function prototype must match the parenthesis operator (described in Section 12.4.4) in terms of arity and
argument semantics.

Example 12.3: An ExecutionSignature.
1 using ExecutionSignature = _2(_1);

156 Chapter 12. Worklets

DRAFT

12.4. Creating Worklets

The arguments of the ExecutionSignature’s function prototype are tags that define where the data come from.
The most common tags are an underscore followed by a number, such as 1, 2, etc. These numbers refer back
to the corresponding argument in the ControlSignature. For example, 1 means data from the first control
signature argument, 2 means data from the second control signature argument, etc.

Unlike the control signature, the execution signature optionally can declare a return type if the parenthesis
operator returns a value. If this is the case, the return value should be one of the numeric tags (i.e. 1, 2,
etc.) to refer to one of the data structures of the control signature. If the parenthesis operator does not return
a value, then ExecutionSignature should declare the return type as void.

In addition to the numeric tags, there are other execution signature tags to represent other types of data. For
example, the WorkIndex tag identifies the instance of the worklet invocation. Each call to the worklet function
will have a unique WorkIndex. Other such tags exist and are described in the following section on worklet types
where appropriate.

12.4.3 Input Domain

All worklets represent data parallel operations that are executed over independent elements in some domain.
The type of domain is inherent from the worklet type, but the size of the domain is dependent on the data being
operated on. One of the arguments given to the dispatcher’s Invoke in the control environment must specify
the domain.

A worklet identifies the argument specifying the domain with a type alias named InputDomain. The InputDomain
must be aliased to one of the execution signature numeric tags (i.e. 1, 2, etc.). By default, the InputDomain
points to the first argument, but a worklet can override that to point to any argument.

Example 12.4: An InputDomain declaration.
1 using InputDomain = _1;

Different types of worklets can have different types of domain. For example a simple field map worklet has a
FieldIn argument as its input domain, and the size of the input domain is taken from the size of the associated
field array. Likewise, a worklet that maps topology has a CellSetIn argument as its input domain, and the size
of the input domain is taken from the cell set.

Specifying the InputDomain is optional. If it is not specified, the first argument is assumed to be the input
domain.

12.4.4 Worklet Operator

A worklet is fundamentally a functor that operates on an element of data. Thus, the algorithm that the worklet
represents is contained in or called from the parenthesis operator method.

Example 12.5: An overloaded parenthesis operator of a worklet.
1 template < typename T, vtkm :: IdComponent Size >
2 VTKM_EXEC T operator ()(const vtkm ::Vec <T, Size >& inVector) const
3 {

There are some constraints on the parenthesis operator. First, it must have the same arity as the Execu-
tionSignature, and the types of the parameters and return must be compatible. Second, because it runs in
the execution environment, it must be declared with the VTKM EXEC (or VTKM EXEC CONT) modifier. Third, the
method must be declared const to help preserve thread safety.

Chapter 12. Worklets 157

DRAFT

12.5. Worklet Type Reference

12.5 Worklet Type Reference

There are multiple worklet types provided by VTK-m, each designed to support a particular type of operation.
Section 12.1 gave a brief overview of each type of worklet. This section gives a much more detailed reference
for each of the worklet types including identifying the generic superclass that a worklet instance should derive,
listing the signature tags and their meanings, and giving an example of the worklet in use.

12.5.1 Field Map

A worklet deriving vtkm::worklet::WorkletMapField performs a basic mapping operation that applies a func-
tion (the operator in the worklet) on all the field values at a single point or cell and creates a new field value at
that same location. Although the intention is to operate on some variable over the mesh, a WorkletMapField
can actually be applied to any array.

A WorkletMapField subclass is invoked with a vtkm::worklet::DispatcherMapField. This dispatcher has one
template argument: the type of the worklet subclass.

A field map worklet supports the following tags in the parameters of its ControlSignature.

FieldIn This tag represents an input field. A FieldIn argument expects an ArrayHandle or a VariantAr-
rayHandle in the associated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a
single value out of this array.
The worklet’s InputDomain can be set to a FieldIn argument. In this case, the input domain will be the
size of the array.

FieldOut This tag represents an output field. A FieldOut argument expects an ArrayHandle or a VariantAr-
rayHandle in the associated parameter of the dispatcher’s Invoke. The array is resized before scheduling
begins, and each invocation of the worklet sets a single value in the array.

FieldInOut This tag represents field that is both an input and an output. A FieldInOut argument expects
an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke. Each
invocation of the worklet gets a single value out of this array, which is replaced by the resulting value after
the worklet completes.
The worklet’s InputDomain can be set to a FieldInOut argument. In this case, the input domain will be
the size of the array.

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 12.6 starting on page 181.

158 Chapter 12. Worklets

DRAFT

12.5. Worklet Type Reference

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet in-
vocation. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the
dispatcher’s Invoke. A vtkm::exec::AtomicArray object capable of performing atomic operations to the
entries in the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow
down the running of a parallel algorithm. Atomic arrays are discussed in detail in Section 12.7 starting on
page 184.

WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm::cont::CellSet in the associated parameter of the dispatcher’s Invoke. A connectivity object
capable of finding elements of one type that are incident on elements of a different type. Accessing whole
cell set connectivity is discussed in detail in Section 12.8.

ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 12.9 starting on page 189.

A field map worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 12.10).

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 12.10).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 23.2, but most users can get the information they
need through other signature tags.

Field maps most commonly perform basic calculator arithmetic, as demonstrated in the following example.

Example 12.6: Implementation and use of a field map worklet.
1 # include <vtkm/ worklet / DispatcherMapField .h>
2 # include <vtkm/ worklet / WorkletMapField .h>
3
4 # include <vtkm/cont/ ArrayHandle .h>
5 # include <vtkm/cont/ VariantArrayHandle .h>
6
7 # include <vtkm/ VecTraits .h>
8 # include <vtkm/ VectorAnalysis .h>
9

10 namespace vtkm
11 {
12 namespace worklet
13 {
14

Chapter 12. Worklets 159

DRAFT

12.5. Worklet Type Reference

15 struct Magnitude
16 {
17 class ComputeMagnitude : public vtkm :: worklet :: WorkletMapField
18 {
19 public :
20 using ControlSignature = void (FieldIn inputVectors , FieldOut outputMagnitudes);
21 using ExecutionSignature = _2(_1);
22
23 using InputDomain = _1;
24
25 template < typename T, vtkm :: IdComponent Size >
26 VTKM_EXEC T operator ()(const vtkm ::Vec <T, Size >& inVector) const
27 {
28 return vtkm :: Magnitude (inVector);
29 }
30 };
31
32 template < typename ValueType , typename Storage >
33 VTKM_CONT static vtkm :: cont :: ArrayHandle <
34 typename vtkm :: VecTraits <ValueType >:: ComponentType >
35 Run(const vtkm :: cont :: ArrayHandle <ValueType , Storage >& input)
36 {
37 using ComponentType = typename vtkm :: VecTraits <ValueType >:: ComponentType ;
38 vtkm :: cont :: ArrayHandle < ComponentType > output ;
39
40 vtkm :: worklet :: DispatcherMapField < ComputeMagnitude > dispatcher ;
41 dispatcher . Invoke (input , output);
42
43 return output ;
44 }
45 };
46
47 } // namespace worklet
48 } // namespace vtkm

Example 12.6 is using an informal but helpful convention where worklets are defined inside another class
that also contains a static method named Run that runs the worklet using a common set of operations.
The Run method helps make clear the intention and use of the worklet. This is especially important for
operations that require a series of worklet invocations that might be non-obvious.

Did you know?

Although simple, the WorkletMapField worklet type can be used (and abused) as a general parallel-
for/scheduling mechanism. In particular, the WorkIndex execution signature tag can be used to get a unique
index, the WholeArray* tags can be used to get random access to arrays, and the ExecObject control signature
tag can be used to pass execution objects directly to the worklet. Whole arrays and execution objects are talked
about in more detail in Sections 12.6 and 12.9, respectively, in more detail, but here is a simple example that
uses the random access of WholeArrayOut to make a worklet that copies an array in reverse order.

Example 12.7: Leveraging field maps and field maps for general processing.
1 namespace vtkm
2 {
3 namespace worklet
4 {
5
6 struct ReverseArrayCopy
7 {

160 Chapter 12. Worklets

DRAFT

12.5. Worklet Type Reference

8 struct PermuteArrayValues : vtkm :: worklet :: WorkletMapField
9 {

10 using ControlSignature = void (FieldIn inputArray , WholeArrayOut outputArray);
11 using ExecutionSignature = void (_1 , _2 , WorkIndex);
12 using InputDomain = _1;
13
14 template < typename InputType , typename OutputArrayPortalType >
15 VTKM_EXEC void operator ()(const InputType & inputValue ,
16 const OutputArrayPortalType & outputArrayPortal ,
17 vtkm :: Id workIndex) const
18 {
19 vtkm :: Id outIndex = outputArrayPortal . GetNumberOfValues () - workIndex - 1;
20 if (outIndex >= 0)
21 {
22 outputArrayPortal .Set(outIndex , inputValue);
23 }
24 else
25 {
26 this -> RaiseError (" Output array not sized correctly .");
27 }
28 }
29 };
30
31 template < typename T, typename Storage >
32 VTKM_CONT static vtkm :: cont :: ArrayHandle <T> Run(
33 const vtkm :: cont :: ArrayHandle <T, Storage >& inArray)
34 {
35 vtkm :: cont :: ArrayHandle <T> outArray ;
36 outArray . Allocate (inArray . GetNumberOfValues ());
37
38 vtkm :: worklet :: DispatcherMapField < PermuteArrayValues > dispatcher ;
39 dispatcher . Invoke (inArray , outArray);
40
41 return outArray ;
42 }
43 };
44
45 } // namespace worklet
46 } // namespace vtkm

12.5.2 Topology Map

A topology map performs a mapping that it applies a function (the operator in the worklet) on all the elements
of a DataSet of a particular type (i.e. point, edge, face, or cell). While operating on the element, the worklet
has access to data from all incident elements of another type.

There are several versions of topology maps that differ in what type of element being mapped from and what
type of element being mapped to. The subsequent sections describe these different variations of the topology
maps. Regardless of their names, they are all defined in vtkm/worklet/WorkletMapTopology.h and are all invoked
with vtkm::worklet::DispatcherMapTopology.

Point to Cell Map

A worklet deriving vtkm::worklet::WorkletMapPointToCell performs a mapping operation that applies a
function (the operator in the worklet) on all the cells of a DataSet. While operating on the cell, the worklet
has access to fields associated both with the cell and with all incident points. Additionally, the worklet can get
information about the structure of the cell and can perform operations like interpolation on it.

Chapter 12. Worklets 161

DRAFT

12.5. Worklet Type Reference

A WorkletMapPointToCell subclass is invoked with a vtkm::worklet::DispatcherMapTopology. This dis-
patcher has one template argument: the type of the worklet subclass.

A point to cell map worklet supports the following tags in the parameters of its ControlSignature.

CellSetIn This tag represents the cell set that defines the collection of cells the map will operate on. A
CellSetIn argument expects a CellSet subclass or a DynamicCellSet in the associated parameter of the
dispatcher’s Invoke. Each invocation of the worklet gets a cell shape tag. (Cell shapes and the operations
you can do with cells are discussed in Chapter 14.)
There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldInPoint This tag represents an input field that is associated with the points. A FieldInPoint argument
expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of points.
Each invocation of the worklet gets a Vec-like object containing the field values for all the points incident
with the cell being visited. The order of the entries is consistent with the defined order of the vertices for
the visited cell’s shape. If the field is a vector field, then the provided object is a Vec of Vecs.

FieldInCell This tag represents an input field that is associated with the cells. A FieldInCell argument
expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of cells. Each invocation of the worklet gets a single
value out of this array.

FieldOutCell This tag represents an output field, which is necessarily associated with cells. A FieldOut-
Cell argument expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the
dispatcher’s Invoke. The array is resized before scheduling begins, and each invocation of the worklet sets
a single value in the array.
FieldOut is an alias for FieldOutCell (since output arrays can only be defined on cells).

FieldInOutCell This tag represents field that is both an input and an output, which is necessarily associated
with cells. A FieldInOutCell argument expects an ArrayHandle or a VariantArrayHandle in the asso-
ciated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a single value out of this
array, which is replaced by the resulting value after the worklet completes.
FieldInOut is an alias for FieldInOutCell (since output arrays can only be defined on cells).

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 12.6 starting on page 181.

162 Chapter 12. Worklets

DRAFT

12.5. Worklet Type Reference

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet in-
vocation. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the
dispatcher’s Invoke. A vtkm::exec::AtomicArray object capable of performing atomic operations to the
entries in the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow
down the running of a parallel algorithm. Atomic arrays are discussed in detail in Section 12.7 starting on
page 184.

WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm::cont::CellSet in the associated parameter of the dispatcher’s Invoke. A connectivity object
capable of finding elements of one type that are incident on elements of a different type. Accessing whole
cell set connectivity is discussed in detail in Section 12.8.

ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 12.9 starting on page 189.

A field map worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

CellShape This tag produces a shape tag corresponding to the shape of the visited cell. (Cell shapes and the
operations you can do with cells are discussed in Chapter 14.) This is the same value that gets provided
if you reference the CellSetIn parameter.

PointCount This tag produces a vtkm::IdComponent equal to the number of points incident on the cell being
visited. The Vecs provided from a FieldInPoint parameter will be the same size as PointCount.

PointIndices This tag produces a Vec-like object of vtkm::Id s giving the indices for all incident points. Like
values from a FieldInPoint parameter, the order of the entries is consistent with the defined order of the
vertices for the visited cell’s shape.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 12.10).

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 12.10).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 23.2, but most users can get the information they
need through other signature tags.

Point to cell field maps are a powerful construct that allow you to interpolate point fields throughout the space
of the data set. See Chapter 14 for a description on how to work with the cell information provided to the
worklet. The following example provides a simple demonstration that finds the geometric center of each cell by
interpolating the point coordinates to the cell centers.

Chapter 12. Worklets 163

DRAFT

12.5. Worklet Type Reference

Example 12.8: Implementation and use of a map point to cell worklet.
1 # include <vtkm/ worklet / DispatcherMapTopology .h>
2 # include <vtkm/ worklet / WorkletMapTopology .h>
3
4 # include <vtkm/cont/ DataSet .h>
5 # include <vtkm/cont/ DataSetFieldAdd .h>
6
7 # include <vtkm/exec/ CellInterpolate .h>
8 # include <vtkm/exec/ ParametricCoordinates .h>
9

10 namespace vtkm
11 {
12 namespace worklet
13 {
14
15 struct CellCenter
16 {
17 class InterpolateCenter : public vtkm :: worklet :: WorkletMapPointToCell
18 {
19 public :
20 using ControlSignature = void (CellSetIn cellSet ,
21 FieldInPoint inputPointField ,
22 FieldOut outputCellField);
23 using ExecutionSignature = _3(_1 , PointCount , _2);
24
25 using InputDomain = _1;
26
27 template < typename CellShape , typename InputPointFieldType >
28 VTKM_EXEC typename InputPointFieldType :: ComponentType operator ()(
29 CellShape shape ,
30 vtkm :: IdComponent numPoints ,
31 const InputPointFieldType & inputPointField) const
32 {
33 vtkm ::Vec <vtkm :: FloatDefault , 3> parametricCenter =
34 vtkm :: exec :: ParametricCoordinatesCenter (numPoints , shape , *this);
35 return vtkm :: exec :: CellInterpolate (
36 inputPointField , parametricCenter , shape , *this);
37 }
38 };
39
40 template < typename CellSetType , typename ValueType , typename StorageType >
41 VTKM_CONT static vtkm :: cont :: ArrayHandle <ValueType > Run(
42 const CellSetType & cellSet ,
43 const vtkm :: cont :: ArrayHandle <ValueType , StorageType >& inPointField)
44 {
45 vtkm :: cont :: ArrayHandle <ValueType > outCellField ;
46
47 vtkm :: worklet :: DispatcherMapTopology <
48 vtkm :: worklet :: CellCenter :: InterpolateCenter >
49 dispatcher ;
50 dispatcher . Invoke (cellSet , inPointField , outCellField);
51
52 return outCellField ;
53 }
54 };
55
56 } // namespace worklet
57 } // namespace vtkm

164 Chapter 12. Worklets

DRAFT

12.5. Worklet Type Reference

Cell To Point Map

A worklet deriving vtkm::worklet::WorkletMapCellToPoint performs a mapping operation that applies a
function (the operator in the worklet) on all the points of a DataSet. While operating on the point, the worklet
has access to fields associated both with the point and with all incident cells.

A WorkletMapCellToPoint subclass is invoked with a vtkm::worklet::DispatcherMapTopology. This dis-
patcher has one template argument: the type of the worklet subclass.

A cell to point map worklet supports the following tags in the parameters of its ControlSignature.

CellSetIn This tag represents the cell set that defines the collection of points the map will operate on. A
CellSetIn argument expects a CellSet subclass or a DynamicCellSet in the associated parameter of the
dispatcher’s Invoke.
There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldInCell This tag represents an input field that is associated with the cells. A FieldInCell argument
expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of cells.
Each invocation of the worklet gets a Vec-like object containing the field values for all the cells incident
with the point being visited. The order of the entries is arbitrary but will be consistent with the values of
all other FieldInCell arguments for the same worklet invocation. If the field is a vector field, then the
provided object is a Vec of Vecs.

FieldInPoint This tag represents an input field that is associated with the points. A FieldInPoint argument
expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of points. Each invocation of the worklet gets a single
value out of this array.

FieldOutPoint This tag represents an output field, which is necessarily associated with points. A FieldOut-
Point argument expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the
dispatcher’s Invoke. The array is resized before scheduling begins, and each invocation of the worklet sets
a single value in the array.
FieldOut is an alias for FieldOutPoint (since output arrays can only be defined on points).

FieldInOutPoint This tag represents field that is both an input and an output, which is necessarily associated
with points. A FieldInOutPoint argument expects an ArrayHandle or a VariantArrayHandle in the
associated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a single value out of
this array, which is replaced by the resulting value after the worklet completes.
FieldInOut is an alias for FieldInOutPoint (since output arrays can only be defined on points).

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

Chapter 12. Worklets 165

DRAFT

12.5. Worklet Type Reference

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 12.6 starting on page 181.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet in-
vocation. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the
dispatcher’s Invoke. A vtkm::exec::AtomicArray object capable of performing atomic operations to the
entries in the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow
down the running of a parallel algorithm. Atomic arrays are discussed in detail in Section 12.7 starting on
page 184.

WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm::cont::CellSet in the associated parameter of the dispatcher’s Invoke. A connectivity object
capable of finding elements of one type that are incident on elements of a different type. Accessing whole
cell set connectivity is discussed in detail in Section 12.8.

ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 12.9 starting on page 189.

A field map worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

CellCount This tag produces a vtkm::IdComponent equal to the number of cells incident on the point being
visited. The Vecs provided from a FieldInCell parameter will be the same size as CellCount.

CellIndices This tag produces a Vec-like object of vtkm::Id s giving the indices for all incident cells. The
order of the entries is arbitrary but will be consistent with the values of all other FieldInCell arguments
for the same worklet invocation.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 12.10).

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 12.10).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 23.2, but most users can get the information they
need through other signature tags.

Cell to point field maps are typically used for converting fields associated with cells to points so that they can be
interpolated. The following example does a simple averaging, but you can also implement other strategies such
as a volume weighted average.

166 Chapter 12. Worklets

DRAFT

12.5. Worklet Type Reference

Example 12.9: Implementation and use of a map cell to point worklet.
1 # include <vtkm/ worklet / DispatcherMapTopology .h>
2 # include <vtkm/ worklet / WorkletMapTopology .h>
3
4 # include <vtkm/cont/ DataSet .h>
5 # include <vtkm/cont/ DataSetFieldAdd .h>
6 # include <vtkm/cont/ DynamicCellSet .h>
7 # include <vtkm/cont/ Field .h>
8 # include <vtkm/cont/ VariantArrayHandle .h>
9

10 namespace vtkm
11 {
12 namespace worklet
13 {
14
15 struct ConvertCellFieldsToPointFields
16 {
17 class AverageCellField : public vtkm :: worklet :: WorkletMapCellToPoint
18 {
19 public :
20 using ControlSignature = void (CellSetIn cellSet ,
21 FieldInCell inputCellField ,
22 FieldOut outputPointField);
23 using ExecutionSignature = void (CellCount , _2 , _3);
24
25 using InputDomain = _1;
26
27 template < typename InputCellFieldType , typename OutputFieldType >
28 VTKM_EXEC void operator ()(vtkm :: IdComponent numCells ,
29 const InputCellFieldType & inputCellField ,
30 OutputFieldType & fieldAverage) const
31 {
32 // TODO: This trickery with calling DoAverage with an extra fabricated type
33 // is to handle when the dynamic type resolution provides combinations that
34 // are incompatible . On the todo list for VTK -m is to allow you to express
35 // types that are the same for different parameters of the control
36 // signature . When that happens , we can get rid of this hack.
37 using InputComponentType = typename InputCellFieldType :: ComponentType ;
38 this -> DoAverage (numCells ,
39 inputCellField ,
40 fieldAverage ,
41 vtkm :: ListTagBase < InputComponentType , OutputFieldType >());
42 }
43
44 private :
45 template < typename InputCellFieldType , typename OutputFieldType >
46 VTKM_EXEC void DoAverage (
47 vtkm :: IdComponent numCells ,
48 const InputCellFieldType & inputCellField ,
49 OutputFieldType & fieldAverage ,
50 vtkm :: ListTagBase < OutputFieldType , OutputFieldType >) const
51 {
52 fieldAverage = OutputFieldType (0);
53
54 for (vtkm :: IdComponent cellIndex = 0; cellIndex < numCells ; cellIndex ++)
55 {
56 fieldAverage = fieldAverage + inputCellField [cellIndex];
57 }
58
59 fieldAverage = fieldAverage / OutputFieldType (numCells);
60 }
61
62 template < typename T1 , typename T2 , typename T3 >
63 VTKM_EXEC void DoAverage (vtkm :: IdComponent , T1 , T2 , T3) const

Chapter 12. Worklets 167

DRAFT

12.5. Worklet Type Reference

64 {
65 this -> RaiseError (" Incompatible types for input and output .");
66 }
67 };
68
69 VTKM_CONT
70 static vtkm :: cont :: DataSet Run(const vtkm :: cont :: DataSet & inData)
71 {
72 vtkm :: cont :: DataSet outData ;
73
74 // Copy parts of structure that should be passed through .
75 for (vtkm :: Id cellSetIndex = 0; cellSetIndex < inData . GetNumberOfCellSets ();
76 cellSetIndex ++)
77 {
78 outData . AddCellSet (inData . GetCellSet (cellSetIndex));
79 }
80 for (vtkm :: Id coordSysIndex = 0;
81 coordSysIndex < inData . GetNumberOfCoordinateSystems ();
82 coordSysIndex ++)
83 {
84 outData . AddCoordinateSystem (inData . GetCoordinateSystem (coordSysIndex));
85 }
86
87 // Copy all fields , converting cell fields to point fields .
88 for (vtkm :: Id fieldIndex = 0; fieldIndex < inData . GetNumberOfFields ();
89 fieldIndex ++)
90 {
91 vtkm :: cont :: Field inField = inData . GetField (fieldIndex);
92 if (inField . GetAssociation () == vtkm :: cont :: Field :: Association :: CELL_SET)
93 {
94 vtkm :: cont :: VariantArrayHandle inFieldData = inField . GetData ();
95 vtkm :: cont :: DynamicCellSet inCellSet =
96 inData . GetCellSet (inField . GetAssocCellSet ());
97
98 vtkm :: cont :: VariantArrayHandle outFieldData = inFieldData . NewInstance ();
99 vtkm :: worklet :: DispatcherMapTopology < AverageCellField > dispatcher ;

100 dispatcher . Invoke (inCellSet , inFieldData , outFieldData);
101
102 vtkm :: cont :: DataSetFieldAdd :: AddCellField (
103 outData , inField . GetName (), outFieldData , inField . GetAssocCellSet ());
104 }
105 else
106 {
107 outData . AddField (inField);
108 }
109 }
110
111 return outData ;
112 }
113 };
114
115 } // namespace worklet
116 } // namespace vtkm

General Topology Maps

A worklet deriving vtkm::worklet::WorkletMapTopology performs a mapping operation that applies a function
(the operator in the worklet) on all the elements of a specified type from a DataSet. While operating on each
element, the worklet has access to fields associated both with that element and with all incident elements of a
different specified type.

168 Chapter 12. Worklets

DRAFT

12.5. Worklet Type Reference

The WorkletMapTopology class is a template with two template parameters. The first template parameter
specifies the “from” topology element, and the second template parameter specifies the “to” topology element.
The worklet is scheduled such that each instance is associated with a particular “to” topology element and has
access to incident “from” topology elements.

These from and to topology elements are specified with topology element tags, which are defined in the vtkm/-
TopologyElementTag.h header file. The available topology element tags are vtkm::TopologyElementTagCell,
vtkm::TopologyElementTagPoint, vtkm::TopologyElementTagEdge, and vtkm::TopologyElementTagFace,
which represent the cell, point, edge, and face elements, respectively.

WorkletMapTopology is a generic form of a topology map, and it can perform identically to the aforementioned
forms of topology map with the correct template parameters. For example,

vtkm::worklet::WorkletMapTopology <vtkm::TopologyElementTagPoint, vtkm::Topolo-
gyElementTagCell >

is equivalent to the vtkm::worklet::WorkletMapPointToCell class except the signature tags have different
names. The names used in the specific topology map superclasses (such as WorkletMapPointToCell) tend to
be easier to read and are thus preferable. However, the generic WorkletMapTopology is available for topology
combinations without a specific superclass or to support more general mappings in a worklet.

The general topology map worklet supports the following tags in the parameters of its ControlSignature, which
are equivalent to tags in the other topology maps but with different (more general) names.

CellSetIn This tag represents the cell set that defines the collection of elements the map will operate on. A
CellSetIn argument expects a CellSet subclass or a DynamicCellSet in the associated parameter of the
dispatcher’s Invoke. Each invocation of the worklet gets a cell shape tag. (Cell shapes and the operations
you can do with cells are discussed in Chapter 14.)
There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldInFrom This tag represents an input field that is associated with the “from” elements. A FieldInFrom ar-
gument expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s
Invoke. The size of the array must be exactly the number of “from” elements.
Each invocation of the worklet gets a Vec-like object containing the field values for all the “from” elements
incident with the “to” element being visited. If the field is a vector field, then the provided object is a Vec
of Vecs.

FieldInTo This tag represents an input field that is associated with the “to” element. A FieldInTo argument
expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke.
The size of the array must be exactly the number of cells. Each invocation of the worklet gets a single
value out of this array.

FieldOut This tag represents an output field, which is necessarily associated with “to” elements. A FieldOut ar-
gument expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s
Invoke. The array is resized before scheduling begins, and each invocation of the worklet sets a single
value in the array.

FieldInOut This tag represents field that is both an input and an output, which is necessarily associated
with “to” elements. A FieldInOut argument expects an ArrayHandle or a VariantArrayHandle in the
associated parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a single value out of
this array, which is replaced by the resulting value after the worklet completes.

Chapter 12. Worklets 169

DRAFT

12.5. Worklet Type Reference

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 12.6 starting on page 181.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet in-
vocation. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the
dispatcher’s Invoke. A vtkm::exec::AtomicArray object capable of performing atomic operations to the
entries in the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow
down the running of a parallel algorithm. Atomic arrays are discussed in detail in Section 12.7 starting on
page 184.

WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm::cont::CellSet in the associated parameter of the dispatcher’s Invoke. A connectivity object
capable of finding elements of one type that are incident on elements of a different type. Accessing whole
cell set connectivity is discussed in detail in Section 12.8.

ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 12.9 starting on page 189.

A general topology map worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

CellShape This tag produces a shape tag corresponding to the shape of the visited “to” element. (Cell shapes
and the operations you can do with cells are discussed in Chapter 14.) This is the same value that gets
provided if you reference the CellSetIn parameter.
If the “to” element is cells, the CellShape clearly will match the shape of each cell. Other elements will
have shapes to match their structures. Points have vertex shapes, edges have line shapes, and faces have
some type of polygonal shape.

FromCount This tag produces a vtkm::IdComponent equal to the number of “from” elements incident on the
“to” element being visited. The Vecs provided from a FieldInFrom parameter will be the same size as
FromCount.

FromIndices This tag produces a Vec-like object of vtkm::Id s giving the indices for all incident “from” ele-
ments. The order of the entries is consistent with the values of all other FieldInFrom arguments for the
same worklet invocation.

170 Chapter 12. Worklets

DRAFT

12.5. Worklet Type Reference

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 12.10).

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 12.10).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 23.2, but most users can get the information they
need through other signature tags.

12.5.3 Point Neighborhood

A worklet deriving vtkm::worklet::WorkletPointNeighborhood performs a mapping operation that applies a
function (the operator in the worklet) on all the points of a DataSet. While operating on the point, the worklet
has access to field values on nearby points within a neighborhood.

A WorkletPointNeighborhood subclass is invoked with a vtkm::worklet::DispatcherPointNeighborhood.
This dispatcher has one template argument: the type of the worklet subclass.

A point neighborhood worklet supports the following tags in the parameters of its ControlSignature.

CellSetIn This tag represents the cell set that defines the collection of points the map will operate on. A
CellSetIn argument expects a vtkm::cont::CellSetStructured object in the associated parameter of
the dispatcher’s Invoke. The object could also be stored in a DynamicCellSet, but it is an error to use
any object other than CellSetStructured.
There must be exactly one CellSetIn argument, and the worklet’s InputDomain must be set to this
argument.

FieldIn This tag represents an input field that is associated with the points. A FieldIn argument expects an
ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke. The size
of the array must be exactly the number of points. Each invocation of the worklet gets a single value out
of this array.

FieldInNeighborhood This tag represents an input field that is associated with the points. A FieldInNeigh-
borhood argument expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the
dispatcher’s Invoke. The size of the array must be exactly the number of points.
What differentiates FieldInNeighborhood from FieldIn is that FieldInNeighborhood allows the worklet
function to access the field value at the point it is visiting and the field values in the neighborhood around it.
Thus, instead of getting a single value out of the array, each invocation of the worklet gets a vtkm::exec::-
FieldNeighborhood object. FieldNeighborhood objects are described in the Neighborhood Information
section starting on page 173.

FieldOut This tag represents an output field, which is necessarily associated with points. A FieldOut argument
expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke.
The array is resized before scheduling begins, and each invocation of the worklet sets a single value in the
array.

Chapter 12. Worklets 171

DRAFT

12.5. Worklet Type Reference

FieldInOut This tag represents field that is both an input and an output, which is necessarily associated with
points. A FieldInOut argument expects an ArrayHandle or a VariantArrayHandle in the associated
parameter of the dispatcher’s Invoke. Each invocation of the worklet gets a single value out of this array,
which is replaced by the resulting value after the worklet completes.

WholeArrayIn This tag represents an array where all entries can be read by every worklet invocation. A
WholeArrayIn argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of reading from any place in the array is given to the worklet. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayOut This tag represents an array where any entry can be written by any worklet invocation. A
WholeArrayOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s Invoke.
An array portal capable of writing to any place in the array is given to the worklet. Developers should
take care when using writable whole arrays as introducing race conditions is possible. Whole arrays are
discussed in detail in Section 12.6 starting on page 181.

WholeArrayInOut This tag represents an array where any entry can be read or written by any worklet invocation.
A WholeArrayInOut argument expects an ArrayHandle in the associated parameter of the dispatcher’s
Invoke. An array portal capable of reading from or writing to any place in the array is given to the worklet.
Developers should take care when using writable whole arrays as introducing race conditions is possible.
Whole arrays are discussed in detail in Section 12.6 starting on page 181.

AtomicArrayInOut This tag represents an array where any entry can be read or written by any worklet in-
vocation. A AtomicArrayInOut argument expects an ArrayHandle in the associated parameter of the
dispatcher’s Invoke. A vtkm::exec::AtomicArray object capable of performing atomic operations to the
entries in the array is given to the worklet. Atomic arrays can help avoid race conditions but can slow
down the running of a parallel algorithm. Atomic arrays are discussed in detail in Section 12.7 starting on
page 184.

WholeCellSetIn This tag represents the connectivity of a cell set. A WholeCellSetIn argument expects a
vtkm::cont::CellSet in the associated parameter of the dispatcher’s Invoke. A connectivity object
capable of finding elements of one type that are incident on elements of a different type. Accessing whole
cell set connectivity is discussed in detail in Section 12.8.

ExecObject This tag represents an execution object that is passed directly from the control environment to the
worklet. A ExecObject argument expects a subclass of vtkm::exec::ExecutionObjectBase. Subclasses
of ExecutionObjectBase behave like a factory for objects that work on particular devices. They do this
by implementing a PrepareForExecution method that takes a device adapter tag and returns an object
that works on that device. That device-specific object is passed directly to the worklet. Execution objects
are discussed in detail in Section 12.9 starting on page 189.

A point neighborhood worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

Boundary This tag produces a vtkm::exec::arg::BoundaryState object, which provides information about
where the local neighborhood is in relationship to the full mesh. BoundaryState objects are described in
the Neighborhood Information section starting on page 173.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 12.10).

172 Chapter 12. Worklets

DRAFT

12.5. Worklet Type Reference

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 12.10).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 23.2, but most users can get the information they
need through other signature tags.

Neighborhood Information

As stated earlier in this section, what makes a WorkletPointNeighborhood worklet special is its ability to get
field information in a neighborhood surrounding a point rather than just the point itself. This is done using the
special FieldInNeighborhood ControlSignature tag. When you use this tag, rather than getting the single
field value for the point, you get a vtkm::exec::FieldNeighborhood object.

The FieldNeighborhood class (which has a single template argument of the array portal type values are stored in)
contains a Get method that retrieves a field value relative to the local neighborhood. FieldNeighborhood::Get
takes the i, j, k index of the point with respect to the local point. So, calling FieldNeighborhood::Get(0,0,0)
retrieves at the point being visited. Likewise, Get(-1,0,0) gets the value to the “left” of the point visited and
Get(1,0,0) gets the value to the “right.” FieldNeighborhood::Get is overloaded to accept the index as either
three separate vtkm::IdComponent values or a single vtkm::Vec <vtkm::IdComponent,3>.

Example 12.10: Retrieve neighborhood field value.
1 sum = sum + inputField .Get(i, j, k);

When performing operations on a neighborhood within the mesh, it is often important to know whether the
expected neighborhood is contained completely within the mesh or whether the neighborhood extends beyond
the borders of the mesh. This can be queried using a vtkm::exec::BoundaryState object, which is provided
when a Boundary tag is listed in the ExecutionSignature.

Generally, BoundaryState allows you to specify the size of the neighborhood at runtime. The neighborhood size
is specified by a radius. The radius specifies the number of items in each direction the neighborhood extends.
So, for example, a point neighborhood with radius 1 would contain a 3×3×3 neighborhood centered around the
point. Likewise, a point neighborhood with radius 2 would contain a 5×5×5 neighborhood centered around the
point. BoundaryState provides several methods to determine if the neighborhood is contained in the mesh.

MinNeighborIndices Given a radius for the neighborhood, returns a vtkm::Vec <vtkm::IdComponent,3> for
the “lower left” (minimum) index. If the visited point is in the middle of the mesh, the returned triplet
is the negative radius for all components. But if the visited point is near the mesh boundary, then the
minimum index will be clipped.
For example, if the visited point is at [5,5,5] and MinNeighborIndices(2) is called, then [−2,−2,−2] is
returned. However, if the visited point is at [0,1,2] and MinNeighborIndices(2) is called, then [0,−1,−2]
is returned.

MaxNeighborIndices Given a radius for the neighborhood, returns a vtkm::Vec <vtkm::IdComponent,3> for
the “upper right” (maximum) index. If the visited point is in the middle of the mesh, the returned triplet
is the negative radius for all components. But if the visited point is near the mesh boundary, then the
maximum index will be clipped.
For example, if the visited point is at [5,5,5] in a 103 mesh and MaxNeighborIndices(2) is called, then
[2,2,2] is returned. However, if the visited point is at [7,8,9] in the same mesh and MaxNeighborIndices(2)
is called, then [2,1,0] is returned.

Chapter 12. Worklets 173

DRAFT

12.5. Worklet Type Reference

InBoundary Given a radius for the neighborhood, returns true if the neighborhood is contained completely
within the boundary of the mesh, false otherwise.

InXBoundary Given a radius for the neighborhood, returns false if the neighborhood extends beyond the edge
of the mesh in the positive or negative X (I) direction, true otherwise.

InYBoundary Given a radius for the neighborhood, returns false if the neighborhood extends beyond the edge
of the mesh in the positive or negative Y (J) direction, true otherwise.

InZBoundary Given a radius for the neighborhood, returns false if the neighborhood extends beyond the edge
of the mesh in the positive or negative Z (K) direction, true otherwise.

The BoundaryState::MinNeighborIndices and BoundaryState::MaxNeighborIndices are particularly useful
for iterating over the valid portion of the neighborhood.

Example 12.11: Iterating over the valid portion of a neighborhood.
1 auto minIndices = boundary . MinNeighborIndices (this -> NumberOfLayers);
2 auto maxIndices = boundary . MaxNeighborIndices (this -> NumberOfLayers);
3
4 T sum = 0;
5 vtkm :: IdComponent size = 0;
6 for (vtkm :: IdComponent k = minIndices [2]; k <= maxIndices [2]; ++k)
7 {
8 for (vtkm :: IdComponent j = minIndices [1]; j <= maxIndices [1]; ++j)
9 {

10 for (vtkm :: IdComponent i = minIndices [0]; i <= maxIndices [0]; ++i)
11 {
12 sum = sum + inputField .Get(i, j, k);
13 ++ size;
14 }
15 }
16 }

Convolving Small Kernels

A common use case for point neighborhood worklets is to convolve a small kernel with a structured mesh. A
very simple example of this is averaging out the values the values within some distance to the central point. This
has the effect of smoothing out the field (although smoothing filters with better properties exist). The following
example shows a worklet that applies this simple “box” averaging.

Example 12.12: Implementation and use of a point neighborhood worklet.
1 # include <vtkm/ worklet / DispatcherPointNeighborhood .h>
2 # include <vtkm/ worklet / WorkletPointNeighborhood .h>
3
4 # include <vtkm/exec/ BoundaryState .h>
5 # include <vtkm/exec/ FieldNeighborhood .h>
6
7 # include <vtkm/cont/ DataSet .h>
8 # include <vtkm/cont/ DataSetFieldAdd .h>
9

10 namespace vtkm
11 {
12 namespace worklet
13 {
14
15 struct BoxBlur
16 {
17 class ApplyBoxKernel : public vtkm :: worklet :: WorkletPointNeighborhood

174 Chapter 12. Worklets

DRAFT

12.5. Worklet Type Reference

18 {
19 private :
20 vtkm :: IdComponent NumberOfLayers ;
21
22 public :
23 using ControlSignature = void (CellSetIn cellSet ,
24 FieldInNeighborhood inputField ,
25 FieldOut outputField);
26 using ExecutionSignature = _3(_2 , Boundary);
27
28 using InputDomain = _1;
29
30 ApplyBoxKernel (vtkm :: IdComponent kernelSize)
31 {
32 VTKM_ASSERT (kernelSize >= 3);
33 VTKM_ASSERT ((kernelSize % 2) == 1);
34
35 this -> NumberOfLayers = (kernelSize - 1) / 2;
36 }
37
38 template < typename InputFieldPortalType >
39 VTKM_EXEC typename InputFieldPortalType :: ValueType operator ()(
40 const vtkm :: exec :: FieldNeighborhood < InputFieldPortalType >& inputField ,
41 const vtkm :: exec :: BoundaryState & boundary) const
42 {
43 using T = typename InputFieldPortalType :: ValueType ;
44
45 auto minIndices = boundary . MinNeighborIndices (this -> NumberOfLayers);
46 auto maxIndices = boundary . MaxNeighborIndices (this -> NumberOfLayers);
47
48 T sum = 0;
49 vtkm :: IdComponent size = 0;
50 for (vtkm :: IdComponent k = minIndices [2]; k <= maxIndices [2]; ++k)
51 {
52 for (vtkm :: IdComponent j = minIndices [1]; j <= maxIndices [1]; ++j)
53 {
54 for (vtkm :: IdComponent i = minIndices [0]; i <= maxIndices [0]; ++i)
55 {
56 sum = sum + inputField .Get(i, j, k);
57 ++ size;
58 }
59 }
60 }
61
62 return static_cast <T >(sum / size);
63 }
64 };
65
66 template < typename CellSetType , typename ValueType , typename StorageType >
67 VTKM_CONT static vtkm :: cont :: ArrayHandle <ValueType > Run(
68 const CellSetType & cellSet ,
69 const vtkm :: cont :: ArrayHandle <ValueType , StorageType >& inPointField ,
70 vtkm :: IdComponent kernelSize)
71 {
72 vtkm :: cont :: ArrayHandle <ValueType > outCellField ;
73
74 vtkm :: worklet :: DispatcherPointNeighborhood <
75 vtkm :: worklet :: BoxBlur :: ApplyBoxKernel >
76 dispatcher { ApplyBoxKernel { kernelSize } };
77 dispatcher . Invoke (cellSet , inPointField , outCellField);
78
79 return outCellField ;
80 }
81 };

Chapter 12. Worklets 175

DRAFT

12.5. Worklet Type Reference

82
83 } // namespace worklet
84 } // namespace vtkm

12.5.4 Reduce by Key

A worklet deriving vtkm::worklet::WorkletReduceByKey operates on an array of keys and one or more asso-
ciated arrays of values. When a reduce by key worklet is invoked, all identical keys are collected and the worklet
is called once for each unique key. Each worklet invocation is given a Vec-like containing all values associated
with the unique key. Reduce by key worklets are very useful for combining like items such as shared topology
elements or coincident points.

0 2 1 0 4 1 1 4

2 4 6 8 1 2 3 4

4.7 9.7 9.2 1.3 7.9 6.7 5.3 8.1

1

6 2 3

9.2 6.7 5.3

Worklet Call 2

0

2 8

4.7 1.3

Worklet Call 1

2

4

9.7

Worklet Call 3

4

1 4

7.9 8.1

Worklet Call 4

Keys

Values 1

Values 2

Key

Values 1

Values 2

Figure 12.2: The collection of values for a reduce by key worklet.

Figure 12.2 show a pictorial representation of how VTK-m collects data for a reduce by key worklet. All calls to
a reduce by key worklet has exactly one array of keys. The key array in this example has 4 unique keys: 0, 1,
2, 4. These 4 unique keys will result in 4 calls to the worklet function. This example also has 2 arrays of values
associated with the keys. (A reduce by keys worklet can have any number of values arrays.)

Within the dispatch of the worklet, all these common keys will be collected with their associated values. The
parenthesis operator of the worklet will be called once per each unique key. The worklet call will be given a
Vec-like containing all values that have the key.

A WorkletReduceByKey subclass is invoked with a vtkm::worklet::DispatcherReduceByKey. This dispatcher
has one template argument: the type of the worklet subclass.

A reduce by key worklet supports the following tags in the parameters of its ControlSignature.

KeysIn This tag represents the input keys. A KeysIn argument expects a vtkm::worklet::Keys object in the
associated parameter of the dispatcher’s Invoke. The Keys object, which wraps around an ArrayHandle
containing the keys and manages the auxiliary structures for collecting like keys, is described later in this
section.
Each invocation of the worklet gets a single unique key.
A WorkletReduceByKey object must have exactly one KeysIn parameter in its ControlSignature, and
the InputDomain must point to the KeysIn parameter.

176 Chapter 12. Worklets

DRAFT

12.5. Worklet Type Reference

ValuesIn This tag represents a set of input values that are associated with the keys. A ValuesIn argument
expects an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke.
The number of values in this array must be equal to the size of the array used with the KeysIn argument.
Each invocation of the worklet gets a Vec-like object containing all the values associated with the unique
key.

ValuesInOut This tag behaves the same as ValuesIn except that the worklet may write values back into the Vec-
like object, and these values will be placed back in their original locations in the array. Use of ValuesInOut
is rare.

ValuesOut This tag behaves the same as ValuesInOut except that the array is resized appropriately and no
input values are passed to the worklet. As with ValuesInOut, values the worklet writes to its Vec-like
object get placed in the location of the original arrays. Use of ValuesOut is rare.

ReducedValuesOut This tag represents the resulting reduced values. A ReducedValuesOut argument expects
an ArrayHandle or a VariantArrayHandle in the associated parameter of the dispatcher’s Invoke. The
array is resized before scheduling begins, and each invocation of the worklet sets a single value in the array.

ReducedValuesIn This tag represents input values that come from (typically) from a previous invocation of a
reduce by key. A ReducedValuesOut argument expects an ArrayHandle or a VariantArrayHandle in the
associated parameter of the dispatcher’s Invoke. The number of values in the array must equal the number
of unique keys.
A ReducedValuesIn argument is usually used to pass reduced values from one invocation of a reduce by
key worklet to another invocation of a reduced by key worklet such as in an algorithm that requires iterative
steps.

ReducedValuesInOut This tag behaves the same as ReducedValuesIn except that the worklet may write values
back into the array. Make sure that the associated parameter to the worklet operator is a reference so that
the changed value gets written back to the array.

A reduce by key worklet supports the following tags in the parameters of its ExecutionSignature.

1, 2,. . . These reference the corresponding parameter in the ControlSignature.

ValueCount This tag produces a vtkm::IdComponent that is equal to the number of times the key associated
with this call to the worklet occurs in the input. This is the same size as the Vec-like objects provided by
ValuesIn arguments.

WorkIndex This tag produces a vtkm::Id that uniquely identifies the invocation of the worklet.

VisitIndex This tag produces a vtkm::IdComponent that uniquely identifies when multiple worklet invocations
operate on the same input item, which can happen when defining a worklet with scatter (as described in
Section 12.10).

InputIndex This tag produces a vtkm::Id that identifies the index of the input element, which can differ from
the WorkIndex in a worklet with a scatter (as described in Section 12.10).

OutputIndex This tag produces a vtkm::Id that identifies the index of the output element. (This is generally
the same as WorkIndex.)

ThreadIndices This tag produces an internal object that manages indices and other metadata of the current
thread. Thread indices objects are described in Section 23.2, but most users can get the information they
need through other signature tags.

Chapter 12. Worklets 177

DRAFT

12.5. Worklet Type Reference

As stated earlier, the reduce by key worklet is useful for collected like values. To demonstrate the reduce by key
worklet, we will create a simple mechanism to generate a histogram in parallel. (VTK-m comes with its own
histogram implementation, but we create our own version here for a simple example.) The way we can use the
reduce by key worklet to compute a histogram is to first identify which bin of the histogram each value is in,
and then use the bin identifiers as the keys to collect the information. To help with this example, we will first
create a helper class named BinScalars that helps us manage the bins.

Example 12.13: A helper class to manage histogram bins.
1 class BinScalars
2 {
3 public :
4 VTKM_EXEC_CONT
5 BinScalars (const vtkm :: Range & range , vtkm :: Id numBins)
6 : Range (range)
7 , NumBins (numBins)
8 {
9 }

10
11 VTKM_EXEC_CONT
12 BinScalars (const vtkm :: Range & range , vtkm :: Float64 tolerance)
13 : Range (range)
14 {
15 this -> NumBins = vtkm :: Id(this -> Range . Length () / tolerance) + 1;
16 }
17
18 VTKM_EXEC_CONT
19 vtkm :: Id GetBin (vtkm :: Float64 value) const
20 {
21 vtkm :: Float64 ratio = (value - this -> Range .Min) / this -> Range . Length ();
22 vtkm :: Id bin = vtkm :: Id(ratio * this -> NumBins);
23 bin = vtkm :: Max(bin , vtkm :: Id (0));
24 bin = vtkm :: Min(bin , this -> NumBins - 1);
25 return bin;
26 }
27
28 private :
29 vtkm :: Range Range ;
30 vtkm :: Id NumBins ;
31 };

Using this helper class, we can easily create a simple map worklet that takes values, identifies a bin, and writes
that result out to an array that can be used as keys.

Example 12.14: A simple map worklet to identify histogram bins, which will be used as keys.
1 struct IdentifyBins : vtkm :: worklet :: WorkletMapField
2 {
3 using ControlSignature = void (FieldIn data , FieldOut bins);
4 using ExecutionSignature = _2(_1);
5 using InputDomain = _1;
6
7 BinScalars Bins;
8
9 VTKM_CONT

10 IdentifyBins (const BinScalars & bins)
11 : Bins(bins)
12 {
13 }
14
15 VTKM_EXEC
16 vtkm :: Id operator ()(vtkm :: Float64 value) const { return Bins. GetBin (value); }
17 };

178 Chapter 12. Worklets

DRAFT

12.5. Worklet Type Reference

Once you generate an array to be used as keys, you need to make a vtkm::worklet::Keys object. The Keys
object is what will be passed to the invoke of the reduce by keys dispatcher. This of course happens in the
control environment after calling the dispatcher for our worklet for generating the keys.

Example 12.15: Creating a vtkm::worklet::Keys object.
1 vtkm :: cont :: ArrayHandle <vtkm ::Id > binIds ;
2 vtkm :: worklet :: DispatcherMapField < IdentifyBins > identifyDispatcher (bins);
3 identifyDispatcher . Invoke (valuesArray , binIds);
4
5 vtkm :: worklet :: Keys <vtkm ::Id > keys(binIds);

Now that we have our keys, we are finally ready for our reduce by key worklet. A histogram is simply a count
of the number of elements in a bin. In this case, we do not really need any values for the keys. We just need the
size of the bin, which can be identified with the internally calculated ValueCount.

A complication we run into with this histogram filter is that it is possible for a bin to be empty. If a bin is empty,
there will be no key associated with that bin, and the reduce by key dispatcher will not call the worklet for that
bin/key. To manage this case, we have to initialize an array with 0’s and then fill in the non-zero entities with
our reduce by key worklet. We can find the appropriate entry into the array by using the key, which is actually
the bin identifier, which doubles as an index into the histogram. The following example gives the implementation
for the reduce by key worklet that fills in positive values of the histogram.

Example 12.16: A reduce by key worklet to write histogram bin counts.
1 struct CountBins : vtkm :: worklet :: WorkletReduceByKey
2 {
3 using ControlSignature = void (KeysIn keys , WholeArrayOut binCounts);
4 using ExecutionSignature = void (_1 , ValueCount , _2);
5 using InputDomain = _1;
6
7 template < typename BinCountsPortalType >
8 VTKM_EXEC void operator ()(vtkm :: Id binId ,
9 vtkm :: IdComponent numValuesInBin ,

10 BinCountsPortalType & binCounts) const
11 {
12 binCounts .Set(binId , numValuesInBin);
13 }
14 };

The previous example demonstrates the basic usage of the reduce by key worklet to count common keys. A more
common use case is to collect values associated with those keys, do an operation on those values, and provide
a “reduced” value for each unique key. The following example demonstrates such an operation by providing a
worklet that finds the average of all values in a particular bin rather than counting them.

Example 12.17: A worklet that averages all values with a common key.
1 struct BinAverage : vtkm :: worklet :: WorkletReduceByKey
2 {
3 using ControlSignature = void (KeysIn keys ,
4 ValuesIn originalValues ,
5 ReducedValuesOut averages);
6 using ExecutionSignature = _3(_2);
7 using InputDomain = _1;
8
9 template < typename OriginalValuesVecType >

10 VTKM_EXEC typename OriginalValuesVecType :: ComponentType operator ()(
11 const OriginalValuesVecType & originalValues) const
12 {
13 typename OriginalValuesVecType :: ComponentType sum = 0;
14 for (vtkm :: IdComponent index = 0;
15 index < originalValues . GetNumberOfComponents ();

Chapter 12. Worklets 179

DRAFT

12.5. Worklet Type Reference

16 index ++)
17 {
18 sum = sum + originalValues [index];
19 }
20 return sum / originalValues . GetNumberOfComponents ();
21 }
22 };

To complete the code required to average all values that fall into the same bin, the following example shows the
full code required to invoke such a worklet. Note that this example repeats much of the previous examples, but
shows it in a more complete context.

Example 12.18: Using a reduce by key worklet to average values falling into the same bin.
1 struct CombineSimilarValues
2 {
3 struct IdentifyBins : vtkm :: worklet :: WorkletMapField
4 {
5 using ControlSignature = void (FieldIn data , FieldOut bins);
6 using ExecutionSignature = _2(_1);
7 using InputDomain = _1;
8
9 BinScalars Bins;

10
11 VTKM_CONT
12 IdentifyBins (const BinScalars & bins)
13 : Bins(bins)
14 {
15 }
16
17 VTKM_EXEC
18 vtkm :: Id operator ()(vtkm :: Float64 value) const { return Bins. GetBin (value); }
19 };
20
21 struct BinAverage : vtkm :: worklet :: WorkletReduceByKey
22 {
23 using ControlSignature = void (KeysIn keys ,
24 ValuesIn originalValues ,
25 ReducedValuesOut averages);
26 using ExecutionSignature = _3(_2);
27 using InputDomain = _1;
28
29 template < typename OriginalValuesVecType >
30 VTKM_EXEC typename OriginalValuesVecType :: ComponentType operator ()(
31 const OriginalValuesVecType & originalValues) const
32 {
33 typename OriginalValuesVecType :: ComponentType sum = 0;
34 for (vtkm :: IdComponent index = 0;
35 index < originalValues . GetNumberOfComponents ();
36 index ++)
37 {
38 sum = sum + originalValues [index];
39 }
40 return sum / originalValues . GetNumberOfComponents ();
41 }
42 };
43
44 template < typename InArrayHandleType >
45 VTKM_CONT static vtkm :: cont :: ArrayHandle < typename InArrayHandleType :: ValueType >
46 Run(const InArrayHandleType & valuesArray , vtkm :: Id numBins)
47 {
48 VTKM_IS_ARRAY_HANDLE (InArrayHandleType);
49
50 using ValueType = typename InArrayHandleType :: ValueType ;

180 Chapter 12. Worklets

DRAFT

12.6. Whole Arrays

51
52 vtkm :: Range range =
53 vtkm :: cont :: ArrayRangeCompute (valuesArray). GetPortalConstControl (). Get (0);
54 BinScalars bins(range , numBins);
55
56 vtkm :: cont :: ArrayHandle <vtkm ::Id > binIds ;
57 vtkm :: worklet :: DispatcherMapField < IdentifyBins > identifyDispatcher (bins);
58 identifyDispatcher . Invoke (valuesArray , binIds);
59
60 vtkm :: worklet :: Keys <vtkm ::Id > keys(binIds);
61
62 vtkm :: cont :: ArrayHandle <ValueType > combinedValues ;
63
64 vtkm :: worklet :: DispatcherReduceByKey < BinAverage > averageDispatcher ;
65 averageDispatcher . Invoke (keys , valuesArray , combinedValues);
66
67 return combinedValues ;
68 }
69 };

12.6 Whole Arrays

As documented in Section 12.5, each worklet type has a set of parameter types that can be used to pass data to
and from the worklet invocation. But what happens if you want to pass data that cannot be expressed in these
predefined mechanisms. Chapter 23 describes how to create completely new worklet types and parameter tags.
However, designing such a system for a one-time use is overkill.

Instead, all VTK-m worklets provide a trio of mechanisms that allow you to pass arbitrary data to a worklet. In
this section, we will explore a whole array argument that provides random access to an entire array. In a later
section we describe an even more general mechanism to describe any execution object.

The VTK-m worklet dispatching mechanism performs many safety checks to prevent race conditions across
concurrently running worklets. Using a whole array within a worklet circumvents this guarantee of safety,
so be careful when using whole arrays, especially when writing to whole arrays.

Common Errors

A whole array is declared by adding a WholeArrayIn, a WholeArrayInOut, or a WholeArrayOut to the Con-
trolSignature. The corresponding argument to the dispatcher’s Invoke should be an ArrayHandle. The
ArrayHandle must already be allocated in all cases, including when using WholeArrayOut. When the data are
passed to the operator of the worklet, it is passed as an array portal object. This means that the worklet can
access any entry in the array with Get and/or Set methods.

We have already seen a demonstration of using a whole array in Example 12.7 to perform a simple array copy.
Here we will construct a more thorough example of building functionality that requires random array access.

Let’s say we want to measure the quality of triangles in a mesh. A common method for doing this is using the
equation

q = 4a
√

3
h2

1 +h2
2 +h2

3
where a is the area of the triangle and h1, h2, and h3 are the lengths of the sides. We can easily compute this
in a cell to point map, but what if we want to speed up the computations by reducing precision? After all, we

Chapter 12. Worklets 181

DRAFT

12.6. Whole Arrays

probably only care if the triangle is good, reasonable, or bad. So instead, let’s build a lookup table and then
retrieve the triangle quality from that lookup table based on its sides.

The following example demonstrates creating such a table lookup in an array and using a worklet argument
tagged with WholeArrayIn to make it accessible.

Example 12.19: Using WholeArrayIn to access a lookup table in a worklet.
1 # include <vtkm/cont/ ArrayHandle .h>
2 # include <vtkm/cont/ DataSet .h>
3
4 # include <vtkm/ worklet / DispatcherMapTopology .h>
5 # include <vtkm/ worklet / WorkletMapTopology .h>
6
7 # include <vtkm/ CellShape .h>
8 # include <vtkm/Math.h>
9 # include <vtkm/ VectorAnalysis .h>

10
11 namespace detail
12 {
13
14 static const vtkm :: Id TRIANGLE_QUALITY_TABLE_DIMENSION = 8;
15 static const vtkm :: Id TRIANGLE_QUALITY_TABLE_SIZE =
16 TRIANGLE_QUALITY_TABLE_DIMENSION * TRIANGLE_QUALITY_TABLE_DIMENSION ;
17
18 VTKM_CONT
19 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > GetTriangleQualityTable ()
20 {
21 // Use these precomputed values for the array . A real application would
22 // probably use a larger array , but we are keeping it small for demonstration
23 // purposes .
24 static vtkm :: Float32 triangleQualityBuffer [TRIANGLE_QUALITY_TABLE_SIZE] = {
25 0, 0, 0, 0, 0, 0, 0, 0,
26 0, 0, 0, 0, 0, 0, 0, 0.24431f,
27 0, 0, 0, 0, 0, 0, 0.43298f, 0.47059f,
28 0, 0, 0, 0, 0, 0.54217f, 0.65923f, 0.66408f,
29 0, 0, 0, 0, 0.57972f, 0.75425f, 0.82154f, 0.81536f,
30 0, 0, 0, 0.54217f, 0.75425f, 0.87460f, 0.92567f, 0.92071f,
31 0, 0, 0.43298f, 0.65923f, 0.82154f, 0.92567f, 0.97664f, 0.98100f,
32 0, 0.24431f, 0.47059f, 0.66408f, 0.81536f, 0.92071f, 0.98100f, 1
33 };
34
35 return vtkm :: cont :: make_ArrayHandle (triangleQualityBuffer ,
36 TRIANGLE_QUALITY_TABLE_SIZE);
37 }
38
39 template < typename T>
40 VTKM_EXEC_CONT vtkm ::Vec <T, 3> TriangleEdgeLengths (const vtkm ::Vec <T, 3>& point1 ,
41 const vtkm ::Vec <T, 3>& point2 ,
42 const vtkm ::Vec <T, 3>& point3)
43 {
44 return vtkm :: make_Vec (vtkm :: Magnitude (point1 - point2),
45 vtkm :: Magnitude (point2 - point3),
46 vtkm :: Magnitude (point3 - point1));
47 }
48
49 VTKM_SUPPRESS_EXEC_WARNINGS
50 template < typename PortalType , typename T>
51 VTKM_EXEC_CONT static vtkm :: Float32 LookupTriangleQuality (
52 const PortalType & triangleQualityPortal ,
53 const vtkm ::Vec <T, 3>& point1 ,
54 const vtkm ::Vec <T, 3>& point2 ,
55 const vtkm ::Vec <T, 3>& point3)
56 {
57 vtkm ::Vec <T, 3> edgeLengths = TriangleEdgeLengths (point1 , point2 , point3);

182 Chapter 12. Worklets

DRAFT

12.6. Whole Arrays

58
59 // To reduce the size of the table , we just store the quality of triangles
60 // with the longest edge of size 1. The table is 2D indexed by the length
61 // of the other two edges . Thus , to use the table we have to identify the
62 // longest edge and scale appropriately .
63 T smallEdge1 = vtkm :: Min(edgeLengths [0] , edgeLengths [1]);
64 T tmpEdge = vtkm :: Max(edgeLengths [0] , edgeLengths [1]);
65 T smallEdge2 = vtkm :: Min(edgeLengths [2] , tmpEdge);
66 T largeEdge = vtkm :: Max(edgeLengths [2] , tmpEdge);
67
68 smallEdge1 /= largeEdge ;
69 smallEdge2 /= largeEdge ;
70
71 // Find index into array .
72 vtkm :: Id index1 = static_cast <vtkm ::Id >(
73 vtkm :: Floor (smallEdge1 * (TRIANGLE_QUALITY_TABLE_DIMENSION - 1) + 0.5));
74 vtkm :: Id index2 = static_cast <vtkm ::Id >(
75 vtkm :: Floor (smallEdge2 * (TRIANGLE_QUALITY_TABLE_DIMENSION - 1) + 0.5));
76 vtkm :: Id totalIndex = index1 + index2 * TRIANGLE_QUALITY_TABLE_DIMENSION ;
77
78 return triangleQualityPortal .Get(totalIndex);
79 }
80
81 } // namespace detail
82
83 struct TriangleQuality
84 {
85 struct TriangleQualityWorklet : vtkm :: worklet :: WorkletMapPointToCell
86 {
87 using ControlSignature = void (CellSetIn cells ,
88 FieldInPoint pointCoordinates ,
89 WholeArrayIn triangleQualityTable ,
90 FieldOutCell triangleQuality);
91 using ExecutionSignature = _4(CellShape , _2 , _3);
92 using InputDomain = _1;
93
94 template < typename CellShape ,
95 typename PointCoordinatesType ,
96 typename TriangleQualityTablePortalType >
97 VTKM_EXEC vtkm :: Float32 operator ()(
98 CellShape shape ,
99 const PointCoordinatesType & pointCoordinates ,

100 const TriangleQualityTablePortalType & triangleQualityTable) const
101 {
102 if (shape .Id != vtkm :: CELL_SHAPE_TRIANGLE)
103 {
104 this -> RaiseError (" Only triangles are supported for triangle quality .");
105 return vtkm :: Nan32 ();
106 }
107
108 return detail :: LookupTriangleQuality (triangleQualityTable ,
109 pointCoordinates [0] ,
110 pointCoordinates [1] ,
111 pointCoordinates [2]);
112 }
113 };
114
115 VTKM_CONT static vtkm :: cont :: ArrayHandle <vtkm :: Float32 > Run(
116 vtkm :: cont :: DataSet dataSet)
117 {
118 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > triangleQualityTable =
119 detail :: GetTriangleQualityTable ();
120
121 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > triangleQualities ;

Chapter 12. Worklets 183

DRAFT

12.7. Atomic Arrays

122
123 vtkm :: worklet :: DispatcherMapTopology < TriangleQualityWorklet > dispatcher ;
124 dispatcher . Invoke (dataSet . GetCellSet (),
125 dataSet . GetCoordinateSystem (). GetData (),
126 triangleQualityTable ,
127 triangleQualities);
128
129 return triangleQualities ;
130 }
131 };

12.7 Atomic Arrays

One of the problems with writing to whole arrays is that it is difficult to coordinate the access to an array from
multiple threads. If multiple threads are going to write to a common index of an array, then you will probably
need to use an atomic array.

An atomic array allows random access into an array of data, similar to a whole array. However, the operations
on the values in the atomic array allow you to perform an operation that modifies its value that is guaranteed
complete without being interrupted and potentially corrupted.

Due to limitations in available atomic operations, atomic arrays can currently only contain vtkm::Int32
or vtkm::Int64 values.

Common Errors

To use an array as an atomic array, first add the AtomicArrayInOut tag to the worklet’s ControlSignature.
The corresponding argument to the dispatcher’s Invoke should be an ArrayHandle, which must already be
allocated and initialized with values.

When the data are passed to the operator of the worklet, it is passed in a vtkm::exec::AtomicArray structure.
AtomicArray has two important methods:

Add Takes as arguments an index and a value. The entry in the array corresponding to the index will have the
value added to it. If multiple threads attempt to add to the same index in the array, the requests will be
serialized so that the final result is the sum of all the additions. AtomicArray::Add returns the value that
was replaced. That is, it returns the value right before the addition.

CompareAndSwap Takes as arguments an index, a new value, and an old value. If the entry in the array corre-
sponding to the index has the same value as the “old value,” then it is changed to the “new value” and the
original value is return from the method. If the entry in the array is not the same as the “old value,” then
nothing happens to the array and the value that is actually stored in the array is returned. If multiple
threads attempt to compare and swap to the same index in the array, the requests are serialized.

184 Chapter 12. Worklets

DRAFT

12.8. Whole Cell Sets

Atomic arrays help resolve hazards in parallel algorithms, but they come at a cost. Atomic operations are
more costly than non-thread-safe ones, and they can slow a parallel program immensely if used incorrectly.

Common Errors

The following example uses an atomic array to count the bins in a histogram. It does this by making the array of
histogram bins an atomic array and then using an atomic add. Note that this is not the fastest way to create a
histogram. We gave an implementation in Section 12.5.4 that is generally faster (unless your histogram happens
to be very sparse). VTK-m also comes with a histogram worklet that uses a similar approach.

Example 12.20: Using AtomicArrayInOut to count histogram bins in a worklet.
1 struct CountBins : vtkm :: worklet :: WorkletMapField
2 {
3 using ControlSignature = void (FieldIn data , AtomicArrayInOut histogramBins);
4 using ExecutionSignature = void (_1 , _2);
5 using InputDomain = _1;
6
7 vtkm :: Range HistogramRange ;
8 vtkm :: Id NumberOfBins ;
9

10 VTKM_CONT
11 CountBins (const vtkm :: Range & histogramRange , vtkm :: Id& numBins)
12 : HistogramRange (histogramRange)
13 , NumberOfBins (numBins)
14 {
15 }
16
17 template < typename T, typename AtomicArrayType >
18 VTKM_EXEC void operator ()(T value , const AtomicArrayType & histogramBins) const
19 {
20 vtkm :: Float64 interp =
21 (value - this -> HistogramRange .Min) / this -> HistogramRange . Length ();
22 vtkm :: Id bin = static_cast <vtkm ::Id >(interp * this -> NumberOfBins);
23 if (bin < 0)
24 {
25 bin = 0;
26 }
27 if (bin >= this -> NumberOfBins)
28 {
29 bin = this -> NumberOfBins - 1;
30 }
31
32 histogramBins .Add(bin , 1);
33 }
34 };

12.8 Whole Cell Sets

Section 12.5.2 describes how to make a topology map filter that performs an operation on cell sets. The worklet
has access to a single cell element (such as point or cell) and its immediate connections. But there are cases
when you need more general queries on a topology. For example, you might need more detailed information than
the topology map gives or you might need to trace connections from one cell to the next. To do this VTK-m
allows you to provide a whole cell set argument to a worklet that provides random access to the entire topology.

A whole cell set is declared by adding a WholeCellSetIn to the worklet’s ControlSignature. The corresponding

Chapter 12. Worklets 185

DRAFT

12.8. Whole Cell Sets

argument to the dispatcher’s Invoke should be a CellSet subclass or a DynamicCellSet (both of which are
described in Section 11.2).

The WholeCellSetIn is templated and takes two arguments: the “from” topology type and the “to” topology
type, respectively. These template arguments must be one of the topology element tags, but for convenience
you can use Point and Cell in lieu of vtkm::TopologyElementTagPoint and vtkm::TopologyElementTagCell,
respectively. The “from” and “to” topology types define which topological elements can be queried and which
incident elements are returned. The semantics of the “from” and “to” topology is the same as that for the general
topology maps described in Section 12.5.2. You can look up an element of the “to” topology by index and then
get all of the “from” elements that are incident from it.

For example, a WholeCellSetIn<Point, Cell> allows you to find all the points that are incident on each cell
(as well as querying the cell shape). Likewise, a WholeCellSetIn<Cell, Point> allows you to find all the cells
that are incident on each point. The default parameters of WholeCellSetIn are from point to cell. That is,
WholeCellSetIn<> is equivalent to WholeCellSetIn<Point, Cell>.

When the cell set is passed to the operator of the worklet, it is passed in a special connectivity object. The
actual object type depends on the cell set, but vtkm::exec::CellSetStructured and are two common examples
vtkm::exec::CellSetExplicit. All these connectivity objects share a common interface. First, they all declare
the following public types.

CellShapeTag The tag for the cell shapes of the cell set. (Cell shape tags are described in Section 14.1.) If
the connectivity potentially contains more than one type of cell shape, then this type will be vtkm::-
CellShapeTagGeneric.

IndicesType A Vec-like type that stores all the incident indices.

Second they all provide the following methods.

GetNumberOfElements Get the number of “to” topology elements in the cell set. All the other methods require
an element index, and this represents the range of valid indices. The return type is vtkm::Id.

GetCellShape Takes an index for an element and returns a CellShapeTag object of the corresponding cell shape.
If the “to” topology elements are not strictly cell, then a reasonably close shape is returned. For example,
if the “to” topology elements are points, then the shape is returned as a vertex.

GetNumberOfIndices Takes an index for an element and returns the number of incident “from” elements are
connected to it. The returned type is vtkm::IdComponent.

GetIndices Takes an index for an element and returns a Vec-like object of type IndicesType containing the
indices of all incident “from” elements. The size of the Vec-like object is the same as that returned from
GetNumberOfIndicices.

VTK-m comes with several functions to work with the shape and index information returned from these con-
nectivity objects. Most of these methods are documented in Chapter 14.

Let us use the whole cell set feature to help us determine the “flatness” of a polygonal mesh. We will do this
by summing up all the angles incident on each on each point. That is, for each point, we will find each incident
polygon, then find the part of that polygon using the given point, then computing the angle at that point, and
then summing for all such angles. So, for example, in the mesh fragment shown in Figure 12.3 one of the angles
attached to the middle point is labeled θj .

We want a worklet to compute
∑

j θ for all such attached angles. This measure is related (but not the same as)
the curvature of the surface. A flat surface will have a sum of 2π. Convex and concave surfaces have a value less
than 2π, and saddle surfaces have a value greater than 2π.

186 Chapter 12. Worklets

DRAFT

12.8. Whole Cell Sets

θj

Figure 12.3: The angles incident around a point in a mesh.

To do this, we create a map cell to point worklet (Section 12.5.2) that visits every point and gives the index of
every incident cell. The worklet then uses a whole cell set to inspect each incident cell to measure the attached
angle and sum them together.

Example 12.21: Using WholeCellSetIn to sum the angles around each point.
1 struct SumOfAngles : vtkm :: worklet :: WorkletMapCellToPoint
2 {
3 using ControlSignature = void (CellSetIn inputCells ,
4 WholeCellSetIn <>, // Same as inputCells
5 WholeArrayIn pointCoords ,
6 FieldOutPoint angleSum);
7 using ExecutionSignature = void (CellIndices incidentCells ,
8 InputIndex pointIndex ,
9 _2 cellSet ,

10 _3 pointCoordsPortal ,
11 _4 outSum);
12 using InputDomain = _1;
13
14 template < typename IncidentCellVecType ,
15 typename CellSetType ,
16 typename PointCoordsPortalType ,
17 typename SumType >
18 VTKM_EXEC void operator ()(const IncidentCellVecType & incidentCells ,
19 vtkm :: Id pointIndex ,
20 const CellSetType & cellSet ,
21 const PointCoordsPortalType & pointCoordsPortal ,
22 SumType & outSum) const
23 {
24 using CoordType = typename PointCoordsPortalType :: ValueType ;
25
26 CoordType thisPoint = pointCoordsPortal .Get(pointIndex);
27
28 outSum = 0;
29 for (vtkm :: IdComponent incidentCellIndex = 0;
30 incidentCellIndex < incidentCells . GetNumberOfComponents ();
31 ++ incidentCellIndex)
32 {
33 // Get information about incident cell.
34 vtkm :: Id cellIndex = incidentCells [incidentCellIndex];
35 typename CellSetType :: CellShapeTag cellShape =
36 cellSet . GetCellShape (cellIndex);
37 typename CellSetType :: IndicesType cellConnections =
38 cellSet . GetIndices (cellIndex);
39 vtkm :: IdComponent numPointsInCell = cellSet . GetNumberOfIndices (cellIndex);
40 vtkm :: IdComponent numEdges =
41 vtkm :: exec :: CellEdgeNumberOfEdges (numPointsInCell , cellShape , *this);
42
43 // Iterate over all edges and find the first one with pointIndex .
44 // Use that to find the first vector .

Chapter 12. Worklets 187

DRAFT

12.8. Whole Cell Sets

45 vtkm :: IdComponent edgeIndex = -1;
46 CoordType vec1;
47 while (true)
48 {
49 ++ edgeIndex ;
50 if (edgeIndex >= numEdges)
51 {
52 this -> RaiseError (" Bad cell. Could not find two incident edges .");
53 return ;
54 }
55 auto edge =
56 vtkm :: make_Vec (vtkm :: exec :: CellEdgeLocalIndex (
57 numPointsInCell , 0, edgeIndex , cellShape , *this),
58 vtkm :: exec :: CellEdgeLocalIndex (
59 numPointsInCell , 1, edgeIndex , cellShape , *this));
60 if (cellConnections [edge [0]] == pointIndex)
61 {
62 vec1 = pointCoordsPortal .Get(cellConnections [edge [1]]) - thisPoint ;
63 break ;
64 }
65 else if (cellConnections [edge [1]] == pointIndex)
66 {
67 vec1 = pointCoordsPortal .Get(cellConnections [edge [0]]) - thisPoint ;
68 break ;
69 }
70 else
71 {
72 // Continue to next iteration of loop.
73 }
74 }
75
76 // Continue iteration over remaining edges and find the second one with
77 // pointIndex . Use that to find the second vector .
78 CoordType vec2;
79 while (true)
80 {
81 ++ edgeIndex ;
82 if (edgeIndex >= numEdges)
83 {
84 this -> RaiseError (" Bad cell. Could not find two incident edges .");
85 return ;
86 }
87 auto edge =
88 vtkm :: make_Vec (vtkm :: exec :: CellEdgeLocalIndex (
89 numPointsInCell , 0, edgeIndex , cellShape , *this),
90 vtkm :: exec :: CellEdgeLocalIndex (
91 numPointsInCell , 1, edgeIndex , cellShape , *this));
92 if (cellConnections [edge [0]] == pointIndex)
93 {
94 vec2 = pointCoordsPortal .Get(cellConnections [edge [1]]) - thisPoint ;
95 break ;
96 }
97 else if (cellConnections [edge [1]] == pointIndex)
98 {
99 vec2 = pointCoordsPortal .Get(cellConnections [edge [0]]) - thisPoint ;

100 break ;
101 }
102 else
103 {
104 // Continue to next iteration of loop.
105 }
106 }
107
108 // The dot product of two unit vectors is equal to the cosine of the

188 Chapter 12. Worklets

DRAFT

12.9. Execution Objects

109 // angle between them.
110 vtkm :: Normalize (vec1);
111 vtkm :: Normalize (vec2);
112 SumType cosine = static_cast <SumType >(vtkm :: Dot(vec1 , vec2));
113
114 outSum += vtkm :: ACos(cosine);
115 }
116 }
117 };

12.9 Execution Objects

Although passing whole arrays and cell sets into a worklet is a convenient way to provide data to a worklet that
is not divided by the input or output domain, they are sometimes not the best structures to represent data.
Thus, all worklets support a another type of argument called an execution object, or exec object for short, that
provides a user-defined object directly to each invocation of the worklet. This is defined by an ExecObject tag
in the ControlSignature.

The execution object must be a subclass of vtkm::cont::ExecutionObjectBase. Also, it must implement a
PrepareForExecution method declared with VTKM CONT, templated on device adapter tag, and passed as an
argument. The PrepareForExecution function creates an execution object that can be passed from the control
environment to the execution environment and be usable in the execution environment, and any method of the
produced object used within the worklet must be declared with VTKM EXEC or VTKM EXEC CONT.

An execution object can refer to an array, but the array reference must be through an array portal for the
execution environment. This can be retrieved from the ArrayHandle::PrepareForInput method as described
in Section 7.8. Other VTK-m data objects, such as the subclasses of vtkm::cont::CellSet, have similar
methods.

Returning to the example we have in Section 12.6, we are computing triangle quality quickly by looking up the
value in a table. In Example 12.19 the table is passed directly to the worklet as a whole array. However, there
is some additional code involved to get the appropriate index into the table for a given triangle. Let us say that
we want to have the ability to compute triangle quality in many different worklets. Rather than pass in a raw
array, it would be better to encapsulate the functionality in an object.

We can do that by creating an execution object with a PrepareForExecution that creates an object that has
the table stored inside and methods to compute the triangle quality. The following example uses the table built
in Example 12.19 to create such an object.

Example 12.22: Using ExecObject to access a lookup table in a worklet.
1 template < typename DeviceAdapterTag >
2 class TriangleQualityTableExecutionObject
3 {
4 public :
5 VTKM_CONT
6 TriangleQualityTableExecutionObject ()
7 {
8 this -> TablePortal =
9 detail :: GetTriangleQualityTable (). PrepareForInput (DeviceAdapterTag ());

10 }
11
12 template < typename T>
13 VTKM_EXEC vtkm :: Float32 GetQuality (const vtkm ::Vec <T, 3>& point1 ,
14 const vtkm ::Vec <T, 3>& point2 ,
15 const vtkm ::Vec <T, 3>& point3) const
16 {
17 return detail :: LookupTriangleQuality (this -> TablePortal , point1 , point2 , point3);

Chapter 12. Worklets 189

DRAFT

12.9. Execution Objects

18 }
19
20 private :
21 using TableArrayType = vtkm :: cont :: ArrayHandle <vtkm :: Float32 >;
22 using TableArrayPortalType =
23 typename TableArrayType :: ExecutionTypes < DeviceAdapterTag >:: PortalConst ;
24 TableArrayPortalType TablePortal ;
25 };
26
27 class TriangleQualityTable : public vtkm :: cont :: ExecutionObjectBase
28 {
29 public :
30 template < typename Device >
31 VTKM_CONT TriangleQualityTableExecutionObject <Device > PrepareForExecution (
32 Device) const
33 {
34 return TriangleQualityTableExecutionObject <Device >();
35 }
36 };
37
38 struct TriangleQualityWorklet2 : vtkm :: worklet :: WorkletMapPointToCell
39 {
40 using ControlSignature = void (CellSetIn cells ,
41 FieldInPoint pointCoordinates ,
42 ExecObject triangleQualityTable ,
43 FieldOutCell triangleQuality);
44 using ExecutionSignature = _4(CellShape , _2 , _3);
45 using InputDomain = _1;
46
47 template < typename CellShape ,
48 typename PointCoordinatesType ,
49 typename TriangleQualityTableType >
50 VTKM_EXEC vtkm :: Float32 operator ()(
51 CellShape shape ,
52 const PointCoordinatesType & pointCoordinates ,
53 const TriangleQualityTableType & triangleQualityTable) const
54 {
55 if (shape .Id != vtkm :: CELL_SHAPE_TRIANGLE)
56 {
57 this -> RaiseError (" Only triangles are supported for triangle quality .");
58 return vtkm :: Nan32 ();
59 }
60
61 return triangleQualityTable . GetQuality (
62 pointCoordinates [0] , pointCoordinates [1] , pointCoordinates [2]);
63 }
64 };
65
66 // Normally we would encapsulate this call in a filter , but for demonstrative
67 // purposes we are just calling the worklet directly .
68 VTKM_CONT vtkm :: cont :: ArrayHandle <vtkm :: Float32 > RunTriangleQuality2 (
69 vtkm :: cont :: DataSet dataSet)
70 {
71 TriangleQualityTable triangleQualityTable ;
72
73 vtkm :: cont :: ArrayHandle <vtkm :: Float32 > triangleQualities ;
74
75 vtkm :: worklet :: DispatcherMapTopology < TriangleQualityWorklet2 > dispatcher ;
76 dispatcher . Invoke (dataSet . GetCellSet (),
77 dataSet . GetCoordinateSystem (). GetData (),
78 triangleQualityTable ,
79 triangleQualities);
80
81 return triangleQualities ;

190 Chapter 12. Worklets

DRAFT

12.10. Scatter

82 }

12.10 Scatter

The default scheduling of a worklet provides a 1 to 1 mapping from the input domain to the output domain.
For example, a vtkm::worklet::WorkletMapField gets run once for every item of the input array and produces
one item for the output array. Likewise, vtkm::worklet::WorkletMapPointToCell gets run once for every cell
in the input topology and produces one associated item for the output field.

However, there are many operations that do not fall well into this 1 to 1 mapping procedure. The operation
might need to pass over elements that produce no value or the operation might need to produce multiple values
for a single input element.

Such non 1 to 1 mappings can be achieved by defining a scatter for a worklet. The following types of scatter are
provided by VTK-m.

vtkm::worklet::ScatterIdentity Provides a basic 1 to 1 mapping from input to output. This is the default
scatter used if none is specified.

vtkm::worklet::ScatterUniform Provides a 1 to many mapping from input to output with the same number
of outputs for each input. A template parameter provides the number of output values to produce per
input.

vtkm::worklet::ScatterCounting Provides a 1 to any mapping from input to output with different numbers
of outputs for each input. The constructor takes an ArrayHandle that is the same size as the input
containing the count of output values to produce for each input. Values can be zero, in which case that
input will be skipped.

vtkm::worklet::ScatterPermutation Reorders the indices. The constructor takes a permutation ArrayHan-
dle that is sized to the number of output values and maps output indices to input indices. For example, if
index i of the permutation array contains j, then the worklet invocation for output i will get the jth input
values. The reordering does not have to be 1 to 1. Any input not referenced by the permutation array
will be dropped, and any input referenced by the permutation array multiple times will be duplicated.
However, unlike ScatterCounting VisitIndex is always 0 even if an input value happens to be duplicated.

Scatters are often used to create multiple outputs for a single input, but they can also be used to remove
inputs from the output. In particular, if you provide a count of 0 in a ScatterCounting count array, no
outputs will be created for the associated input. To simply mask out some elements from the input, provide
ScatterCounting with a stencil array of 0’s and 1’s with a 0 for every element you want to remove and a
1 for every element you want to pass. You can also mix 0’s with counts larger than 1 to drop some elements
and add multiple results for other elements. ScatterPermutation can similarly be used to remove input
values by leaving them out of the permutation.

Did you know?

To define a scatter procedure, the worklet must provide a type definition named ScatterType. The ScatterType
must be set to one of the aforementioned Scatter* classes. It is common, but optional, to also provide a static
method named MakeScatter that generates an appropriate scatter object for the worklet if you cannot use the
default constructor for the scatter. This static method can be used by users of the worklet to set up the scatter
for the dispatcher.

Chapter 12. Worklets 191

DRAFT

12.10. Scatter

Example 12.23: Declaration of a scatter type in a worklet.
1 using ScatterType = vtkm :: worklet :: ScatterCounting ;
2
3 template < typename CountArrayType >
4 VTKM_CONT static ScatterType MakeScatter (const CountArrayType & countArray)
5 {
6 VTKM_IS_ARRAY_HANDLE (CountArrayType);
7 return ScatterType (countArray);
8 }

When using a scatter that produces multiple outputs for a single input, the worklet is invoked multiple times
with the same input values. In such an event the worklet operator needs to distinguish these calls to produce the
correct associated output. This is done by declaring one of the ExecutionSignature arguments as VisitIndex.
This tag will pass a vtkm::IdComponent to the worklet that identifies which invocation is being called.

It is also the case that the when a scatter can produce multiple outputs for some input that the index of the
input element is not the same as the WorkIndex. If the index to the input element is needed, you can use the
InputIndex tag in the ExecutionSignature. It is also good practice to use the OutputIndex tag if the index
to the output element is needed.

It is stated in Section 12.2 that when a dispatcher object is created, it must be given a worklet object (or a
default object will be created). Additionally, a dispatcher must have a scatter object when it is created. Like
with the worklet, if the required scatter object does not hold any state, then the dispatcher can automatically
create a scatter object with the scatter’s default constructor. This is the case for the default scatter, so none
of the previous examples needed to define a scatter for the dispatcher. However, both ScatterCounting and
ScatterPermutation need to be constructed, set up, and passed to the dispatcher’s constructor. As mentioned
previously, it is generally good practice for the worklet to provide a static MakeScatter method to construct a
scatter of the correct type and state if the dispatcher requires a custom scatter. If both a worklet object and a
scatter object need to be given to a dispatcher’s constructor, the worklet is given as the first argument.

Example 12.24: Constructing a dispatcher that requires a custom scatter.
1 auto generateScatter = ClipPoints :: Generate :: MakeScatter (countArray);
2 vtkm :: worklet :: DispatcherMapField < ClipPoints :: Generate > dispatcherGenerate (
3 generateScatter);

A scatter object does not have to be tied to a single worklet/dispatcher instance. In some cases it makes
sense to use the same scatter object multiple times for worklets that have the same input to output mapping.
Although this is not common, it can save time by reusing the set up computations of ScatterCounting.

Did you know?

To demonstrate using scatters with worklets, we provide some contrived but illustrative examples. The first
example is a worklet that takes a pair of input arrays and interleaves them so that the first, third, fifth, and so
on entries come from the first array and the second, fourth, sixth, and so on entries come from the second array.
We achieve this by using a vtkm::worklet::ScatterUniform of size 2 and using the VisitIndex to determine
from which array to pull a value.

Example 12.25: Using ScatterUniform.
1 struct InterleaveArrays : vtkm :: worklet :: WorkletMapField
2 {
3 using ControlSignature = void (FieldIn , FieldIn , FieldOut);
4 using ExecutionSignature = void (_1 , _2 , _3 , VisitIndex);
5 using InputDomain = _1;

192 Chapter 12. Worklets

DRAFT

12.10. Scatter

6
7 using ScatterType = vtkm :: worklet :: ScatterUniform <2 >;
8
9 template < typename T>

10 VTKM_EXEC void operator ()(const T& input0 ,
11 const T& input1 ,
12 T& output ,
13 vtkm :: IdComponent visitIndex) const
14 {
15 if (visitIndex == 0)
16 {
17 output = input0 ;
18 }
19 else // visitIndex == 1
20 {
21 output = input1 ;
22 }
23 }
24 };

The second example takes a collection of point coordinates and clips them by an axis-aligned bounding box.
It does this using a vtkm::worklet::ScatterCounting with an array containing 0 for all points outside the
bounds and 1 for all points inside the bounds. As is typical with this type of operation, we use another worklet
with a default identity scatter to build the count array.

Example 12.26: Using ScatterCounting.
1 struct ClipPoints
2 {
3 class Count : public vtkm :: worklet :: WorkletMapField
4 {
5 public :
6 using ControlSignature = void (FieldIn points , FieldOut count);
7 using ExecutionSignature = _2(_1);
8 using InputDomain = _1;
9

10 template < typename T>
11 VTKM_CONT Count (const vtkm ::Vec <T, 3>& boundsMin ,
12 const vtkm ::Vec <T, 3>& boundsMax)
13 : BoundsMin (boundsMin [0] , boundsMin [1] , boundsMin [2])
14 , BoundsMax (boundsMax [0] , boundsMax [1] , boundsMax [2])
15 {
16 }
17
18 template < typename T>
19 VTKM_EXEC vtkm :: IdComponent operator ()(const vtkm ::Vec <T, 3>& point) const
20 {
21 return static_cast <vtkm :: IdComponent >(
22 (this -> BoundsMin [0] < point [0]) && (this -> BoundsMin [1] < point [1]) &&
23 (this -> BoundsMin [2] < point [2]) && (this -> BoundsMax [0] > point [0]) &&
24 (this -> BoundsMax [1] > point [1]) && (this -> BoundsMax [2] > point [2]));
25 }
26
27 private :
28 vtkm ::Vec <vtkm :: FloatDefault , 3> BoundsMin ;
29 vtkm ::Vec <vtkm :: FloatDefault , 3> BoundsMax ;
30 };
31
32 class Generate : public vtkm :: worklet :: WorkletMapField
33 {
34 public :
35 using ControlSignature = void (FieldIn inPoints , FieldOut outPoints);
36 using ExecutionSignature = void (_1 , _2);
37 using InputDomain = _1;

Chapter 12. Worklets 193

DRAFT

12.10. Scatter

38
39 using ScatterType = vtkm :: worklet :: ScatterCounting ;
40
41 template < typename CountArrayType >
42 VTKM_CONT static ScatterType MakeScatter (const CountArrayType & countArray)
43 {
44 VTKM_IS_ARRAY_HANDLE (CountArrayType);
45 return ScatterType (countArray);
46 }
47
48 template < typename InType , typename OutType >
49 VTKM_EXEC void operator ()(const vtkm ::Vec <InType , 3>& inPoint ,
50 vtkm ::Vec <OutType , 3>& outPoint) const
51 {
52 // The scatter ensures that this method is only called for input points
53 // that are passed to the output (where the count was 1). Thus , in this
54 // case we know that we just need to copy the input to the output .
55 outPoint = vtkm ::Vec <OutType , 3>(inPoint [0] , inPoint [1] , inPoint [2]);
56 }
57 };
58
59 template < typename T, typename Storage >
60 VTKM_CONT static vtkm :: cont :: ArrayHandle <vtkm ::Vec <T, 3>> Run(
61 const vtkm :: cont :: ArrayHandle <vtkm ::Vec <T, 3>, Storage >& pointArray ,
62 vtkm ::Vec <T, 3> boundsMin ,
63 vtkm ::Vec <T, 3> boundsMax)
64 {
65 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > countArray ;
66
67 ClipPoints :: Count workletCount (boundsMin , boundsMax);
68 vtkm :: worklet :: DispatcherMapField < ClipPoints :: Count > dispatcherCount (
69 workletCount);
70 dispatcherCount . Invoke (pointArray , countArray);
71
72 vtkm :: cont :: ArrayHandle <vtkm ::Vec <T, 3>> clippedPointsArray ;
73
74 auto generateScatter = ClipPoints :: Generate :: MakeScatter (countArray);
75 vtkm :: worklet :: DispatcherMapField < ClipPoints :: Generate > dispatcherGenerate (
76 generateScatter);
77 dispatcherGenerate . Invoke (pointArray , clippedPointsArray);
78
79 return clippedPointsArray ;
80 }
81 };

The third example takes an input array and reverses the ordering. It does this using a vtkm::worklet::-
ScatterPermutation with a permutation array generated from a vtkm::cont::ArrayHandleCounting counting
down from the input array size to 0.

Example 12.27: Using ScatterPermutation.
1 struct ReverseArray
2 {
3 class CopyField : public vtkm :: worklet :: WorkletMapField
4 {
5 public :
6 using ControlSignature = void (FieldIn inputArray , FieldOut outputArray);
7 using ExecutionSignature = void (_1 , _2);
8 using InputDomain = _1;
9

10 using ArrayStorageTag =
11 typename vtkm :: cont :: ArrayHandleCounting <vtkm ::Id >:: StorageTag ;
12 using ScatterType = vtkm :: worklet :: ScatterPermutation < ArrayStorageTag >;
13

194 Chapter 12. Worklets

DRAFT

12.11. Error Handling

14 VTKM_CONT
15 static ScatterType MakeScatter (vtkm :: Id arraySize)
16 {
17 return ScatterType (
18 vtkm :: cont :: ArrayHandleCounting <vtkm ::Id >(arraySize - 1, -1, arraySize));
19 }
20
21 template < typename FieldType >
22 VTKM_EXEC void operator ()(FieldType inputArrayField ,
23 FieldType & outputArrayField) const
24 {
25 outputArrayField = inputArrayField ;
26 }
27 };
28
29 template < typename T, typename Storage >
30 VTKM_CONT static vtkm :: cont :: ArrayHandle <T> Run(
31 const vtkm :: cont :: ArrayHandle <T, Storage > inputArray)
32 {
33 vtkm :: worklet :: DispatcherMapField <CopyField > dispatcher (
34 CopyField :: MakeScatter (inputArray . GetNumberOfValues ()));
35
36 vtkm :: cont :: ArrayHandle <T> outputArray ;
37 dispatcher . Invoke (inputArray , outputArray);
38
39 return outputArray ;
40 }
41 };

A vtkm::worklet::ScatterPermutation can have less memory usage than a vtkm::worklet::Scatter-
Counting when zeroing indices. By default, a vtkm::worklet::ScatterPermutation will omit all fields
that are not specified in the input permutation, whereas vtkm::worklet::ScatterCounting requires 0
values. If mapping an input to an output that omits fields, consider using a vtkm::worklet::Scatter-
Permutation to save memory.

Did you know?

A permutation array provided to vtkm::worklet::ScatterPermutation can be filled with arbitrary id
values. If an input permutation id exceeds the bounds of an input provided to a worklet, an out of bounds
error will occur in the worklet functor. To prevent this kind of error, you should ensure that ids in the
vtkm::worklet::ScatterPermutation do not exceed the bounds of provided inputs.

Common Errors

12.11 Error Handling

It is sometimes the case during the execution of an algorithm that an error condition can occur that causes
the computation to become invalid. At such a time, it is important to raise an error to alert the calling code
of the problem. Since VTK-m uses an exception mechanism to raise errors, we want an error in the execution
environment to throw an exception.

Chapter 12. Worklets 195

DRAFT

12.11. Error Handling

However, throwing exceptions in a parallel algorithm is problematic. Some accelerator architectures, like CUDA,
do not even support throwing exceptions. Even on architectures that do support exceptions, throwing them in
a thread block can cause problems. An exception raised in one thread may or may not be thrown in another,
which increases the potential for deadlocks, and it is unclear how uncaught exceptions progress through thread
blocks.

VTK-m handles this problem by using a flag and check mechanism. When a worklet (or other subclass of vtkm::-
exec::FunctorBase) encounters an error, it can call its RaiseError method to flag the problem and record a
message for the error. Once all the threads terminate, the scheduler checks for the error, and if one exists it
throws a vtkm::cont::ErrorExecution exception in the control environment. Thus, calling RaiseError looks
like an exception was thrown from the perspective of the control environment code that invoked it.

Example 12.28: Raising an error in the execution environment.
1 struct SquareRoot : vtkm :: worklet :: WorkletMapField
2 {
3 public :
4 using ControlSignature = void (FieldIn , FieldOut);
5 using ExecutionSignature = _2(_1);
6
7 template < typename T>
8 VTKM_EXEC T operator ()(T x) const
9 {

10 if (x < 0)
11 {
12 this -> RaiseError (" Cannot take the square root of a negative number .");
13 }
14 return vtkm :: Sqrt(x);
15 }
16 };

It is also worth noting that the VTKM ASSERT macro described in Section 6.8 also works within worklets and
other code running in the execution environment. Of course, a failed assert will terminate execution rather than
just raise an error so is best for checking invalid conditions for debugging purposes.

196 Chapter 12. Worklets

DRAFT
CHAPTER

THIRTEEN

MATH

VTK-m comes with several math functions that tend to be useful for visualization algorithms. The implementa-
tion of basic math operations can vary subtly on different accelerators, and these functions provide cross platform
support.

All math functions are located in the vtkm package. The functions are most useful in the execution environment,
but they can also be used in the control environment when needed.

13.1 Basic Math

The vtkm/Math.h header file contains several math functions that replicate the behavior of the basic POSIX
math functions as well as related functionality.

When writing worklets, you should favor using these math functions provided by VTK-m over the standard
math functions in math.h. VTK-m’s implementation manages several compiling and efficiency issues when
porting.

Did you know?

vtkm::Abs Returns the absolute value of the single argument. If given a vector, performs a component-wise
operation.

vtkm::ACos Returns the arccosine of a ratio in radians. If given a vector, performs a component-wise operation.

vtkm::ACosH Returns the hyperbolic arccossine. If given a vector, performs a component-wise operation.

vtkm::ASin Returns the arcsine of a ratio in radians. If given a vector, performs a component-wise operation.

vtkm::ASinH Returns the hyperbolic arcsine. If given a vector, performs a component-wise operation.

vtkm::ATan Returns the arctangent of a ratio in radians. If given a vector, performs a component-wise opera-
tion.

vtkm::ATan2 Computes the arctangent of y/x where y is the first argument and x is the second argument.
ATan2 uses the signs of both arguments to determine the quadrant of the return value. ATan2 is only
defined for floating point types (no vectors).

DRAFT

13.1. Basic Math

vtkm::ATanH Returns the hyperbolic arctangent. If given a vector, performs a component-wise operation.

vtkm::Cbrt Takes one argument and returns the cube root of that argument. If called with a vector type,
returns a component-wise cube root.

vtkm::Ceil Rounds and returns the smallest integer not less than the single argument. If given a vector,
performs a component-wise operation.

vtkm::CopySign Copies the sign of the second argument onto the first argument and returns that. If the second
argument is positive, returns the absolute value of the first argument. If the second argument is negative,
returns the negative absolute value of the first argument.

vtkm::Cos Returns the cosine of an angle given in radians. If given a vector, performs a component-wise
operation.

vtkm::CosH Returns the hyperbolic cosine. If given a vector, performs a component-wise operation.

vtkm::Epsilon Returns the difference between 1 and the least value greater than 1 that is representable by
a floating point number. Epsilon is useful for specifying the tolerance one should have when considering
numerical error. The Epsilon method is templated to specify either a 32 or 64 bit floating point number.
The convenience methods Epsilon32 and Epsilon64 are non-templated versions that return the precision
for a particular precision.

vtkm::Exp Computes ex where x is the argument to the function and e is Euler’s number (approximately
2.71828). If called with a vector type, returns a component-wise exponent.

vtkm::Exp10 Computes 10x where x is the argument. If called with a vector type, returns a component-wise
exponent.

vtkm::Exp2 Computes 2x where x is the argument. If called with a vector type, returns a component-wise
exponent.

vtkm::ExpM1 Computes ex−1 where x is the argument to the function and e is Euler’s number (approximately
2.71828). The accuracy of this function is good even for very small values of x. If called with a vector
type, returns a component-wise exponent.

vtkm::Floor Rounds and returns the largest integer not greater than the single argument. If given a vector,
performs a component-wise operation.

vtkm::FMod Computes the remainder on the division of 2 floating point numbers. The return value is
numerator−n · denominator, where numerator is the first argument, denominator is the second argu-
ment, and n is the quotient of numerator divided by denominator rounded towards zero to an integer. For
example, FMod(6.5,2.3) returns 1.9, which is 6.5−2 ·4.6. If given vectors, FMod performs a component-
wise operation. FMod is similar to Remainder except that the quotient is rounded toward 0 instead of the
nearest integer.

vtkm::Infinity Returns the representation for infinity. The result is greater than any other number except
another infinity or NaN. When comparing two infinities or infinity to NaN, neither is greater than, less
than, nor equal to the other. The Infinity method is templated to specify either a 32 or 64 bit floating
point number. The convenience methods Infinity32 and Infinity64 are non-templated versions that
return the precision for a particular precision.

vtkm::IsFinite Returns true if the argument is a normal number (neither a NaN nor an infinite).

vtkm::IsInf Returns true if the argument is either positive infinity or negative infinity.

vtkm::IsNan Returns true if the argument is not a number (NaN).

198 Chapter 13. Math

DRAFT

13.1. Basic Math

vtkm::IsNegative Returns true if the single argument is less than zero, false otherwise.

vtkm::Log Computes the natural logarithm (i.e. logarithm to the base e) of the single argument. If called with
a vector type, returns a component-wise logarithm.

vtkm::Log10 Computes the logarithm to the base 10 of the single argument. If called with a vector type,
returns a component-wise logarithm.

vtkm::Log1P Computes ln(1+x) where x is the single argument and ln is the natural logarithm (i.e. logarithm
to the base e). The accuracy of this function is good for very small values. If called with a vector type,
returns a component-wise logarithm.

vtkm::Log2 Computes the logarithm to the base 2 of the single argument. If called with a vector type, returns
a component-wise logarithm.

vtkm::Max Takes two arguments and returns the argument that is greater. If called with a vector type, returns
a component-wise maximum.

vtkm::Min Takes two arguments and returns the argument that is lesser. If called with a vector type, returns
a component-wise minimum.

vtkm::ModF Returns the integral and fractional parts of the first argument. The second argument is a reference
in which the integral part is stored. The return value is the fractional part. If given vectors, ModF performs
a component-wise operation.

vtkm::Nan Returns the representation for not-a-number (NaN). A NaN represents an invalid value or the result
of an invalid operation such as 0/0. A NaN is neither greater than nor less than nor equal to any other
number including other NaNs. The NaN method is templated to specify either a 32 or 64 bit floating point
number. The convenience methods Nan32 and NaN64 are non-templated versions that return the precision
for a particular precision.

vtkm::NegativeInfinity Returns the representation for negative infinity. The result is less than any other
number except another negative infinity or NaN. When comparing two negative infinities or negative in-
finity to NaN, neither is greater than, less than, nor equal to the other. The NegativeInfinity method is
templated to specify either a 32 or 64 bit floating point number. The convenience methods NagativeIn-
finity32 and NegativeInfinity64 are non-templated versions that return the precision for a particular
precision.

vtkm::Pi Returns the constant π (about 3.14159).

vtkm::Pi 2 Returns the constant π/2 (about 1.570796).

vtkm::Pi 3 Returns the constant π/3 (about 1.047197).

vtkm::Pi 4 Returns the constant π/4 (about 0.785398).

vtkm::Pow Takes two arguments and returns the first argument raised to the power of the second argument.
This function is only defined for vtkm::Float32 and vtkm::Float64.

vtkm::RCbrt Takes one argument and returns the cube root of that argument. The result of this function is
equivalent to 1/Cbrt(x). However, on some devices it is faster to compute the reciprocal cube root than
the regular cube root. Thus, you should use this function whenever dividing by the cube root.

vtkm::Remainder Computes the remainder on the division of 2 floating point numbers. The return value is
numerator−n ·denominator, where numerator is the first argument, denominator is the second argument,
and n is the quotient of numerator divided by denominator rounded towards the nearest integer. For
example, FMod(6.5,2.3) returns −0.4, which is 6.5− 3 · 2.3. If given vectors, Remainder performs a

Chapter 13. Math 199

DRAFT

13.2. Vector Analysis

component-wise operation. Remainder is similar to FMod except that the quotient is rounded toward the
nearest integer instead of toward 0.

vtkm::RemainderQuotient Performs an operation identical to Reminder. In addition, this function takes a
third argument that is a reference in which the quotient is given.

vtkm::Round Rounds and returns the integer nearest the single argument. If given a vector, performs a
component-wise operation.

vtkm::RSqrt Takes one argument and returns the square root of that argument. The result of this function is
equivalent to 1/Sqrt(x). However, on some devices it is faster to compute the reciprocal square root than
the regular square root. Thus, you should use this function whenever dividing by the square root.

vtkm::SignBit Returns a nonzero value if the single argument is negative.

vtkm::Sin Returns the sine of an angle given in radians. If given a vector, performs a component-wise operation.

vtkm::SinH Returns the hyperbolic sine. If given a vector, performs a component-wise operation.

vtkm::Sqrt Takes one argument and returns the square root of that argument. If called with a vector type,
returns a component-wise square root. On some hardware it is faster to find the reciprocal square root, so
RSqrt should be used if you actually plan to divide byt the square root.

vtkm::Tan Returns the tangent of an angle given in radians. If given a vector, performs a component-wise
operation.

vtkm::TanH Returns the hyperbolic tangent. If given a vector, performs a component-wise operation.

vtkm::TwoPi Returns the constant 2π (about 6.283185).

13.2 Vector Analysis

Visualization and computational geometry algorithms often perform vector analysis operations. The vtkm/-
VectorAnalysis.h header file provides functions that perform the basic common vector analysis operations.

vtkm::Cross Returns the cross product of two vtkm::Vec of size 3.

vtkm::Lerp Given two values x and y in the first two parameters and a weight w as the third parameter,
interpolates between x and y. Specifically, the linear interpolation is (y−x)w+x although Lerp might
compute the interpolation faster than using the independent arithmetic operations. The two values may
be scalars or equal sized vectors. If the two values are vectors and the weight is a scalar, all components
of the vector are interpolated with the same weight. If the weight is also a vector, then each component of
the value vectors are interpolated with the respective weight component.

vtkm::Magnitude Returns the magnitude of a vector. This function works on scalars as well as vectors, in
which case it just returns the scalar. It is usually much faster to compute MagnitudeSquared, so that
should be substituted when possible (unless you are just going to take the square root, which would be
besides the point). On some hardware it is also faster to find the reciprocal magnitude, so RMagnitude
should be used if you actually plan to divide by the magnitude.

vtkm::MagnitudeSquared Returns the square of the magnitude of a vector. It is usually much faster to compute
the square of the magnitude than the length, so you should use this function in place of Magnitude or
RMagnitude when needing the square of the magnitude or any monotonically increasing function of a
magnitude or distance. This function works on scalars as well as vectors, in which case it just returns the
square of the scalar.

200 Chapter 13. Math

DRAFT

13.3. Matrices

vtkm::Normal Returns a normalized version of the given vector. The resulting vector points in the same
direction as the argument but has unit length.

vtkm::Normalize Takes a reference to a vector and modifies it to be of unit length. Normalize(v) is function-
ally equivalent to v *= RMagnitude(v).

vtkm::RMagnitude Returns the reciprocal magnitude of a vector. On some hardware RMagnitude is faster than
Magnitude, but neither is as fast as MagnitudeSquared. This function works on scalars as well as vectors,
in which case it just returns the reciprocal of the scalar.

vtkm::TriangleNormal Given three points in space (contained in vtkm::Vec s of size 3) that compose a triangle
return a vector that is perpendicular to the triangle. The magnitude of the result is equal to twice the
area of the triangle. The result points away from the “front” of the triangle as defined by the standard
counter-clockwise ordering of the points.

13.3 Matrices

Linear algebra operations on small matrices that are done on a single thread are located in vtkm/Matrix.h.

This header defines the vtkm::Matrix templated class. The template parameters are first the type of component,
then the number of rows, then the number of columns. The overloaded parentheses operator can be used to
retrieve values based on row and column indices. Likewise, the bracket operators can be used to reference the
Matrix as a 2D array (indexed by row first). The following example builds a Matrix that contains the values∣∣∣∣ 0 1 2

10 11 12

∣∣∣∣
Example 13.1: Creating a Matrix.

1 vtkm :: Matrix <vtkm :: Float32 , 2, 3> matrix ;
2
3 // Using parenthesis notation .
4 matrix (0, 0) = 0.0f;
5 matrix (0, 1) = 1.0f;
6 matrix (0, 2) = 2.0f;
7
8 // Using bracket notation .
9 matrix [1][0] = 10.0f;

10 matrix [1][1] = 11.0f;
11 matrix [1][2] = 12.0f;

The vtkm/Matrix.h header also defines the following functions that operate on matrices.

vtkm::MatrixDeterminant Takes a square Matrix as its single argument and returns the determinant of that
matrix.

vtkm::MatrixGetColumn Given a Matrix and a column index, returns a vtkm::Vec of that column. This
function might not be as efficient as vtkm::MatrixRow. (It performs a copy of the column).

vtkm::MatrixGetRow Given a Matrix and a row index, returns a vtkm::Vec of that row.

vtkm::MatrixIdentity Returns the identity matrix. If given no arguments, it creates an identity matrix and
returns it. (In this form, the component type and size must be explicitly set.) If given a single square
matrix argument, fills that matrix with the identity.

Chapter 13. Math 201

DRAFT

13.4. Newton’s Method

vtkm::MatrixInverse Finds and returns the inverse of a given matrix. The function takes two arguments.
The first argument is the matrix to invert. The second argument is a reference to a Boolean that is set to
true if the inverse is found or false if the matrix is singular and the returned matrix is incorrect.

vtkm::MatrixMultiply Performs a matrix-multiply on its two arguments. Overloaded to work for matrix-
matrix, vector-matrix, or matrix-vector multiply.

vtkm::MatrixSetColumn Given a Matrix, a column index, and a vtkm::Vec, sets the column of that index to
the values of the Tuple.

vtkm::MatrixSetRow Given a Matrix, a row index, and a vtkm::Vec, sets the row of that index to the values
of the Tuple.

vtkm::MatrixTranspose Takes a Matrix and returns its transpose.

vtkm::SolveLinearSystem Solves the linear system Ax= b and returns x. The function takes three arguments.
The first two arguments are the matrix A and the vector b, respectively. The third argument is a reference
to a Boolean that is set to true if a single solution is found, false otherwise.

13.4 Newton’s Method

VTK-m’s matrix methods (documented in Section 13.3) provide a method to solve a small linear system of
equations. However, sometimes it is necessary to solve a small nonlinear system of equations. This can be done
with the vtkm::NewtonsMethod function defined in the vtkm/NewtonsMethod.h header.

The NewtonsMethod function assumes that the number of variables equals the number of equations. Newton’s
method operates on an iterative evaluate and search. Evaluations are performed using the functors passed into
the NewtonsMethod. The function takes the following 6 parameters (three of which are optional).

1. A functor whose operation takes a vtkm::Vec and returns a vtkm::Matrix containing the math function’s
Jacobian vector at that point.

2. A functor whose operation takes a vtkm::Vec and returns the evaluation of the math function at that
point as another vtkm::Vec.

3. The vtkm::Vec that represents the desired output of the function.

4. A vtkm::Vec to use as the initial guess. If not specified, the origin is used.

5. The convergence distance. If the iterative method changes all values less than this amount, then it considers
the solution found. If not specified, set to 10−3.

6. The maximum amount of iterations to run before giving up and returning the best solution. If not specified,
set to 10.

The NewtonsMethod function returns a vtkm::NewtonsMethodResult object. NewtonsMethodResult is a struct
templated on the type and number of input values of the nonlinear system. NewtonsMethodResult contains the
following items.

Valid A bool that is set to false if the solution runs into a singularity so that no possible solution is found.

Converged A bool that is set to true if a solution is found that is within the convergence distance specified. It
is set to false if the method did not convert in the specified number of iterations.

202 Chapter 13. Math

DRAFT

13.4. Newton’s Method

Solution A vtkm::Vec containing the solution to the nonlinear system. If Converged is false, then this value
is likely inaccurate. If Valid is false, then this value is undefined.

Example 13.2: Using NewtonsMethod to solve a small system of nonlinear equations.
1 // A functor for the mathematical function f(x) = [dot(x,x),x[0]*x[1]]
2 struct FunctionFunctor
3 {
4 template < typename T>
5 VTKM_EXEC_CONT vtkm ::Vec <T, 2> operator ()(const vtkm ::Vec <T, 2>& x) const
6 {
7 return vtkm :: make_Vec (vtkm :: Dot(x, x), x[0] * x [1]);
8 }
9 };

10
11 // A functor for the Jacobian of the mathematical function
12 // f(x) = [dot(x,x),x[0]*x[1]] , which is
13 // | 2*x[0] 2*x[1] |
14 // | x[1] x[0] |
15 struct JacobianFunctor
16 {
17 template < typename T>
18 VTKM_EXEC_CONT vtkm :: Matrix <T, 2, 2> operator ()(const vtkm ::Vec <T, 2>& x) const
19 {
20 vtkm :: Matrix <T, 2, 2> jacobian ;
21 jacobian (0, 0) = 2 * x[0];
22 jacobian (0, 1) = 2 * x[1];
23 jacobian (1, 0) = x[1];
24 jacobian (1, 1) = x[0];
25
26 return jacobian ;
27 }
28 };
29
30 VTKM_EXEC
31 void SolveNonlinear ()
32 {
33 // Use Newton ’s method to solve the nonlinear system of equations :
34 //
35 // xˆ2 + yˆ2 = 2
36 // x*y = 1
37 //
38 // There are two possible solutions , which are (x=1,y=1) and (x=-1,y= -1).
39 // The one found depends on the starting value .
40 vtkm :: NewtonsMethodResult <vtkm :: Float32 , 2> answer1 =
41 vtkm :: NewtonsMethod (JacobianFunctor (),
42 FunctionFunctor (),
43 vtkm :: make_Vec (2.0f, 1.0f),
44 vtkm :: make_Vec (1.0f, 0.0f));
45 if (! answer1 . Valid || ! answer1 . Converged)
46 {
47 // Failed to find solution
48 }
49 // answer1 . Solution is [1 ,1]
50
51 vtkm :: NewtonsMethodResult <vtkm :: Float32 , 2> answer2 =
52 vtkm :: NewtonsMethod (JacobianFunctor (),
53 FunctionFunctor (),
54 vtkm :: make_Vec (2.0f, 1.0f),
55 vtkm :: make_Vec (0.0f, -2.0f));
56 if (! answer2 . Valid || ! answer2 . Converged)
57 {
58 // Failed to find solution
59 }

Chapter 13. Math 203

DRAFT

13.4. Newton’s Method

60 // answer2 is [-1,-1]
61 }

204 Chapter 13. Math

DRAFT
CHAPTER

FOURTEEN

WORKING WITH CELLS

In the control environment, data is defined in mesh structures that comprise a set of finite cells. (See Section 11.2
starting on page 144 for information on defining cell sets in the control environment.) When worklets that operate
on cells are scheduled, these grid structures are broken into their independent cells, and that data is handed to
the worklet. Thus, cell-based operations in the execution environment exclusively operate on independent cells.

Unlike some other libraries such as VTK, VTK-m does not have a cell class that holds all the information
pertaining to a cell of a particular type. Instead, VTK-m provides tags or identifiers defining the cell shape,
and companion data like coordinate and field information are held in separate structures. This organization is
designed so a worklet may specify exactly what information it needs, and only that information will be loaded.

14.1 Cell Shape Tags and Ids

Cell shapes can be specified with either a tag (defined with a struct with a name like CellShapeTag*) or an
enumerated identifier (defined with a constant number with a name like CELL SHAPE *). These shape tags and
identifiers are defined in vtkm/CellShape.h and declared in the vtkm namespace (because they can be used in
either the control or the execution environment). Figure 14.1 gives both the identifier and the tag names.

In addition to the basic cell shapes, there is a special “empty” cell with the identifier vtkm::CELL SHAPE EMPTY
and tag vtkm::CellShapeTagEmpty. This type of cell has no points, edges, or faces and can be thought of as a
placeholder for a null or void cell.

There is also a special cell shape “tag” named vtkm::CellShapeTagGeneric that is used when the actual cell
shape is not known at compile time. CellShapeTagGeneric actually has a member variable named Id that
stores the identifier for the cell shape. There is no equivalent identifier for a generic cell; cell shape identifiers
can be placed in a vtkm::IdComponent at runtime.

When using cell shapes in templated classes and functions, you can use the VTKM IS CELL SHAPE TAG to ensure
a type is a valid cell shape tag. This macro takes one argument and will produce a compile error if the argument
is not a cell shape tag type.

14.1.1 Converting Between Tags and Identifiers

Every cell shape tag has a member variable named Id that contains the identifier for the cell shape. This
provides a convenient mechanism for converting a cell shape tag to an identifier. Most cell shape tags have their
Id member as a compile-time constant, but CellShapeTagGeneric is set at run time.

vtkm/CellShape.h also declares a templated class named vtkm::CellShapeIdToTag that converts a cell shape

DRAFT

14.1. Cell Shape Tags and Ids

0

2

1

vtkm::CELL SHAPE VERTEX vtkm::CELL SHAPE LINE vtkm::CELL SHAPE TRIANGLE
vtkm::CellShapeTagVertex vtkm::CellShapeTagLine vtkm::CellShapeTagTriangle

0 1

n-2

n-1
2

3
1

0

3

0
1

2

vtkm::CELL SHAPE POLYGON vtkm::CELL SHAPE QUAD vtkm::CELL SHAPE TETRA
vtkm::CellShapeTagPolygon vtkm::CellShapeTagQuad vtkm::CellShapeTagTetra

0 1

23
4

5
7 6

2

0
1

5

3
4 3

0 1

2

4

vtkm::CELL SHAPE HEXAHEDRON vtkm::CELL SHAPE WEDGE vtkm::CELL SHAPE PYRAMID
vtkm::CellShapeTagHexahedron vtkm::CellShapeTagWedge vtkm::CellShapeTagPyramid

Figure 14.1: Basic Cell Shapes

identifier to a cell shape tag. CellShapeIdToTag has a single template argument that is the identifier. Inside
the class is a type named Tag that is the type of the correct tag.

Example 14.1: Using CellShapeIdToTag.
1 void CellFunction (vtkm :: CellShapeTagTriangle)
2 {
3 std :: cout << "In CellFunction for triangles ." << std :: endl;
4 }
5
6 void DoSomethingWithACell ()
7 {
8 // Calls CellFunction overloaded with a vtkm :: CellShapeTagTriangle .
9 CellFunction (vtkm :: CellShapeIdToTag <vtkm :: CELL_SHAPE_TRIANGLE >:: Tag ());

10 }

However, CellShapeIdToTag is only viable if the identifier can be resolved at compile time. In the case where
a cell identifier is stored in a variable or an array or the code is using a CellShapeTagGeneric, the correct cell
shape is not known at run time. In this case, vtkmGenericCellShapeMacro can be used to check all possible
conditions. This macro is embedded in a switch statement where the condition is the cell shape identifier.
vtkmGenericCellShapeMacro has a single argument, which is an expression to be executed. Before the expression
is executed, a type named CellShapeTag is defined as the type of the appropriate cell shape tag. Often this
method is used to implement the condition for a CellShapeTagGeneric in a function overloaded for cell types.
A demonstration of vtkmGenericCellShapeMacro is given in Example 14.2.

206 Chapter 14. Working with Cells

DRAFT

14.1. Cell Shape Tags and Ids

14.1.2 Cell Traits

The vtkm/CellTraits.h header file contains a traits class named vtkm::CellTraits that provides information
about a cell. Each specialization of CellTraits contains the following members.

TOPOLOGICAL DIMENSIONS Defines the topological dimensions of the cell type. This is 3 for polyhedra, 2 for
polygons, 1 for lines, and 0 for points.

TopologicalDimensionsTag A type set to either vtkm::CellTopologicalDimensionsTag <3>, CellTopolog-
icalDimensionsTag<2>, CellTopologicalDimensionsTag<1>, or CellTopologicalDimensionsTag<0>.
The number is consistent with TOPOLOGICAL DIMENSIONS. This tag is provided for convenience when spe-
cializing functions.

IsSizeFixed Set to either vtkm::CellTraitsTagSizeFixed for cell types with a fixed number of points (for
example, triangle) or vtkm::CellTraitsTagSizeVariable for cell types with a variable number of points
(for example, polygon).

NUM POINTS A vtkm::IdComponent set to the number of points in the cell. This member is only defined when
there is a constant number of points (i.e. IsSizeFixed is set to vtkm::CellTraitsTagSizeFixed).

Example 14.2: Using CellTraits to implement a polygon normal estimator.
1 namespace detail
2 {
3
4 VTKM_SUPPRESS_EXEC_WARNINGS
5 template < typename PointCoordinatesVector , typename WorkletType >
6 VTKM_EXEC_CONT typename PointCoordinatesVector :: ComponentType CellNormalImpl (
7 const PointCoordinatesVector & pointCoordinates ,
8 vtkm :: CellTopologicalDimensionsTag <2>,
9 const WorkletType & worklet)

10 {
11 if (pointCoordinates . GetNumberOfComponents () >= 3)
12 {
13 return vtkm :: TriangleNormal (
14 pointCoordinates [0] , pointCoordinates [1] , pointCoordinates [2]);
15 }
16 else
17 {
18 worklet . RaiseError (" Degenerate polygon .");
19 return typename PointCoordinatesVector :: ComponentType ();
20 }
21 }
22
23 VTKM_SUPPRESS_EXEC_WARNINGS
24 template < typename PointCoordinatesVector ,
25 vtkm :: IdComponent Dimensions ,
26 typename WorkletType >
27 VTKM_EXEC_CONT typename PointCoordinatesVector :: ComponentType CellNormalImpl (
28 const PointCoordinatesVector &,
29 vtkm :: CellTopologicalDimensionsTag < Dimensions >,
30 const WorkletType & worklet)
31 {
32 worklet . RaiseError (" Only polygons supported for cell normals .");
33 return typename PointCoordinatesVector :: ComponentType ();
34 }
35
36 } // namespace detail
37
38 VTKM_SUPPRESS_EXEC_WARNINGS

Chapter 14. Working with Cells 207

DRAFT

14.2. Parametric and World Coordinates

39 template < typename CellShape , typename PointCoordinatesVector , typename WorkletType >
40 VTKM_EXEC_CONT typename PointCoordinatesVector :: ComponentType CellNormal (
41 CellShape ,
42 const PointCoordinatesVector & pointCoordinates ,
43 const WorkletType & worklet)
44 {
45 return detail :: CellNormalImpl (
46 pointCoordinates ,
47 typename vtkm :: CellTraits <CellShape >:: TopologicalDimensionsTag (),
48 worklet);
49 }
50
51 VTKM_SUPPRESS_EXEC_WARNINGS
52 template < typename PointCoordinatesVector , typename WorkletType >
53 VTKM_EXEC_CONT typename PointCoordinatesVector :: ComponentType CellNormal (
54 vtkm :: CellShapeTagGeneric shape ,
55 const PointCoordinatesVector & pointCoordinates ,
56 const WorkletType & worklet)
57 {
58 switch (shape .Id)
59 {
60 vtkmGenericCellShapeMacro (
61 return CellNormal (CellShapeTag (), pointCoordinates , worklet));
62 default :
63 worklet . RaiseError (" Unknown cell type .");
64 return typename PointCoordinatesVector :: ComponentType ();
65 }
66 }

14.2 Parametric and World Coordinates

Each cell type supports a one-to-one mapping between a set of parametric coordinates in the unit cube (or some
subset of it) and the points in 3D space that are the locus contained in the cell. Parametric coordinates are useful
because certain features of the cell, such as vertex location and center, are at a consistent location in parametric
space irrespective of the location and distortion of the cell in world space. Also, many field operations are much
easier with parametric coordinates.

The vtkm/exec/ParametricCoordinates.h header file contains the following functions for working with parametric
coordinates.

vtkm::exec::ParametricCoordinatesCenter Returns the parametric coordinates for the center of a given
shape. It takes 4 arguments: the number of points in the cell, a vtkm::Vec of size 3 to store the results, a
shape tag, and a worklet object (for raising errors). A second form of this method takes 3 arguments and
returns the result as a vtkm::Vec <vtkm::FloatDefault,3> instead of passing it as a parameter.

vtkm::exec::ParametricCoordinatesPoint Returns the parametric coordinates for a given point of a given
shape. It takes 5 arguments: the number of points in the cell, the index of the point to query, a vtkm::Vec
of size 3 to store the results, a shape tag, and a worklet object (for raising errors). A second form of this
method takes 3 arguments and returns the result as a vtkm::Vec <<vtkm::FloatDefault,3> instead of
passing it as a parameter.

vtkm::exec::ParametricCoordinatesToWorldCoordinates Given a vector of point coordinates (usually given
by a FieldPointIn worklet argument), a vtkm::Vec of size 3 containing parametric coordinates, a shape
tag, and a worklet object (for raising errors), returns the world coordinates.

vtkm::exec::WorldCoordinatesToParametricCoordinates Given a vector of point coordinates (usually given
by a FieldPointIn worklet argument), a vtkm::Vec of size 3 containing world coordinates, a shape tag,

208 Chapter 14. Working with Cells

DRAFT

14.3. Interpolation

and a worklet object (for raising errors), returns the parametric coordinates. This function can be slow for
cell types with nonlinear interpolation (which is anything that is not a simplex).

14.3 Interpolation

The shape of every cell is defined by the connections of some finite set of points. Field values defined on those
points can be interpolated to any point within the cell to estimate a continuous field.

The vtkm/exec/CellInterpolate.h header contains the function vtkm::exec::CellInterpolate that takes a vector
of point field values (usually given by a FieldPointIn worklet argument), a vtkm::Vec of size 3 containing
parametric coordinates, a shape tag, and a worklet object (for raising errors). It returns the field interpolated
to the location represented by the given parametric coordinates.

Example 14.3: Interpolating field values to a cell’s center.
1 struct CellCenters : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 using ControlSignature = void (CellSetIn ,
4 FieldInPoint inputField ,
5 FieldOutCell outputField);
6 using ExecutionSignature = void (CellShape , PointCount , _2 , _3);
7 using InputDomain = _1;
8
9 template < typename CellShapeTag , typename FieldInVecType , typename FieldOutType >

10 VTKM_EXEC void operator ()(CellShapeTag shape ,
11 vtkm :: IdComponent pointCount ,
12 const FieldInVecType & inputField ,
13 FieldOutType & outputField) const
14 {
15 vtkm ::Vec <vtkm :: FloatDefault , 3> center =
16 vtkm :: exec :: ParametricCoordinatesCenter (pointCount , shape , *this);
17 outputField = vtkm :: exec :: CellInterpolate (inputField , center , shape , *this);
18 }
19 };

14.4 Derivatives

Since interpolations provide a continuous field function over a cell, it is reasonable to consider the derivative of
this function. The vtkm/exec/CellDerivative.h header contains the function vtkm::exec::CellDerivative that
takes a vector of scalar point field values (usually given by a FieldPointIn worklet argument), a vtkm::Vec
of size 3 containing parametric coordinates, a shape tag, and a worklet object (for raising errors). It returns
the field derivative at the location represented by the given parametric coordinates. The derivative is return in
a vtkm::Vec of size 3 corresponding to the partial derivatives in the x, y, and z directions. This derivative is
equivalent to the gradient of the field.

Example 14.4: Computing the derivative of the field at cell centers.
1 struct CellDerivatives : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 using ControlSignature = void (CellSetIn ,
4 FieldInPoint inputField ,
5 FieldInPoint pointCoordinates ,
6 FieldOutCell outputField);
7 using ExecutionSignature = void (CellShape , PointCount , _2 , _3 , _4);
8 using InputDomain = _1;

Chapter 14. Working with Cells 209

DRAFT

14.5. Edges and Faces

9
10 template < typename CellShapeTag ,
11 typename FieldInVecType ,
12 typename PointCoordVecType ,
13 typename FieldOutType >
14 VTKM_EXEC void operator ()(CellShapeTag shape ,
15 vtkm :: IdComponent pointCount ,
16 const FieldInVecType & inputField ,
17 const PointCoordVecType & pointCoordinates ,
18 FieldOutType & outputField) const
19 {
20 vtkm ::Vec <vtkm :: FloatDefault , 3> center =
21 vtkm :: exec :: ParametricCoordinatesCenter (pointCount , shape , *this);
22 outputField =
23 vtkm :: exec :: CellDerivative (inputField , pointCoordinates , center , shape , *this);
24 }
25 };

14.5 Edges and Faces

As explained earlier in this chapter, a cell is defined by a collection of points and a shape identifier that
describes how the points come together to form the structure of the cell. The cell shapes supported by VTK-m
are documented in Section 14.1. It contains Figure 14.1 on page 206, which shows how the points for each shape
form the structure of the cell.

Most cell shapes can be broken into subelements. 2D and 3D cells have pairs of points that form edges at the
boundaries of the cell. Likewise, 3D cells have loops of edges that form faces that encase the cell. Figure 14.2
demonstrates the relationship of these constituent elements for some example cell shapes.

Points

Edges
Face

Figure 14.2: The constituent elements (points, edges, and faces) of cells.

The header file vtkm/exec/CellEdge.h contains a collection of functions to help identify the edges of a cell. The
first such function is vtkm::exec::CellEdgeNumberOfEdges. This function takes the number of points in the
cell, the shape of the cell, and an instance of the calling worklet (for error reporting). It returns the number of
edges the cell has (as a vtkm::IdComponent).

The second function is vtkm::exec::CellEdgeLocalIndex. This function takes, respectively, the number of
points, the local index of the point in the edge (0 or 1), the local index of the edge (0 to the number of edges in
the cell), the shape of the cell, and an instance of the calling worklet. It returns a vtkm::IdComponent containing
the local index (between 0 and the number of points in the cell) of the requested point in the edge. This local
point index is consistent with the point labels in Figure 14.2. To get the point indices relative to the data set,
the edge indices should be used to reference a PointIndices list.

The third function is vtkm::exec::CellEdgeCanonicalId. This function takes the number of points, the local
index of the edge, the shape of the cell, a Vec-like containing the global id of each cell point, and an instance
of the calling worklet. It returns a vtkm::Id2 that is globally unique to that edge. If CellEdgeCanonicalId
is called on an edge for a different cell, the two will be the same if and only if the two cells share that edge.
CellEdgeCanonicalId is useful for finding coincident components of topology.

The following example demonstrates a pair of worklets that use the cell edge functions. As is typical for operations

210 Chapter 14. Working with Cells

DRAFT

14.5. Edges and Faces

of this nature, one worklet counts the number of edges in each cell and another uses this count to generate the
data.

Example 14.5 demonstrates one of many techniques for creating cell sets in a worklet. Chapter 16 describes
this and many more such techniques.

Did you know?

Example 14.5: Using cell edge functions.
1 struct EdgesCount : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 using ControlSignature = void (CellSetIn , FieldOutCell numEdgesInCell);
4 using ExecutionSignature = _2(CellShape , PointCount);
5 using InputDomain = _1;
6
7 template < typename CellShapeTag >
8 VTKM_EXEC vtkm :: IdComponent operator ()(CellShapeTag cellShape ,
9 vtkm :: IdComponent numPointsInCell) const

10 {
11 return vtkm :: exec :: CellEdgeNumberOfEdges (numPointsInCell , cellShape , *this);
12 }
13 };
14
15 struct EdgesExtract : vtkm :: worklet :: WorkletMapPointToCell
16 {
17 using ControlSignature = void (CellSetIn , FieldOutCell edgeIndices);
18 using ExecutionSignature = void (CellShape , PointIndices , VisitIndex , _2);
19 using InputDomain = _1;
20
21 using ScatterType = vtkm :: worklet :: ScatterCounting ;
22
23 template < typename CellShapeTag ,
24 typename PointIndexVecType ,
25 typename EdgeIndexVecType >
26 VTKM_EXEC void operator ()(CellShapeTag cellShape ,
27 const PointIndexVecType & globalPointIndicesForCell ,
28 vtkm :: IdComponent edgeIndex ,
29 EdgeIndexVecType & edgeIndices) const
30 {
31 vtkm :: IdComponent numPointsInCell =
32 globalPointIndicesForCell . GetNumberOfComponents ();
33
34 vtkm :: IdComponent pointInCellIndex0 = vtkm :: exec :: CellEdgeLocalIndex (
35 numPointsInCell , 0, edgeIndex , cellShape , *this);
36 vtkm :: IdComponent pointInCellIndex1 = vtkm :: exec :: CellEdgeLocalIndex (
37 numPointsInCell , 1, edgeIndex , cellShape , *this);
38
39 edgeIndices [0] = globalPointIndicesForCell [pointInCellIndex0];
40 edgeIndices [1] = globalPointIndicesForCell [pointInCellIndex1];
41 }
42 };

The header file vtkm/exec/CellFace.h contains a collection of functions to help identify the faces of a cell. The
first such function is vtkm::exec::CellFaceNumberOfFaces. This function takes the shape of the cell and an
instance of the calling worklet (for error reporting). It returns the number of faces the cell has (as a vtkm::-
IdComponent).

The second function is vtkm::exec::CellFaceNumberOfPoints. This function takes the local index of the face
(0 to the number of faces in the cell), the shape of the cell, and an instance of the calling worklet. It returns the

Chapter 14. Working with Cells 211

DRAFT

14.5. Edges and Faces

number of points the specified face has (as a vtkm::IdComponent).

The third function is vtkm::exec::CellFaceLocalIndex. This function takes, respectively, the local index of
the point in the face (0 to the number of points in the face), the local index of the face (0 to the number of
faces in the cell), the shape of the cell, and an instance of the calling worklet. It returns a vtkm::IdComponent
containing the local index (between 0 and the number of points in the cell) of the requested point in the face.
The points are indexed in counterclockwise order when viewing the face from the outside of the cell. This local
point index is consistent with the point labels in Figure 14.2. To get the point indices relative to the data set,
the face indices should be used to reference a PointIndices list.

The fourth function is vtkm::exec::CellFaceCanonicalId. This function takes the local index of the face, the
shape of the cell, a Vec-like containing the global id of each cell point, and an instance of the calling worklet.
It returns a vtkm::Id3 that is globally unique to that face. If CellFaceCanonicalId is called on a face for a
different cell, the two will be the same if and only if the two cells share that face. CellFaceCanonicalId is
useful for finding coincident components of topology.

The following example demonstrates a triple of worklets that use the cell face functions. As is typical for
operations of this nature, the worklets are used in steps to first count entities and then generate new entities.
In this case, the first worklet counts the number of faces and the second worklet counts the points in each face.
The third worklet generates cells for each face.

Example 14.6: Using cell face functions.
1 struct FacesCount : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 using ControlSignature = void (CellSetIn , FieldOutCell numFacesInCell);
4 using ExecutionSignature = _2(CellShape);
5 using InputDomain = _1;
6
7 template < typename CellShapeTag >
8 VTKM_EXEC vtkm :: IdComponent operator ()(CellShapeTag cellShape) const
9 {

10 return vtkm :: exec :: CellFaceNumberOfFaces (cellShape , *this);
11 }
12 };
13
14 struct FacesCountPoints : vtkm :: worklet :: WorkletMapPointToCell
15 {
16 using ControlSignature = void (CellSetIn ,
17 FieldOutCell numPointsInFace ,
18 FieldOutCell faceShape);
19 using ExecutionSignature = void (CellShape , VisitIndex , _2 , _3);
20 using InputDomain = _1;
21
22 using ScatterType = vtkm :: worklet :: ScatterCounting ;
23
24 template < typename CellShapeTag >
25 VTKM_EXEC void operator ()(CellShapeTag cellShape ,
26 vtkm :: IdComponent faceIndex ,
27 vtkm :: IdComponent & numPointsInFace ,
28 vtkm :: UInt8 & faceShape) const
29 {
30 numPointsInFace =
31 vtkm :: exec :: CellFaceNumberOfPoints (faceIndex , cellShape , *this);
32 switch (numPointsInFace)
33 {
34 case 3:
35 faceShape = vtkm :: CELL_SHAPE_TRIANGLE ;
36 break ;
37 case 4:
38 faceShape = vtkm :: CELL_SHAPE_QUAD ;
39 break ;

212 Chapter 14. Working with Cells

DRAFT

14.5. Edges and Faces

40 default :
41 faceShape = vtkm :: CELL_SHAPE_POLYGON ;
42 break ;
43 }
44 }
45 };
46
47 struct FacesExtract : vtkm :: worklet :: WorkletMapPointToCell
48 {
49 using ControlSignature = void (CellSetIn , FieldOutCell faceIndices);
50 using ExecutionSignature = void (CellShape , PointIndices , VisitIndex , _2);
51 using InputDomain = _1;
52
53 using ScatterType = vtkm :: worklet :: ScatterCounting ;
54
55 template < typename CellShapeTag ,
56 typename PointIndexVecType ,
57 typename FaceIndexVecType >
58 VTKM_EXEC void operator ()(CellShapeTag cellShape ,
59 const PointIndexVecType & globalPointIndicesForCell ,
60 vtkm :: IdComponent faceIndex ,
61 FaceIndexVecType & faceIndices) const
62 {
63 vtkm :: IdComponent numPointsInFace = faceIndices . GetNumberOfComponents ();
64 VTKM_ASSERT (numPointsInFace ==
65 vtkm :: exec :: CellFaceNumberOfPoints (faceIndex , cellShape , *this));
66 for (vtkm :: IdComponent pointInFaceIndex = 0;
67 pointInFaceIndex < numPointsInFace ;
68 pointInFaceIndex ++)
69 {
70 vtkm :: IdComponent pointInCellIndex = vtkm :: exec :: CellFaceLocalIndex (
71 pointInFaceIndex , faceIndex , cellShape , *this);
72 faceIndices [pointInFaceIndex] = globalPointIndicesForCell [pointInCellIndex];
73 }
74 }
75 };

Chapter 14. Working with Cells 213

DRAFT

DRAFT
CHAPTER

FIFTEEN

LOCATORS

Locators are a special type of structure that allows you to take a point coordinate in space and then find a
topological element that contains or is near that coordinate. VTK-m comes with multiple types of locators,
which are categorized by the type of topological element that they find. For example, a cell locator takes a
coordinate in world space and finds the cell in a vtkm::cont::DataSet that contains that cell. Likewise, a point
locator takes a coordinate in world space and finds a point from a vtkm::cont::CoordinateSystem nearby.

Different locators differ in their interface slightly, but they all follow the same basic operation. First, they are
constructed and provided with one or more elements of a vtkm::cont::DataSet. Then they are built with a
call to an Update method. The locator can then be passed to a worklet as an ExecObject, which will cause the
worklet to get a special execution version of the locator that can do the queries.

Other visualization libraries, like VTK-m’s big sister toolkit VTK, provide similar locator structures that
allow iterative building by adding one element at a time. VTK-m explicitly disallows this use case. Although
iteratively adding elements to a locator is undoubtedly useful, such an operation will inevitably bottleneck
a highly threaded algorithm in critical sections. This makes iterative additions to locators too costly to
support in VTK-m.

Did you know?

15.1 Cell Locators

Cell Locators in VTK-m provide a means of building spatial search structures that can later be used to find
a cell containing a certain point. This could be useful in scenarios where the application demands the cell to
which a point belongs to to achieve a certain functionality. For example, while tracing a particle’s path through
a vector field, after every step we lookup which cell the particle has entered to interpolate the velocity at the
new location to take the next step.

Using cell locators is a two step process. The first step is to build the search structure. This is done by
instantiating one of the subclasses of vtkm::cont::CellLocator, providing a cell set and coordinate system
(usually from a vtkm::cont::DataSet), and then updating the structure. Once the cell locator is built, it can
be used in the execution environment within a filter or worklet.

DRAFT

15.1. Cell Locators

15.1.1 Building a Cell Locator

All Cell Locators in VTK-m inherit from vtkm::cont::CellLocator, which provides the basic interface for the
required features of cell locators. This generic interface provides methods to set the cell set (with SetCellSet
and GetCellSet) and to set the coordinate system (with SetCoordinates and GetCoordinates). Once the cell
set and coordinates are provided, you may call Update to construct the search structures. Although Update is
called from the control environment, the search structure will be built on parallel devices.

Example 15.1: Constructing a CellLocator.
1 vtkm :: cont :: CellLocatorGeneral locator ;
2 locator . SetCellSet (data. GetCellSet ());
3 locator . SetCoordinates (data. GetCoordinateSystem ());
4 locator . Update ();

VTK-m currently exposes the implementations of the following Cell Locators.

vtkm::cont::CellLocatorGeneral This locator will automatically select another locator to use as its imple-
mentation. CellLocatorGeneral allows you to automatically select cell locators optimized for certain cell
structures without knowing the cell set type. You can change how CellLocatorGeneral selects a Cell-
Locator by providing a function to the SetConfigurator method. If no configurator is set, then a default
one is used.

vtkm::cont::CellLocatorUniformGrid This locator is optimized for structured data that has uniform axis-
aligned spacing. For this cell locator to work, it has to be given a cell set of type CellSetStructured and
a coordinate system using an ArrayHandleUniformPointCoordinates for its data.

vtkm::cont::CellLocatorRectilinearGrid This locator is optimized for structured data that has nonuniform
axis-aligned spacing. For this cell locator to work, it has to be given a cell set of type CellSetStructured
and a coordinate system using an ArrayHandleCartesianProduct for its data.

vtkm::cont::CellLocatorUniformBins This locator builds a 2-level hierarchy of uniform bins. The first level
is a coarse partitioning of the space. Each bin in the first level has a second grid who’s size depends on the
number of cells in the first level. The density (number of cells expected in each bin) for each level can be
set with SetDensityL1 and SetDensityL2. Their default values are 32 and 2, respectively.

vtkm::cont::CellLocatorBoundingIntervalHierarchy This locator is based on the bounding interval hi-
erarchy spatial search structure. CellLocatorBoundingIntervalHierarchy takes two parameters: the
number of splitting planes used to split the cells uniformly along an axis at each level and the maximum
leaf size, which determines if a node needs to be split further. These parameters can set through the
SetNumberOfPlanes and SetMaxLeafSize methods.

15.1.2 Using Cell Locators in a Worklet

The vtkm::cont::CellLocator interface implements vtkm::cont::ExecutionObjectBase. This means that
any CellLocator can be used in worklets as an ExecObject argument (as defined in the ControlSignature). See
Section 12.9 for information on ExecObject arguments to worklets.

When a vtkm::cont::CellLocator class is passed as an ExecObject argument to a worklet Invoke, the worklet
receives a pointer to a vtkm::exec::CellLocator object. vtkm::exec::CellLocator provides a FindCell
method that identifies a containing cell given a point location in space.

216 Chapter 15. Locators

DRAFT

15.1. Cell Locators

Note that vtkm::cont::CellLocator and vtkm::exec::CellLocator are different objects with different
interfaces despite the similar names.

Common Errors

The CellLocator::FindCell method takes 4 arguments. The first argument is an input query point. The
second argument is used to return the id of the cell containing this point (or -1 if the point is not found in any
cell). The third argument is used to return the parametric coordinates for the point within the cell (assuming it is
found in any cell). The fourth argument is a reference to the calling worklet (used for error reporting purposes).
The following example defines a simple worklet to get the value of a point field interpolated to a group of query
point coordinates provided.

Example 15.2: Using a CellLocator in a worklet.
1 struct QueryCells : public vtkm :: worklet :: WorkletMapField
2 {
3 using ControlSignature =
4 void (FieldIn , ExecObject , WholeCellSetIn <Point , Cell >, WholeArrayIn , FieldOut);
5 using ExecutionSignature = void (_1 , _2 , _3 , _4 , _5);
6
7 template < typename Point ,
8 typename CellLocatorExecObject ,
9 typename CellSet ,

10 typename FieldPortal ,
11 typename OutType >
12 VTKM_EXEC void operator ()(const Point & point ,
13 const CellLocatorExecObject & cellLocator ,
14 const CellSet & cellSet ,
15 const FieldPortal & field ,
16 OutType & out) const
17 {
18 // Use the cell locator to find the cell containing the point and the parametric
19 // coordinates within that cell.
20 vtkm :: Id cellId ;
21 vtkm ::Vec <vtkm :: FloatDefault , 3> parametric ;
22 cellLocator -> FindCell (point , cellId , parametric , *this);
23
24 // Use this information to interpolate the point field to the given location .
25 if (cellId >= 0)
26 {
27 // Get shape information about the cell containing the point coordinate
28 auto cellShape = cellSet . GetCellShape (cellId);
29 auto indices = cellSet . GetIndices (cellId);
30
31 // Make a Vec -like containing the field data at the cell ’s points
32 auto fieldValues = vtkm :: make_VecFromPortalPermute (& indices , & field);
33
34 // Do the interpolation
35 out = vtkm :: exec :: CellInterpolate (fieldValues , parametric , cellShape , *this);
36 }
37 else
38 {
39 this -> RaiseError (" Given point outside of the cell set .");
40 }
41 }
42
43 template < typename FieldType >
44 VTKM_CONT static vtkm :: cont :: ArrayHandle <FieldType > Run(
45 vtkm :: cont :: CellLocator * cellLocator ,
46 const vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault , 3>>& queryPoints ,

Chapter 15. Locators 217

DRAFT

15.2. Point Locators

47 const vtkm :: cont :: ArrayHandle <FieldType >& field)
48 {
49 cellLocator -> Update ();
50
51 vtkm :: cont :: ArrayHandle <FieldType > interpolatedField ;
52
53 vtkm :: worklet :: DispatcherMapField < QueryCells > dispatcher ;
54 dispatcher . Invoke (
55 queryPoints , cellLocator , cellLocator -> GetCellSet (), field , interpolatedField);
56
57 return interpolatedField ;
58 }
59 }; // struct QueryCells

15.2 Point Locators

Point Locators in VTK-m provide a means of building spatial search structures that can later be used to find the
nearest neighbor a certain point. This could be useful in scenarios where the closest pairs of points are needed.
For example, during halo finding of particles in cosmology simulations, pairs of nearest neighbors within certain
linking length are used to form clusters of particles.

Using cell locators is a two step process. The first step is to build the search structure. This is done by
instantiating one of the subclasses of vtkm::cont::PointLocator, providing a coordinate system (usually from
a vtkm::cont::DataSet) representing the location of points that can later be found through queries, and then
updating the structure. Once the cell locator is built, it can be used in the execution environment within a filter
or worklet.

15.2.1 Building Point Locators

All point Locators in VTK-m inherit from vtkm::cont::PointLocator, which provides the basic interface for
the required features of point locators. This generic interface provides methods to set the coordinate system
(with SetCoordinates and GetCoordinates) of training points. Once the coordinates are provided, you may
call Update to construct the search structures. Although Update is called from the control environment, the
search structure will be built on parallel devices

Example 15.3: Constructing a PointLocator.
1 vtkm :: cont :: PointLocatorUniformGrid locator ;
2 locator . SetCoordinates (data. GetCoordinateSystem ());
3 locator . Update ();

VTK-m currently exposes the implementations of the following Point Locators.

vtkm::cont::PointLocatorUniformGrid This point locator is based on the uniform grid search structure. It
divides the search space into a uniform grid of bins. A search for a point near a given coordinate starts
in the bin containing the search coordinates. If a candidate point is not found in that bin, points are
searched in an expanding neighborhood of grid bins. The size of the grid used by the locator to partition
the space can be set with SetNumberOfBins. By default, PointLocatorUniformGrid uses a 323 grid. It
is also possible to set the physical space over which the search space is constructed with the SetRange
method. If the range is not set, it will automatically be set to the space of the coordinates.

218 Chapter 15. Locators

DRAFT

15.2. Point Locators

15.2.2 Using Point Locators in a Worklet

The vtkm::cont::PointLocator interface implements vtkm::cont::ExecutionObjectBase. This means that
any PointLocator can be used in worklets as an ExecObject argument (as defined in the ControlSignature).
See Section 12.9 for information on ExecObject arguments to worklets.

When a vtkm::cont::PointLocator class is passed as an ExecObject argument to a worklet Invoke, the
worklet receives a pointer to a vtkm::exec::PointLocator object. vtkm::exec::PointLocator provides a
FindNearestNeighbor method that identifies the nearest neighbor point given a coordinate in space.

Note that vtkm::cont::PointLocator and vtkm::exec::PointLocator are different objects with different
interfaces despite the similar names.

Common Errors

The FindNearestNeighbor method takes 3 arguments. The first argument is an input query point. The second
argument is used to return the id of the nearest neighbor point (or -1 if no nearby point is found, for example,
in the case of an empty set of data set points). The third argument is used to return the squared distance for
the query point to its nearest neighbor.

Example 15.4: Using a PointLocator in a worklet.
1 /// Worklet that generates for each input coordinate a unit vector that points
2 /// to the closest point in a locator .
3 struct PointToClosest : public vtkm :: worklet :: WorkletMapField
4 {
5 using ControlSignature = void (FieldIn , ExecObject , WholeArrayIn , FieldOut);
6 using ExecutionSignature = void (_1 , _2 , _3 , _4);
7
8 template < typename Point ,
9 typename PointLocatorExecObject ,

10 typename CoordinateSystemPortal ,
11 typename OutType >
12 VTKM_EXEC void operator ()(const Point & queryPoint ,
13 const PointLocatorExecObject & pointLocator ,
14 const CoordinateSystemPortal & coordinateSystem ,
15 OutType & out) const
16 {
17 // Use the point locator to find the point in the locator closest to the point
18 // given .
19 vtkm :: Id pointId ;
20 vtkm :: FloatDefault distanceSquared ;
21 pointLocator -> FindNearestNeighbor (queryPoint , pointId , distanceSquared);
22
23 // Use this information to find the nearest point and create a unit vector
24 // pointing to it.
25 if (pointId >= 0)
26 {
27 // Get nearest point coordinate .
28 auto point = coordinateSystem .Get(pointId);
29
30 // Get the vector pointing to this point
31 out = point - queryPoint ;
32
33 // Convert to unit vector (if possible)
34 if (distanceSquared > vtkm :: Epsilon <vtkm :: FloatDefault >())
35 {
36 out = vtkm :: RSqrt (distanceSquared) * out;

Chapter 15. Locators 219

DRAFT

15.2. Point Locators

37 }
38 }
39 else
40 {
41 this -> RaiseError (" Locator could not find closest point .");
42 }
43 }
44
45 VTKM_CONT static vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault , 3>> Run(
46 vtkm :: cont :: PointLocator * pointLocator ,
47 const vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault , 3>>& queryPoints)
48 {
49 pointLocator -> Update ();
50
51 vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault , 3>> pointDirections ;
52
53 vtkm :: worklet :: DispatcherMapField < PointToClosest > dispatcher ;
54 dispatcher . Invoke (
55 queryPoints , pointLocator , pointLocator -> GetCoordinates (), pointDirections);
56
57 return pointDirections ;
58 }
59 }; // struct QueryCells

220 Chapter 15. Locators

DRAFT
CHAPTER

SIXTEEN

GENERATING CELL SETS

This chapter describes techniques for designing algorithms in VTK-m that generate cell sets to be inserted in a
vtkm::cont::DataSet. Although Chapter 11 on data sets describes how to create a data set, including defining
its set of cells, these are serial functions run in the control environment that are not designed for computing
geometric structures. Rather, they are designed for specifying data sets built from existing data arrays, from
inherently slow processes (such as file I/O), or for small test data. In this chapter we discuss how to write worklets
that create new mesh topologies by writing data that can be incorporated into a vtkm::cont::CellSet.

This chapter is constructed as a set of patterns that are commonly employed to build cell sets. These techniques
apply the worklet structures documented in Chapter 12. Although it is possible for these worklets to generate
data of its own, the algorithms described here follow the more common use case of deriving one topology
from another input data set. This chapter is not (and cannot be) completely comprehensive by covering every
possible mechanism for building cell sets. Instead, we provide the basic and common patterns used in scientific
visualization.

16.1 Single Cell Type

For our first example of algorithms that generate cell sets is one that creates a set of cells in which all the cells
are of the same shape and have the same number of points. Our motivating example is an algorithm that will
extract all the edges from a cell set. The resulting cell set will comprise a collection of line cells that represent
the edges from the original cell set. Since all cell edges can be represented as lines with two endpoints, we know
all the output cells will be of the same type. As we will see later in the example, we can use a vtkm::cont::-
CellSetSingleType to represent the data.

It is rare that an algorithm generating a cell set will generate exactly one output cell for each input cell. Thus,
the first step in an algorithm generating a cell set is to count the number of cells each input item will create. In
our motivating example, this is the the number of edges for each input cell.

Example 16.1: A simple worklet to count the number of edges on each cell.
1 struct CountEdges : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 using ControlSignature = void (CellSetIn cellSet , FieldOut numEdges);
4 using ExecutionSignature = _2(CellShape , PointCount);
5 using InputDomain = _1;
6
7 template < typename CellShapeTag >
8 VTKM_EXEC_CONT vtkm :: IdComponent operator ()(
9 CellShapeTag cellShape ,

10 vtkm :: IdComponent numPointsInCell) const
11 {

DRAFT

16.1. Single Cell Type

12 return vtkm :: exec :: CellEdgeNumberOfEdges (numPointsInCell , cellShape , *this);
13 }
14 };

This count array generated in Example 16.1 can be used in a vtkm::worklet::ScatterCounting of a subsequent
worklet that generates the output cells. (See Section 12.10 for information on using a scatter with a worklet.)
We will see this momentarily.

If you happen to have an operation that you know will have the same count for every input cell, then you
can skip the count step and use a vtkm::worklet::ScatterUniform instead of ScatterCount. Doing so
will simplify the code and skip some computation. We cannot use ScatterUniform in this example because
different cell shapes have different numbers of edges and therefore different counts. However, if we were
theoretically to make an optimization for 3D structured grids, we know that each cell is a hexahedron with
12 edges and could use a ScatterUniform<12> for that.

Did you know?

The second and final worklet we need to generate our wireframe cells is one that outputs the indices of an
edge. The worklet parenthesis’s operator takes information about the input cell (shape and point indices) and
an index of which edge to output. The aforementioned ScatterCounting provides a VisitIndex that signals
which edge to output. The worklet parenthesis operator returns the two indices for the line in, naturally enough,
a vtkm::Vec <vtkm::Id,2>.

Example 16.2: A worklet to generate indices for line cells.
1 class EdgeIndices : public vtkm :: worklet :: WorkletMapPointToCell
2 {
3 public :
4 using ControlSignature = void (CellSetIn cellSet , FieldOut connectivityOut);
5 using ExecutionSignature = void (CellShape , PointIndices , _2 , VisitIndex);
6 using InputDomain = _1;
7
8 using ScatterType = vtkm :: worklet :: ScatterCounting ;
9

10 template < typename CellShapeTag , typename PointIndexVecType >
11 VTKM_EXEC void operator ()(CellShapeTag cellShape ,
12 const PointIndexVecType & globalPointIndicesForCell ,
13 vtkm ::Vec <vtkm ::Id , 2>& connectivityOut ,
14 vtkm :: IdComponent edgeIndex) const
15 {
16 vtkm :: IdComponent numPointsInCell =
17 globalPointIndicesForCell . GetNumberOfComponents ();
18
19 vtkm :: IdComponent pointInCellIndex0 = vtkm :: exec :: CellEdgeLocalIndex (
20 numPointsInCell , 0, edgeIndex , cellShape , *this);
21 vtkm :: IdComponent pointInCellIndex1 = vtkm :: exec :: CellEdgeLocalIndex (
22 numPointsInCell , 1, edgeIndex , cellShape , *this);
23
24 connectivityOut [0] = globalPointIndicesForCell [pointInCellIndex0];
25 connectivityOut [1] = globalPointIndicesForCell [pointInCellIndex1];
26 }
27 };

Our ultimate goal is to fill a vtkm::cont::CellSetSingleType object with the generated line cells. A CellSetS-
ingleType requires 4 items: the number of points, the constant cell shape, the constant number of points in
each cell, and an array of connection indices. The first 3 items are trivial. The number of points can be taken
from the input cell set as they are the same. The cell shape and number of points are predetermined to be line

222 Chapter 16. Generating Cell Sets

DRAFT

16.1. Single Cell Type

and 2, respectively. The last item, the array of connection indices, is what we are creating with the worklet in
Example 16.2.

However, there is a complication. The connectivity array for CellSetSingleType is expected to be a flat
array of vtkm::Id indices, not an array of Vec objects. We could jump through some hoops adjusting the
ScatterCounting to allow the worklet to output only one index of one cell rather than all indices of one cell.
But that would be overly complicated and inefficient.

A simpler approach is to use the vtkm::cont::ArrayHandleGroupVec fancy array handle (described in Sec-
tion 7.4.12) to make a flat array of indices look like an array of Vec objects. The following example shows a Run
method in a worklet helper class. Note the use of make ArrayHandleGroupVec when calling the Invoke method
to make this conversion.

Example 16.3: Invoking worklets to extract edges from a cell set.
1 template < typename CellSetType >
2 VTKM_CONT vtkm :: cont :: CellSetSingleType <> Run(const CellSetType & inCellSet)
3 {
4 VTKM_IS_DYNAMIC_OR_STATIC_CELL_SET (CellSetType);
5
6 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > edgeCounts ;
7 vtkm :: worklet :: DispatcherMapTopology < CountEdges > countEdgeDispatcher ;
8 countEdgeDispatcher . Invoke (inCellSet , edgeCounts);
9

10 vtkm :: worklet :: ScatterCounting scatter (edgeCounts);
11 this -> OutputToInputCellMap =
12 scatter . GetOutputToInputMap (inCellSet . GetNumberOfCells ());
13
14 vtkm :: cont :: ArrayHandle <vtkm ::Id > connectivityArray ;
15 vtkm :: worklet :: DispatcherMapTopology < EdgeIndices > edgeIndicesDispatcher (scatter);
16 edgeIndicesDispatcher . Invoke (
17 inCellSet , vtkm :: cont :: make_ArrayHandleGroupVec <2 >(connectivityArray));
18
19 vtkm :: cont :: CellSetSingleType <> outCellSet (inCellSet . GetName ());
20 outCellSet .Fill(
21 inCellSet . GetNumberOfPoints (), vtkm :: CELL_SHAPE_LINE , 2, connectivityArray);
22
23 return outCellSet ;
24 }

Another feature to note in Example 16.3 is that the method calls GetOutputToInputMap on the Scatter object
it creates and squirrels it away for later use. The reason for this behavior is to implement mapping fields that
are attached to the input cells to the indices of the output. In practice, this worklet is going to be called on
DataSet objects to create new DataSet objects. The method in Example 16.3 creates a new CellSet, but we
also need a method to transform the Fields on the data set. The saved OutputToInputCellMap array allows us
to transform input fields to output fields.

The following example shows another convenience method that takes this saved OutputToInputCellMap array
and converts an array from an input cell field to an output cell field array. Note that we can do this by using
the OutputToInputCellMap as an index array in a vtkm::cont::ArrayHandlePermutation.

Example 16.4: Converting cell fields using a simple permutation.
1 template < typename ValueType , typename Storage >
2 VTKM_CONT vtkm :: cont :: ArrayHandle <ValueType > ProcessCellField (
3 const vtkm :: cont :: ArrayHandle <ValueType , Storage >& inCellField) const
4 {
5 vtkm :: cont :: ArrayHandle <ValueType > outCellField ;
6 vtkm :: cont :: ArrayCopy (vtkm :: cont :: make_ArrayHandlePermutation (
7 this -> OutputToInputCellMap , inCellField),
8 outCellField);
9 return outCellField ;

Chapter 16. Generating Cell Sets 223

DRAFT

16.2. Combining Like Elements

10 }

16.2 Combining Like Elements

Our motivating example in Section 16.1 created a cell set with a line element representing each edge in some
input data set. However, on close inspection there is a problem with our algorithm: it is generating a lot of
duplicate elements. The cells in a typical mesh are connected to each other. As such, they share edges with
each other. That is, the edge of one cell is likely to also be part of one or more other cells. When multiple cells
contain the same edge, the algorithm we created in Section 16.1 will create multiple overlapping lines, one for
each cell using the edge, as demonstrated in Figure 16.1. What we really want is to have one line for every edge
in the mesh rather than many overlapping lines.

Figure 16.1: Duplicate lines from extracted edges. Consider the small mesh at the left comprising a square and
a triangle. If we count the edges in this mesh, we would expect to get 6. However, our näıve implementation in
Section 16.1 generates 7 because the shared edge (highlighted in red in the wireframe in the middle) is duplicated.
As seen in the exploded view at right, one line is created for the square and one for the triangle.

In this section we will re-implement the algorithm to generate a wireframe by creating a line for each edge,
but this time we will merge duplicate edges together. Our first step is the same as before. We need to count
the number of edges in each input cell and use those counts to create a vtkm::worklet::ScatterCounting for
subsequent worklets. Counting the edges is a simple worklet.

Example 16.5: A simple worklet to count the number of edges on each cell.
1 struct CountEdges : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 using ControlSignature = void (CellSetIn cellSet , FieldOut numEdges);
4 using ExecutionSignature = _2(CellShape , PointCount);
5 using InputDomain = _1;
6
7 template < typename CellShapeTag >
8 VTKM_EXEC_CONT vtkm :: IdComponent operator ()(
9 CellShapeTag cellShape ,

10 vtkm :: IdComponent numPointsInCell) const
11 {
12 return vtkm :: exec :: CellEdgeNumberOfEdges (numPointsInCell , cellShape , *this);
13 }
14 };

In our previous version, we used the count to directly write out the lines. However, before we do that, we want
to identify all the unique edges and identify which cells share this edge. This grouping is exactly the function
that the reduce by key worklet type (described in Section 12.5.4) is designed to accomplish. The principal idea
is to write a “key” that uniquely identifies the edge. The reduce by key worklet can then group the edges by the
key and allow you to combine the data for the edge.

Thus, our goal of finding duplicate edges hinges on producing a key where two keys are identical if and only if
the edges are the same. One straightforward key is to use the coordinates in 3D space by, say, computing the
midpoint of the edge. The main problem with using point coordinates approach is that a computer can hold a

224 Chapter 16. Generating Cell Sets

DRAFT

16.2. Combining Like Elements

point coordinate only with floating point numbers of limited precision. Computer floating point computations
are notorious for providing slightly different answers when the results should be the same. For example, if an
edge as endpoints at p1 and p2 and two different cells compute the midpoint as (p1 + p2)/2 and (p2 + p1)/2,
respectively, the answer is likely to be slightly different. When this happens, the keys will not be the same and
we will still produce 2 edges in the output.

Fortunately, there is a better choice for keys based on the observation that in the original cell set each edge
is specified by endpoints that each have unique indices. We can combine these 2 point indices to form a
“canonical” descriptor of an edge (correcting for order).1 VTK-m comes with a helper function, vtkm::exec::-
CellEdgeCanonicalId, defined in vtkm/exec/CellEdge.h to produce these unique edge keys as vtkm::Id2 s. Our
second worklet produces these canonical edge identifiers.

Example 16.6: Worklet generating canonical edge identifiers.
1 class EdgeIds : public vtkm :: worklet :: WorkletMapPointToCell
2 {
3 public :
4 using ControlSignature = void (CellSetIn cellSet , FieldOut canonicalIds);
5 using ExecutionSignature = void (CellShape cellShape ,
6 PointIndices globalPointIndices ,
7 VisitIndex localEdgeIndex ,
8 _2 canonicalIdOut);
9 using InputDomain = _1;

10
11 using ScatterType = vtkm :: worklet :: ScatterCounting ;
12
13 template < typename CellShapeTag , typename PointIndexVecType >
14 VTKM_EXEC void operator ()(CellShapeTag cellShape ,
15 const PointIndexVecType & globalPointIndicesForCell ,
16 vtkm :: IdComponent localEdgeIndex ,
17 vtkm :: Id2& canonicalIdOut) const
18 {
19 vtkm :: IdComponent numPointsInCell =
20 globalPointIndicesForCell . GetNumberOfComponents ();
21
22 canonicalIdOut = vtkm :: exec :: CellEdgeCanonicalId (numPointsInCell ,
23 localEdgeIndex ,
24 cellShape ,
25 globalPointIndicesForCell ,
26 *this);
27 }
28 };

Our third and final worklet generates the line cells by outputting the indices of each edge. As hinted at earlier,
this worklet is a reduce by key worklet (inheriting from vtkm::worklet::WorkletReduceByKey). The reduce
by key dispatcher will collect the unique keys and call the worklet once for each unique edge. Because there is
no longer a consistent mapping from the generated lines to the elements of the input cell set, we need pairs of
indices identifying the cells/edges from which the edge information comes. We use these indices along with a
connectivity structure produced by a WholeCellSetIn to find the information about the edge. As shown later,
these indices of cells and edges can be extracted from the ScatterCounting used to executed the worklet back
in Example 16.6.

As we did in Section 16.1, this worklet writes out the edge information in a vtkm::Vec <vtkm::Id,2> (which in
some following code will be created with an ArrayHandleGroupVec).

Example 16.7: A worklet to generate indices for line cells from combined edges.
1 class EdgeIndices : public vtkm :: worklet :: WorkletReduceByKey

1Using indices to find common mesh elements is described by Miller et al. in “Finely-Threaded History-Based Topology Compu-
tation” (in Eurographics Symposium on Parallel Graphics and Visualization, June 2014).

Chapter 16. Generating Cell Sets 225

DRAFT

16.2. Combining Like Elements

2 {
3 public :
4 using ControlSignature = void (KeysIn keys ,
5 WholeCellSetIn <> inputCells ,
6 ValuesIn originCells ,
7 ValuesIn originEdges ,
8 ReducedValuesOut connectivityOut);
9 using ExecutionSignature = void (_2 inputCells ,

10 _3 originCell ,
11 _4 originEdge ,
12 _5 connectivityOut);
13 using InputDomain = _1;
14
15 template < typename CellSetType ,
16 typename OriginCellsType ,
17 typename OriginEdgesType >
18 VTKM_EXEC void operator ()(const CellSetType & cellSet ,
19 const OriginCellsType & originCells ,
20 const OriginEdgesType & originEdges ,
21 vtkm :: Id2& connectivityOut) const
22 {
23 // Regardless of how many cells / edges are in our local input , we know they are
24 // all the same , so just pick the first one.
25 vtkm :: IdComponent numPointsInCell = cellSet . GetNumberOfIndices (originCells [0]);
26 vtkm :: IdComponent edgeIndex = originEdges [0];
27 auto cellShape = cellSet . GetCellShape (originCells [0]);
28
29 vtkm :: IdComponent pointInCellIndex0 = vtkm :: exec :: CellEdgeLocalIndex (
30 numPointsInCell , 0, edgeIndex , cellShape , *this);
31 vtkm :: IdComponent pointInCellIndex1 = vtkm :: exec :: CellEdgeLocalIndex (
32 numPointsInCell , 1, edgeIndex , cellShape , *this);
33
34 auto globalPointIndicesForCell = cellSet . GetIndices (originCells [0]);
35 connectivityOut [0] = globalPointIndicesForCell [pointInCellIndex0];
36 connectivityOut [1] = globalPointIndicesForCell [pointInCellIndex1];
37 }
38 };

It so happens that the vtkm::Id2 s generated by CellEdgeCanonicalId contain the point indices of the
two endpoints, which is enough information to create the edge. Thus, in this example it would be possible
to forgo the steps of looking up indices through the cell set. That said, this is more often not the case, so
for the purposes of this example we show how to construct cells without depending on the structure of the
keys.

Did you know?

With these 3 worklets, it is now possible to generate all the information we need to fill a vtkm::cont::-
CellSetSingleType object. A CellSetSingleType requires 4 items: the number of points, the constant cell
shape, the constant number of points in each cell, and an array of connection indices. The first 3 items are
trivial. The number of points can be taken from the input cell set as they are the same. The cell shape and
number of points are predetermined to be line and 2, respectively.

The last item, the array of connection indices, is what we are creating with the worklet in Example 16.7. The
connectivity array for CellSetSingleType is expected to be a flat array of vtkm::Id indices, but the worklet
needs to provide groups of indices for each cell (in this case as a Vec object). To reconcile what the worklet
provides and what the connectivity array must look like, we use the vtkm::cont::ArrayHandleGroupVec fancy
array handle (described in Section 7.4.12) to make a flat array of indices look like an array of Vec objects. The

226 Chapter 16. Generating Cell Sets

DRAFT

16.2. Combining Like Elements

following example shows a Run method in a worklet helper class. Note the use of make ArrayHandleGroupVec
when calling the Invoke method to make this conversion.

Example 16.8: Invoking worklets to extract unique edges from a cell set.
1 template < typename CellSetType >
2 VTKM_CONT vtkm :: cont :: CellSetSingleType <> Run(const CellSetType & inCellSet)
3 {
4 VTKM_IS_DYNAMIC_OR_STATIC_CELL_SET (CellSetType);
5
6 // First , count the edges in each cell.
7 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > edgeCounts ;
8 vtkm :: worklet :: DispatcherMapTopology < CountEdges > countEdgeDispatcher ;
9 countEdgeDispatcher . Invoke (inCellSet , edgeCounts);

10
11 vtkm :: worklet :: ScatterCounting scatter (edgeCounts);
12 this -> OutputToInputCellMap =
13 scatter . GetOutputToInputMap (inCellSet . GetNumberOfCells ());
14 vtkm :: worklet :: ScatterCounting :: VisitArrayType outputToInputEdgeMap =
15 scatter . GetVisitArray (inCellSet . GetNumberOfCells ());
16
17 // Second , for each edge , extract a canonical id.
18 vtkm :: cont :: ArrayHandle <vtkm ::Id2 > canonicalIds ;
19
20 vtkm :: worklet :: DispatcherMapTopology <EdgeIds > edgeIdsDispatcher (scatter);
21 edgeIdsDispatcher . Invoke (inCellSet , canonicalIds);
22
23 // Third , use a Keys object to combine all like edge ids.
24 this -> CellToEdgeKeys = vtkm :: worklet :: Keys <vtkm ::Id2 >(canonicalIds);
25
26 // Fourth , use a reduce -by -key to extract indices for each unique edge.
27 vtkm :: cont :: ArrayHandle <vtkm ::Id > connectivityArray ;
28 vtkm :: worklet :: DispatcherReduceByKey < EdgeIndices > edgeIndicesDispatcher ;
29 edgeIndicesDispatcher . Invoke (
30 this -> CellToEdgeKeys ,
31 inCellSet ,
32 this -> OutputToInputCellMap ,
33 outputToInputEdgeMap ,
34 vtkm :: cont :: make_ArrayHandleGroupVec <2 >(connectivityArray));
35
36 // Fifth , use the created connectivity array to build a cell set.
37 vtkm :: cont :: CellSetSingleType <> outCellSet (inCellSet . GetName ());
38 outCellSet .Fill(
39 inCellSet . GetNumberOfPoints (), vtkm :: CELL_SHAPE_LINE , 2, connectivityArray);
40
41 return outCellSet ;
42 }

Another feature to note in Example 16.8 is that the method calls GetOutputToInputMap on the Scatter object
it creates and squirrels it away for later use. It also saves the vtkm::worklet::Keys object created for later user.
The reason for this behavior is to implement mapping fields that are attached to the input cells to the indices of
the output. In practice, these worklet are going to be called on DataSet objects to create new DataSet objects.
The method in Example 16.8 creates a new CellSet, but we also need a method to transform the Fields on the
data set. The saved OutputToInputCellMap array and Keys object allow us to transform input fields to output
fields.

The following example shows another convenience method that takes these saved objects and converts an array
from an input cell field to an output cell field array. Because in general there are several cells that contribute to
each edge/line in the output, we need a method to combine all these cell values to one. The most appropriate
combination is likely an average of all the values. Because this is a common operation, VTK-m provides the
vtkm::worklet::AverageByKey to help perform exactly this operation. AverageByKey provides a Run method
that takes a Keys object, an array of in values, and a device adapter tag and produces and array of values

Chapter 16. Generating Cell Sets 227

DRAFT

16.3. Faster Combining Like Elements with Hashes

averaged by key.

Example 16.9: Converting cell fields that average collected values.
1 template < typename ValueType , typename Storage >
2 VTKM_CONT vtkm :: cont :: ArrayHandle <ValueType > ProcessCellField (
3 const vtkm :: cont :: ArrayHandle <ValueType , Storage >& inCellField) const
4 {
5 return vtkm :: worklet :: AverageByKey :: Run(
6 this -> CellToEdgeKeys ,
7 vtkm :: cont :: make_ArrayHandlePermutation (this -> OutputToInputCellMap ,
8 inCellField));
9 }

16.3 Faster Combining Like Elements with Hashes

In the previous two sections we constructed worklets that took a cell set and created a new set of cells that
represented the edges of the original cell set, which can provide a wireframe of the mesh. In Section 16.1 we
provided a pair of worklets that generate one line per edge per cell. In Section 16.2 we improved on this behavior
by using a reduce by key worklet to find and merge shared edges.

If we were to time all the operations run in the later implementation to generate the wireframe (i.e. the operations
in Example 16.8), we would find that the vast majority of the time is not spent in the actual worklets. Rather,
the majority of the time is spent in collecting the like keys, which happens in the constructor of the vtkm::-
worklet::Keys object. Internally, keys are collected by sorting them. The most fruitful way to improve the
performance of this algorithm is to improve the sorting behavior.

The details of how the sort works is dependent on the inner workings of the device adapter. It turns out that
the performance of the sort of the keys is highly dependent on the data type of the keys. For example, sorting
numbers stored in a 32-bit integer is often much faster than sorting groups of 2 or 3 64-bit integer. This is
particularly true when the sort is capable of performing a radix-based sort.

An easy way to convert collections of indices like those returned from vtkm::exec::CellEdgeCanonicalId to
a 32-bit integer is to use a hash function. To facilitate the creation of hash values, VTK-m comes with a simple
vtkm::Hash function (in the vtkm/Hash.h header file). Hash takes a Vec or Vec-like object of integers and returns
a value of type vtkm::HashType (an alias for a 32-bit integer). This hash function uses the FNV-1a algorithm
that is designed to create hash values that are quasi-random but deterministic. This means that hash values of
two different identifiers are unlikely to be the same.

That said, hash collisions can happen and become increasingly likely on larger data sets. Therefore, if we wish
to use hash values, we also have to add conditions that manage when collisions happen. Resolving hash value
collisions adds overhead, but time saved in faster sorting of hash values generally outweighs the overhead added
by resolving collisions.2 In this section we will improve on the implementation given in Section 16.2 by using
hash values for keys and resolving for collisions.

As always, our first step is to count the number of edges in each input cell. These counts are used to create a
vtkm::worklet::ScatterCounting for subsequent worklets.

Example 16.10: A simple worklet to count the number of edges on each cell.
1 struct CountEdges : vtkm :: worklet :: WorkletMapPointToCell
2 {
3 using ControlSignature = void (CellSetIn cellSet , FieldOut numEdges);
4 using ExecutionSignature = _2(CellShape , PointCount);

2A comparison of the time required for completely unique keys and hash keys with collisions is studied by Lessley, et al. in
“Techniques for Data-Parallel Searching for Duplicate Elements” (in IEEE Symposium on Large Data Analysis and Visualization,
October 2017).

228 Chapter 16. Generating Cell Sets

DRAFT

16.3. Faster Combining Like Elements with Hashes

5 using InputDomain = _1;
6
7 template < typename CellShapeTag >
8 VTKM_EXEC_CONT vtkm :: IdComponent operator ()(
9 CellShapeTag cellShape ,

10 vtkm :: IdComponent numPointsInCell) const
11 {
12 return vtkm :: exec :: CellEdgeNumberOfEdges (numPointsInCell , cellShape , *this);
13 }
14 };

Our next step is to generate keys that can be used to find like elements. As before, we will use the vtkm::-
exec::CellEdgeCanonicalId function to create a unique representation for each edge. However, rather than
directly use the value from CellEdgeCanonicalId, which is a vtkm::Id2, we will instead use that to generate a
hash value.

Example 16.11: Worklet generating hash values.
1 class EdgeHashes : public vtkm :: worklet :: WorkletMapPointToCell
2 {
3 public :
4 using ControlSignature = void (CellSetIn cellSet , FieldOut hashValues);
5 using ExecutionSignature = _2(CellShape cellShape ,
6 PointIndices globalPointIndices ,
7 VisitIndex localEdgeIndex);
8 using InputDomain = _1;
9

10 using ScatterType = vtkm :: worklet :: ScatterCounting ;
11
12 template < typename CellShapeTag , typename PointIndexVecType >
13 VTKM_EXEC vtkm :: HashType operator ()(
14 CellShapeTag cellShape ,
15 const PointIndexVecType & globalPointIndicesForCell ,
16 vtkm :: IdComponent localEdgeIndex) const
17 {
18 vtkm :: IdComponent numPointsInCell =
19 globalPointIndicesForCell . GetNumberOfComponents ();
20 return vtkm :: Hash(vtkm :: exec :: CellEdgeCanonicalId (numPointsInCell ,
21 localEdgeIndex ,
22 cellShape ,
23 globalPointIndicesForCell ,
24 *this));
25 }
26 };

The hash values generated by the worklet in Example 16.11 will be the same for two identical edges. However,
it is no longer guaranteed that two distinct edges will have different keys, and collisions of this nature become
increasingly common for larger cell sets. Thus, our next step is to resolve any such collisions.

The following example provides a worklet that goes through each group of edges associated with the same hash
value (using a reduce by key worklet). It identifies which edges are actually the same as which other edges,
marks a local identifier for each unique edge group, and returns the number of unique edges associated with the
hash value.

Example 16.12: Worklet to resolve hash collisions occurring on edge identifiers.
1 class EdgeHashCollisions : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 using ControlSignature = void (KeysIn keys ,
5 WholeCellSetIn <> inputCells ,
6 ValuesIn originCells ,
7 ValuesIn originEdges ,

Chapter 16. Generating Cell Sets 229

DRAFT

16.3. Faster Combining Like Elements with Hashes

8 ValuesOut localEdgeIndices ,
9 ReducedValuesOut numEdges);

10 using ExecutionSignature = _6(_2 inputCells ,
11 _3 originCells ,
12 _4 originEdges ,
13 _5 localEdgeIndices);
14 using InputDomain = _1;
15
16 template < typename CellSetType ,
17 typename OriginCellsType ,
18 typename OriginEdgesType ,
19 typename localEdgeIndicesType >
20 VTKM_EXEC vtkm :: IdComponent operator ()(
21 const CellSetType & cellSet ,
22 const OriginCellsType & originCells ,
23 const OriginEdgesType & originEdges ,
24 localEdgeIndicesType & localEdgeIndices) const
25 {
26 vtkm :: IdComponent numEdgesInHash = localEdgeIndices . GetNumberOfComponents ();
27
28 // Sanity checks .
29 VTKM_ASSERT (originCells . GetNumberOfComponents () == numEdgesInHash);
30 VTKM_ASSERT (originEdges . GetNumberOfComponents () == numEdgesInHash);
31
32 // Clear out localEdgeIndices
33 for (vtkm :: IdComponent index = 0; index < numEdgesInHash ; ++ index)
34 {
35 localEdgeIndices [index] = -1;
36 }
37
38 // Count how many unique edges there are and create an id for each;
39 vtkm :: IdComponent numUniqueEdges = 0;
40 for (vtkm :: IdComponent firstEdgeIndex = 0; firstEdgeIndex < numEdgesInHash ;
41 ++ firstEdgeIndex)
42 {
43 if (localEdgeIndices [firstEdgeIndex] == -1)
44 {
45 vtkm :: IdComponent edgeId = numUniqueEdges ;
46 localEdgeIndices [firstEdgeIndex] = edgeId ;
47 // Find all matching edges .
48 vtkm :: Id firstCellIndex = originCells [firstEdgeIndex];
49 vtkm :: Id2 canonicalEdgeId = vtkm :: exec :: CellEdgeCanonicalId (
50 cellSet . GetNumberOfIndices (firstCellIndex),
51 originEdges [firstEdgeIndex],
52 cellSet . GetCellShape (firstCellIndex),
53 cellSet . GetIndices (firstCellIndex),
54 *this);
55 for (vtkm :: IdComponent laterEdgeIndex = firstEdgeIndex + 1;
56 laterEdgeIndex < numEdgesInHash ;
57 ++ laterEdgeIndex)
58 {
59 vtkm :: Id laterCellIndex = originCells [laterEdgeIndex];
60 vtkm :: Id2 otherCanonicalEdgeId = vtkm :: exec :: CellEdgeCanonicalId (
61 cellSet . GetNumberOfIndices (laterCellIndex),
62 originEdges [laterEdgeIndex],
63 cellSet . GetCellShape (laterCellIndex),
64 cellSet . GetIndices (laterCellIndex),
65 *this);
66 if (canonicalEdgeId == otherCanonicalEdgeId)
67 {
68 localEdgeIndices [laterEdgeIndex] = edgeId ;
69 }
70 }
71 ++ numUniqueEdges ;

230 Chapter 16. Generating Cell Sets

DRAFT

16.3. Faster Combining Like Elements with Hashes

72 }
73 }
74
75 return numUniqueEdges ;
76 }
77 };

With all hash collisions correctly identified, we are ready to generate the connectivity array for the line elements.
This worklet uses a reduce by key dispatch like the previous example, but this time we use a ScatterCounting
to run the worklet multiple times for hash values that contain multiple unique edges. The worklet takes all the
information it needs to reference back to the edges in the original mesh including a WholeCellSetIn, look back
indices for the cells and respective edges, and the unique edge group indicators produced by Example 16.11.

As in the previous sections, this worklet writes out the edge information in a vtkm::Vec <vtkm::Id,2> (which
in some following code will be created with an ArrayHandleGroupVec).

Example 16.13: A worklet to generate indices for line cells from combined edges and potential collisions.
1 class EdgeIndices : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 using ControlSignature = void (KeysIn keys ,
5 WholeCellSetIn <> inputCells ,
6 ValuesIn originCells ,
7 ValuesIn originEdges ,
8 ValuesIn localEdgeIndices ,
9 ReducedValuesOut connectivityOut);

10 using ExecutionSignature = void (_2 inputCells ,
11 _3 originCell ,
12 _4 originEdge ,
13 _5 localEdgeIndices ,
14 VisitIndex localEdgeIndex ,
15 _6 connectivityOut);
16 using InputDomain = _1;
17
18 using ScatterType = vtkm :: worklet :: ScatterCounting ;
19
20 template < typename CellSetType ,
21 typename OriginCellsType ,
22 typename OriginEdgesType ,
23 typename LocalEdgeIndicesType >
24 VTKM_EXEC void operator ()(const CellSetType & cellSet ,
25 const OriginCellsType & originCells ,
26 const OriginEdgesType & originEdges ,
27 const LocalEdgeIndicesType & localEdgeIndices ,
28 vtkm :: IdComponent localEdgeIndex ,
29 vtkm :: Id2& connectivityOut) const
30 {
31 // Find the first edge that matches the index given and return it.
32 for (vtkm :: IdComponent edgeIndex = 0;; ++ edgeIndex)
33 {
34 if (localEdgeIndices [edgeIndex] == localEdgeIndex)
35 {
36 vtkm :: Id cellIndex = originCells [edgeIndex];
37 vtkm :: IdComponent numPointsInCell = cellSet . GetNumberOfIndices (cellIndex);
38 vtkm :: IdComponent edgeInCellIndex = originEdges [edgeIndex];
39 auto cellShape = cellSet . GetCellShape (cellIndex);
40
41 vtkm :: IdComponent pointInCellIndex0 = vtkm :: exec :: CellEdgeLocalIndex (
42 numPointsInCell , 0, edgeInCellIndex , cellShape , *this);
43 vtkm :: IdComponent pointInCellIndex1 = vtkm :: exec :: CellEdgeLocalIndex (
44 numPointsInCell , 1, edgeInCellIndex , cellShape , *this);
45
46 auto globalPointIndicesForCell = cellSet . GetIndices (cellIndex);

Chapter 16. Generating Cell Sets 231

DRAFT

16.3. Faster Combining Like Elements with Hashes

47 connectivityOut [0] = globalPointIndicesForCell [pointInCellIndex0];
48 connectivityOut [1] = globalPointIndicesForCell [pointInCellIndex1];
49
50 break ;
51 }
52 }
53 }
54 };

With these 3 worklets, it is now possible to generate all the information we need to fill a vtkm::cont::-
CellSetSingleType object. A CellSetSingleType requires 4 items: the number of points, the constant cell
shape, the constant number of points in each cell, and an array of connection indices. The first 3 items are
trivial. The number of points can be taken from the input cell set as they are the same. The cell shape and
number of points are predetermined to be line and 2, respectively.

The last item, the array of connection indices, is what we are creating with the worklet in Example 16.7. The
connectivity array for CellSetSingleType is expected to be a flat array of vtkm::Id indices, but the worklet
needs to provide groups of indices for each cell (in this case as a Vec object). To reconcile what the worklet
provides and what the connectivity array must look like, we use the vtkm::cont::ArrayHandleGroupVec fancy
array handle (described in Section 7.4.12) to make a flat array of indices look like an array of Vec objects. The
following example shows a Run method in a worklet helper class. Note the use of make ArrayHandleGroupVec
when calling the Invoke method to make this conversion.

Example 16.14: Invoking worklets to extract unique edges from a cell set using hash values.
1 template < typename CellSetType >
2 VTKM_CONT vtkm :: cont :: CellSetSingleType <> Run(const CellSetType & inCellSet)
3 {
4 VTKM_IS_DYNAMIC_OR_STATIC_CELL_SET (CellSetType);
5
6 // First , count the edges in each cell.
7 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > edgeCounts ;
8 vtkm :: worklet :: DispatcherMapTopology < CountEdges > countEdgeDispatcher ;
9 countEdgeDispatcher . Invoke (inCellSet , edgeCounts);

10
11 vtkm :: worklet :: ScatterCounting scatter (edgeCounts);
12 this -> OutputToInputCellMap =
13 scatter . GetOutputToInputMap (inCellSet . GetNumberOfCells ());
14 vtkm :: worklet :: ScatterCounting :: VisitArrayType outputToInputEdgeMap =
15 scatter . GetVisitArray (inCellSet . GetNumberOfCells ());
16
17 // Second , for each edge , extract a hash.
18 vtkm :: cont :: ArrayHandle <vtkm :: HashType > hashValues ;
19
20 vtkm :: worklet :: DispatcherMapTopology < EdgeHashes > EdgeHashesDispatcher (scatter);
21 EdgeHashesDispatcher . Invoke (inCellSet , hashValues);
22
23 // Third , use a Keys object to combine all like hashes .
24 this -> CellToEdgeKeys = vtkm :: worklet :: Keys <vtkm :: HashType >(hashValues);
25
26 // Fourth , use a reduce -by -key to collect like hash values , resolve collisions ,
27 // and count the number of unique edges associated with each hash.
28 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > numUniqueEdgesInEachHash ;
29
30 vtkm :: worklet :: DispatcherReduceByKey < EdgeHashCollisions >
31 edgeHashCollisionDispatcher ;
32 edgeHashCollisionDispatcher . Invoke (this -> CellToEdgeKeys ,
33 inCellSet ,
34 this -> OutputToInputCellMap ,
35 outputToInputEdgeMap ,
36 this -> LocalEdgeIndices ,
37 numUniqueEdgesInEachHash);

232 Chapter 16. Generating Cell Sets

DRAFT

16.3. Faster Combining Like Elements with Hashes

38
39 // Fifth , use a reduce -by -key to extract indices for each unique edge.
40 this -> HashCollisionScatter . reset (
41 new vtkm :: worklet :: ScatterCounting (numUniqueEdgesInEachHash));
42
43 vtkm :: cont :: ArrayHandle <vtkm ::Id > connectivityArray ;
44 vtkm :: worklet :: DispatcherReduceByKey < EdgeIndices > edgeIndicesDispatcher (
45 *this -> HashCollisionScatter);
46 edgeIndicesDispatcher . Invoke (
47 this -> CellToEdgeKeys ,
48 inCellSet ,
49 this -> OutputToInputCellMap ,
50 outputToInputEdgeMap ,
51 this -> LocalEdgeIndices ,
52 vtkm :: cont :: make_ArrayHandleGroupVec <2 >(connectivityArray));
53
54 // Sixth , use the created connectivity array to build a cell set.
55 vtkm :: cont :: CellSetSingleType <> outCellSet (inCellSet . GetName ());
56 outCellSet .Fill(
57 inCellSet . GetNumberOfPoints (), vtkm :: CELL_SHAPE_LINE , 2, connectivityArray);
58
59 return outCellSet ;
60 }

As noted in Section 16.2, in practice these worklets are going to be called on DataSet objects to create new
DataSet objects. Although Example 16.14 creates a new CellSet, we also need a method to transform the
Fields on the data set. To do this, we need to save some information. This includes the map from the edge
of each cell to its origin cell (OutputToInputCellMap), a Keys object on the hash values (CellToEdgeKeys), an
array of indices resolving collisions (LocalEdgeIndices), and a ScatterCounting to repeat edge outputs when
unique edges collide on a hash (HashCollisionScatter).

Note that HashCollisionScatter is an object of type vtkm::worklet::ScatterCounting, which does
not have a default constructor. That can be a problem since you do not have the data to construct Hash-
CollisionScatter until Run is called. To get around this chicken-and-egg issue, it is best to store the
ScatterCounter as a pointer. It is best practice to use a smart pointer, like std::shared ptr to manage
it.

Common Errors

In Section 16.2 we used a convenience method to average a field attached to cells on the input to each unique
edge in the output. Unfortunately, that function does not take into account the collisions that can occur on the
keys. Instead we need a custom worklet to average those values that match the same unique edge.

Example 16.15: A worklet to average values with the same key, resolving for collisions.
1 class AverageCellField : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 using ControlSignature = void (KeysIn keys ,
5 ValuesIn inFieldValues ,
6 ValuesIn localEdgeIndices ,
7 ReducedValuesOut averagedField);
8 using ExecutionSignature = _4(_2 inFieldValues ,
9 _3 localEdgeIndices ,

10 VisitIndex localEdgeIndex);
11 using InputDomain = _1;
12

Chapter 16. Generating Cell Sets 233

DRAFT

16.4. Variable Cell Types

13 using ScatterType = vtkm :: worklet :: ScatterCounting ;
14
15 template < typename InFieldValuesType , typename LocalEdgeIndicesType >
16 VTKM_EXEC typename InFieldValuesType :: ComponentType operator ()(
17 const InFieldValuesType & inFieldValues ,
18 const LocalEdgeIndicesType & localEdgeIndices ,
19 vtkm :: IdComponent localEdgeIndex) const
20 {
21 using FieldType = typename InFieldValuesType :: ComponentType ;
22
23 FieldType averageField = FieldType (0);
24 vtkm :: IdComponent numValues = 0;
25 for (vtkm :: IdComponent reduceIndex = 0;
26 reduceIndex < inFieldValues . GetNumberOfComponents ();
27 ++ reduceIndex)
28 {
29 if (localEdgeIndices [reduceIndex] == localEdgeIndex)
30 {
31 FieldType fieldValue = inFieldValues [reduceIndex];
32 averageField = averageField + fieldValue ;
33 ++ numValues ;
34 }
35 }
36 VTKM_ASSERT (numValues > 0);
37 return averageField / numValues ;
38 }
39 };

With this worklet, it is straightforward to process cell fields.

Example 16.16: Invoking the worklet to process cell fields, resolving for collisions.
1 template < typename ValueType , typename Storage >
2 VTKM_CONT vtkm :: cont :: ArrayHandle <ValueType > ProcessCellField (
3 const vtkm :: cont :: ArrayHandle <ValueType , Storage >& inCellField) const
4 {
5 vtkm :: cont :: ArrayHandle <ValueType > averageField ;
6 vtkm :: worklet :: DispatcherReduceByKey < AverageCellField > dispatcher (
7 *this -> HashCollisionScatter);
8 dispatcher . Invoke (this -> CellToEdgeKeys ,
9 vtkm :: cont :: make_ArrayHandlePermutation (

10 this -> OutputToInputCellMap , inCellField),
11 this -> LocalEdgeIndices ,
12 averageField);
13 return averageField ;
14 }

16.4 Variable Cell Types

So far in our previous examples we have demonstrated creating a cell set where every cell is the same shape and
number of points (i.e. a CellSetSingleType). However, it can also be the case where an algorithm must create
cells of a different type (into a vtkm::cont::CellSetExplicit). The procedure for generating cells of different
shapes is similar to that of creating a single shape. There is, however, an added step of counting the size (in
number of points) of each shape to build the appropriate structure for storing the cell connectivity.

Our motivating example is a set of worklets that extracts all the unique faces in a cell set and stores them in a
cell set of polygons. This problem is similar to the one addressed in Sections 16.1, 16.2, and 16.3. In both cases
it is necessary to find all subelements of each cell (in this case the faces instead of the edges). It is also the case
that we expect many faces to be shared among cells in the same way edges are shared among cells. We will use

234 Chapter 16. Generating Cell Sets

DRAFT

16.4. Variable Cell Types

the hash-based approach demonstrated in Section 16.3 except this time applied to faces instead of edges.

The main difference between the two extraction tasks is that whereas all edges are lines with two points, faces
can come in different sizes. A tetrahedron has triangular faces whereas a hexahedron has quadrilateral faces.
Pyramid and wedge cells have both triangular and quadrilateral faces. Thus, in general the algorithm must be
capable of outputing multiple cell types.

Our algorithm for extracting unique cell faces follows the same algorithm as that in Section 16.3. We first need
three worklets (used in succession) to count the number of faces in each cell, to generate a hash value for each face,
and to resolve hash collisions. These are essentially the same as Examples 16.10, 16.11, and 16.12, respectively,
with superficial changes made (like changing Edge to Face). To make it simpler to follow the discussion, the
code is not repeated here.

When extracting edges, these worklets provide everything necessary to write out line elements. However, before
we can write out polygons of different sizes, we first need to count the number of points in each polygon. The
following example does just that. This worklet also writes out the identifier for the shape of the face, which
we will eventually require to build a CellSetExplicit. Also recall that we have to work with the information
returned from the collision resolution to report on the appropriate unique cell face.

Example 16.17: A worklet to count the points in the final cells of extracted faces
1 class CountPointsInFace : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 using ControlSignature = void (KeysIn keys ,
5 WholeCellSetIn <> inputCells ,
6 ValuesIn originCells ,
7 ValuesIn originFaces ,
8 ValuesIn localFaceIndices ,
9 ReducedValuesOut faceShape ,

10 ReducedValuesOut numPointsInEachFace);
11 using ExecutionSignature = void (_2 inputCells ,
12 _3 originCell ,
13 _4 originFace ,
14 _5 localFaceIndices ,
15 VisitIndex localFaceIndex ,
16 _6 faceShape ,
17 _7 numPointsInFace);
18 using InputDomain = _1;
19
20 using ScatterType = vtkm :: worklet :: ScatterCounting ;
21
22 template < typename CellSetType ,
23 typename OriginCellsType ,
24 typename OriginFacesType ,
25 typename LocalFaceIndicesType >
26 VTKM_EXEC void operator ()(const CellSetType & cellSet ,
27 const OriginCellsType & originCells ,
28 const OriginFacesType & originFaces ,
29 const LocalFaceIndicesType & localFaceIndices ,
30 vtkm :: IdComponent localFaceIndex ,
31 vtkm :: UInt8 & faceShape ,
32 vtkm :: IdComponent & numPointsInFace) const
33 {
34 // Find the first face that matches the index given .
35 for (vtkm :: IdComponent faceIndex = 0;; ++ faceIndex)
36 {
37 if (localFaceIndices [faceIndex] == localFaceIndex)
38 {
39 vtkm :: Id cellIndex = originCells [faceIndex];
40 faceShape = vtkm :: exec :: CellFaceShape (
41 originFaces [faceIndex], cellSet . GetCellShape (cellIndex), *this);
42 numPointsInFace = vtkm :: exec :: CellFaceNumberOfPoints (

Chapter 16. Generating Cell Sets 235

DRAFT

16.4. Variable Cell Types

43 originFaces [faceIndex], cellSet . GetCellShape (cellIndex), *this);
44 break ;
45 }
46 }
47 }
48 };

When extracting edges, we converted a flat array of connectivity information to an array of Vecs using an
ArrayHandleGroupVec. However, ArrayHandleGroupVec can only create Vecs of a constant size. Instead, for
this use case we need to use vtkm::cont::ArrayHandleGroupVecVariable. As described in Section 7.4.12,
ArrayHandleGroupVecVariable takes a flat array of values and an index array of offsets that points to the
beginning of each group to represent as a Vec-like. The worklet in Example 16.17 does not actually give us the
array of offsets we need. Rather, it gives us the count of each group. We can get the offsets from the counts by
using the vtkm::cont::ConvertNumComponentsToOffsets convenience function.

Example 16.18: Converting counts of connectivity groups to offsets for ArrayHandleGroupVecVariable.
1 vtkm :: cont :: ArrayHandle <vtkm ::Id > offsetsArray ;
2 vtkm :: Id connectivityArraySize ;
3 vtkm :: cont :: ConvertNumComponentsToOffsets (
4 numPointsInEachFace , offsetsArray , connectivityArraySize);
5 OutCellSetType :: ConnectivityArrayType connectivityArray ;
6 connectivityArray . Allocate (connectivityArraySize);
7 auto connectivityArrayVecs =
8 vtkm :: cont :: make_ArrayHandleGroupVecVariable (connectivityArray , offsetsArray);

Once we have created an ArrayHandleGroupVecVariable, we can pass that to a worklet that produces the point
connections for each output polygon. The worklet is very similar to the one for creating edge lines (shown in
Example 16.13), but we have to correctly handle the Vec-like of unknown type and size.

Example 16.19: A worklet to generate indices for polygon cells of different sizes from combined edges and
potential collisions.

1 class FaceIndices : public vtkm :: worklet :: WorkletReduceByKey
2 {
3 public :
4 using ControlSignature = void (KeysIn keys ,
5 WholeCellSetIn <> inputCells ,
6 ValuesIn originCells ,
7 ValuesIn originFaces ,
8 ValuesIn localFaceIndices ,
9 ReducedValuesOut connectivityOut);

10 using ExecutionSignature = void (_2 inputCells ,
11 _3 originCell ,
12 _4 originFace ,
13 _5 localFaceIndices ,
14 VisitIndex localFaceIndex ,
15 _6 connectivityOut);
16 using InputDomain = _1;
17
18 using ScatterType = vtkm :: worklet :: ScatterCounting ;
19
20 template < typename CellSetType ,
21 typename OriginCellsType ,
22 typename OriginFacesType ,
23 typename LocalFaceIndicesType ,
24 typename ConnectivityVecType >
25 VTKM_EXEC void operator ()(const CellSetType & cellSet ,
26 const OriginCellsType & originCells ,
27 const OriginFacesType & originFaces ,
28 const LocalFaceIndicesType & localFaceIndices ,
29 vtkm :: IdComponent localFaceIndex ,

236 Chapter 16. Generating Cell Sets

DRAFT

16.4. Variable Cell Types

30 ConnectivityVecType & connectivityOut) const
31 {
32 // Find the first face that matches the index given and return it.
33 for (vtkm :: IdComponent faceIndex = 0;; ++ faceIndex)
34 {
35 if (localFaceIndices [faceIndex] == localFaceIndex)
36 {
37 vtkm :: Id cellIndex = originCells [faceIndex];
38 vtkm :: IdComponent faceInCellIndex = originFaces [faceIndex];
39 auto cellShape = cellSet . GetCellShape (cellIndex);
40 vtkm :: IdComponent numPointsInFace =
41 connectivityOut . GetNumberOfComponents ();
42
43 VTKM_ASSERT (numPointsInFace == vtkm :: exec :: CellFaceNumberOfPoints (
44 faceInCellIndex , cellShape , *this));
45
46 auto globalPointIndicesForCell = cellSet . GetIndices (cellIndex);
47 for (vtkm :: IdComponent localPointI = 0; localPointI < numPointsInFace ;
48 ++ localPointI)
49 {
50 vtkm :: IdComponent pointInCellIndex = vtkm :: exec :: CellFaceLocalIndex (
51 localPointI , faceInCellIndex , cellShape , *this);
52 connectivityOut [localPointI] =
53 globalPointIndicesForCell [pointInCellIndex];
54 }
55
56 break ;
57 }
58 }
59 }
60 };

With these worklets in place, we can use the following helper method to execute the series of worklets to extract
unique faces.

Example 16.20: Invoking worklets to extract unique faces froma cell set.
1 template < typename InCellSetType >
2 VTKM_CONT vtkm :: cont :: CellSetExplicit <> Run(const InCellSetType & inCellSet)
3 {
4 VTKM_IS_DYNAMIC_OR_STATIC_CELL_SET (InCellSetType);
5
6 using OutCellSetType = vtkm :: cont :: CellSetExplicit <>;
7
8 // First , count the faces in each cell.
9 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > faceCounts ;

10 vtkm :: worklet :: DispatcherMapTopology < CountFaces > countFaceDispatcher ;
11 countFaceDispatcher . Invoke (inCellSet , faceCounts);
12
13 vtkm :: worklet :: ScatterCounting scatter (faceCounts);
14 this -> OutputToInputCellMap =
15 scatter . GetOutputToInputMap (inCellSet . GetNumberOfCells ());
16 vtkm :: worklet :: ScatterCounting :: VisitArrayType outputToInputFaceMap =
17 scatter . GetVisitArray (inCellSet . GetNumberOfCells ());
18
19 // Second , for each face , extract a hash.
20 vtkm :: cont :: ArrayHandle <vtkm :: HashType > hashValues ;
21
22 vtkm :: worklet :: DispatcherMapTopology < FaceHashes > FaceHashesDispatcher (scatter);
23 FaceHashesDispatcher . Invoke (inCellSet , hashValues);
24
25 // Third , use a Keys object to combine all like hashes .
26 this -> CellToFaceKeys = vtkm :: worklet :: Keys <vtkm :: HashType >(hashValues);
27

Chapter 16. Generating Cell Sets 237

DRAFT

16.4. Variable Cell Types

28 // Fourth , use a reduce -by -key to collect like hash values , resolve collisions ,
29 // and count the number of unique faces associated with each hash.
30 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > numUniqueFacesInEachHash ;
31
32 vtkm :: worklet :: DispatcherReduceByKey < FaceHashCollisions >
33 faceHashCollisionDispatcher ;
34 faceHashCollisionDispatcher . Invoke (this -> CellToFaceKeys ,
35 inCellSet ,
36 this -> OutputToInputCellMap ,
37 outputToInputFaceMap ,
38 this -> LocalFaceIndices ,
39 numUniqueFacesInEachHash);
40
41 // Fifth , use a reduce -by -key to count the number of points in each unique face.
42 // Also identify the shape of each face.
43 this -> HashCollisionScatter . reset (
44 new vtkm :: worklet :: ScatterCounting (numUniqueFacesInEachHash));
45
46 OutCellSetType :: ShapeArrayType shapeArray ;
47 OutCellSetType :: NumIndicesArrayType numPointsInEachFace ;
48
49 vtkm :: worklet :: DispatcherReduceByKey < CountPointsInFace > countPointsDispatcher (
50 *this -> HashCollisionScatter);
51 countPointsDispatcher . Invoke (this -> CellToFaceKeys ,
52 inCellSet ,
53 this -> OutputToInputCellMap ,
54 outputToInputFaceMap ,
55 this -> LocalFaceIndices ,
56 shapeArray ,
57 numPointsInEachFace);
58
59 // Sixth , convert the numPointsInEachFace array to an offsets array and use that
60 // to create an ArrayHandleGroupVecVariable .
61 vtkm :: cont :: ArrayHandle <vtkm ::Id > offsetsArray ;
62 vtkm :: Id connectivityArraySize ;
63 vtkm :: cont :: ConvertNumComponentsToOffsets (
64 numPointsInEachFace , offsetsArray , connectivityArraySize);
65 OutCellSetType :: ConnectivityArrayType connectivityArray ;
66 connectivityArray . Allocate (connectivityArraySize);
67 auto connectivityArrayVecs =
68 vtkm :: cont :: make_ArrayHandleGroupVecVariable (connectivityArray , offsetsArray);
69
70 // Seventh , use a reduce -by -key to extract indices for each unique face.
71 vtkm :: worklet :: DispatcherReduceByKey < FaceIndices > faceIndicesDispatcher (
72 *this -> HashCollisionScatter);
73 faceIndicesDispatcher . Invoke (this -> CellToFaceKeys ,
74 inCellSet ,
75 this -> OutputToInputCellMap ,
76 outputToInputFaceMap ,
77 this -> LocalFaceIndices ,
78 connectivityArrayVecs);
79
80 // Eigth , use the created connectivity array and others to build a cell set.
81 OutCellSetType outCellSet (inCellSet . GetName ());
82 outCellSet .Fill(inCellSet . GetNumberOfPoints (),
83 shapeArray ,
84 numPointsInEachFace ,
85 connectivityArray);
86
87 return outCellSet ;
88 }

As noted previously, in practice these worklets are going to be called on DataSet objects to create new DataSet
objects. The process for doing so is no different from our previous algorithm as described at the end of Section 16.3

238 Chapter 16. Generating Cell Sets

DRAFT

16.4. Variable Cell Types

(Examples 16.15 and 16.16).

Chapter 16. Generating Cell Sets 239

DRAFT

DRAFT
CHAPTER

SEVENTEEN

CREATING FILTERS

In Chapter 12 we discuss how to implement an algorithm in the VTK-m framework by creating a worklet.
Worklets might be straightforward to implement and invoke for those well familiar with the appropriate VTK-
m API. However, novice users have difficulty using worklets directly. For simplicity, worklet algorithms are
generally wrapped in what are called filter objects for general usage. Chapter 4 introduces the concept of filters
and documents those that come with the VTK-m library. In this chapter we describe how to build new filter
objects using the worklet examples introduced in Chapter 12.

Unsurprisingly, the base filter objects are contained in the vtkm::filter package. The basic implementation
of a filter involves subclassing one of the base filter objects and implementing the DoExecute method. The
DoExecute method performs the operation of the filter and returns a new data set containing the result.

As with worklets, there are several flavors of filter types to address different operating behaviors although their
is not a one-to-one relationship between worklet and filter types. This chapter is sectioned by the different filter
types with an example of implementations for each.

17.1 Field Filters

As described in Section 4.1 (starting on page 17), field filters are a category of filters that generate a new fields.
These new fields are typically derived from one or more existing fields or point coordinates on the data set. For
example, mass, volume, and density are interrelated, and any one can be derived from the other two.

Field filters are implemented in classes that derive the vtkm::filter::FilterField base class. FilterField
is a templated class that has a single template argument, which is the type of the concrete subclass.

The convention of having a subclass be templated on the derived class’ type is known as the Curiously
Recurring Template Pattern (CRTP). In the case of FilterField and other filter base classes, VTK-m
uses this CRTP behavior to allow the general implementation of these algorithms to run DoExecute in the
subclass, which as we see in a moment is itself templated.

Did you know?

All FilterField subclasses must implement a DoExecute method. The FilterField base class implements an
Execute method (actually several overloaded versions of Execute), processes the arguments, and then calls the
DoExecute method of its subclass. The DoExecute method has the following 4 arguments.

• An input data set contained in a vtkm::cont::DataSet object. (See Chapter 11 for details on DataSet

DRAFT

17.1. Field Filters

objects.)

• The field from the DataSet specified in the Execute method to operate on. The field is always passed as
an instance of vtkm::cont::ArrayHandle. (See Chapter 7 for details on ArrayHandle objects.) The type
of the ArrayHandle is generally not known until the class is used and requires a template type.

• A vtkm::filter::FieldMetadata object that contains the associated metadata of the field not contained
in the ArrayHandle of the second argument. The FieldMetadata contains information like the name of
the field and what topological element the field is associated with (such as points or cells).

• A policy class. [Re-add following line after policies are documented if they are still there.]
The type of the policy is generally unknown until the class is used and requires a template type.

In this section we provide an example implementation of a field filter that wraps the “magnitude” worklet
provided in Example 12.6 (listed on page 159). By convention, filter implementations are split into two files.
The first file is a standard header file with a .h extension that contains the declaration of the filter class without
the implementation. So we would expect the following code to be in a file named FieldMagnitude.h.

Example 17.1: Header declaration for a field filter.
1 namespace vtkm
2 {
3 namespace filter
4 {
5
6 class FieldMagnitude : public vtkm :: filter :: FilterField < FieldMagnitude >
7 {
8 public :
9 VTKM_CONT

10 FieldMagnitude ();
11
12 template < typename ArrayHandleType , typename Policy >
13 VTKM_CONT vtkm :: cont :: DataSet DoExecute (
14 const vtkm :: cont :: DataSet & inDataSet ,
15 const ArrayHandleType & inField ,
16 const vtkm :: filter :: FieldMetadata & fieldMetadata ,
17 vtkm :: filter :: PolicyBase <Policy >);
18 };
19
20 template <>
21 class FilterTraits <vtkm :: filter :: FieldMagnitude >
22 {
23 public :
24 struct InputFieldTypeList : vtkm :: ListTagBase <vtkm ::Vec <vtkm :: Float32 , 2>,
25 vtkm ::Vec <vtkm :: Float64 , 2>,
26 vtkm ::Vec <vtkm :: Float32 , 3>,
27 vtkm ::Vec <vtkm :: Float64 , 3>,
28 vtkm ::Vec <vtkm :: Float32 , 4>,
29 vtkm ::Vec <vtkm :: Float64 , 4>>
30 {
31 };
32 };
33
34 } // namespace filter
35 } // namespace vtkm

Notice that in addition to declaring the class for FieldMagnitude, Example 17.1 also specializes the vtkm::-
filter::FilterTraits templated class for FieldMagnitude. The FilterTraits class, declared in vtkm/filter/-
FilterTraits.h, provides hints used internally in the base filter classes to modify its behavior based on the subclass.
A FilterTraits class is expected to define the following types.

242 Chapter 17. Creating Filters

DRAFT

17.1. Field Filters

InputFieldTypeList A type list containing all the types that are valid for the input field. For example, a filter
operating on positions in space might limit the types to three dimensional vectors. Type lists are discussed
in detail in Section 6.7.2.

In the particular case of our FieldMagnitude filter, the filter expects to operate on some type of vector field.
Thus, the FilterTraits::InputFieldTypeList is modified to a list of all standard floating point Vecs.

Once the filter class and (optionally) the FilterTraits are declared in the .h file, the implementation filter is by
convention given in a separate .hxx file. So the continuation of our example that follows would be expected in a
file named FieldMagnitude.hxx. The .h file near its bottom needs an include line to the .hxx file. This convention
is set up because a near future version of VTK-m will allow the building of filter libraries containing default
policies that can be used by only including the header declaration.

The implementation of DoExecute is straightforward. A worklet is invoked to compute a new field array.
DoExecute then returns a newly constructed vtkm::cont::DataSet object containing the result. There are
numerous ways to create a DataSet, but to simplify making filters, VTK-m provides the vtkm::filter::-
internal::CreateResult function to simplify the process. There are several overloaded versions of vtkm::-
filter::internal::CreateResult (defined in header file vtkm/filter/internal/CreateResult.h), but the simplest
one to use for a filter that adds a field takes the following 5 arguments.

• The input data set. This is the same data set passed to the first argument of DoExecute.

• The array containing the data for the new field, which was presumably computed by the filter.

• The name of the new field.

• The topological association (e.g. points or cells) of the new field. In the case where the filter is a sim-
ple operation on a field array, the association can usually be copied from the FieldMetadata passed to
DoExecute.

• The name of the element set the new field is associated with. This only has meaning if the new field is
associated with cells and usually is specified if and only if the new field is associated with cells. This name
usually can be copied from the FieldMetadata passed to DoExecute.

Note that all fields need a unique name, which is the reason for the third argument to CreateResult. The
vtkm::filter::FilterField base class contains a pair of methods named SetOutputFieldName and GetOut-
putFieldName to allow users to specify the name of output fields. The DoExecute method should respect the
given output field name. However, it is also good practice for the filter to have a default name if none is given.
This might be simply specifying a name in the constructor, but it is worthwhile for many filters to derive a name
based on the name of the input field.

Example 17.2: Implementation of a field filter.
1 namespace vtkm
2 {
3 namespace filter
4 {
5
6 VTKM_CONT
7 FieldMagnitude :: FieldMagnitude ()
8 {
9 this -> SetOutputFieldName ("");

10 }
11
12 template < typename ArrayHandleType , typename Policy >
13 VTKM_CONT cont :: DataSet FieldMagnitude :: DoExecute (
14 const vtkm :: cont :: DataSet & inDataSet ,

Chapter 17. Creating Filters 243

DRAFT

17.2. Field Filters Using Cell Connectivity

15 const ArrayHandleType & inField ,
16 const vtkm :: filter :: FieldMetadata & fieldMetadata ,
17 vtkm :: filter :: PolicyBase <Policy >)
18 {
19 VTKM_IS_ARRAY_HANDLE (ArrayHandleType);
20
21 using ComponentType =
22 typename vtkm :: VecTraits < typename ArrayHandleType :: ValueType >:: ComponentType ;
23
24 vtkm :: cont :: ArrayHandle < ComponentType > outField =
25 vtkm :: worklet :: Magnitude :: Run(inField);
26
27 std :: string outFieldName = this -> GetOutputFieldName ();
28 if (outFieldName == "")
29 {
30 outFieldName = fieldMetadata . GetName () + " _magnitude ";
31 }
32
33 return vtkm :: filter :: internal :: CreateResult (inDataSet ,
34 outField ,
35 outFieldName ,
36 fieldMetadata . GetAssociation (),
37 fieldMetadata . GetCellSetName ());
38 }
39
40 } // namespace filter
41 } // namespace vtkm

17.2 Field Filters Using Cell Connectivity

A special subset of field filters are those that take into account the connectivity of a cell set to compute derivative
fields. These types of field filters should be implemented in classes that derive the vtkm::filter::FilterCell
base class. FilterCell is itself a subclass of vtkm::filter::FilterField and behaves essentially the same.
FilterCell adds the pair of methods SetActiveCellSetIndex and GetActiveCellSetIndex. The SetActive-
CellSetIndex method allows users to specify which cell set of the given DataSet to use. Likewise, FilterCell
subclasses should use GetActiveCellSetIndex when retrieving a cell set from the given DataSet.

Like FilterField, FilterCell is a templated class that takes as its single template argument the type of the
derived class. Also like FilterField, a FilterCell subclass must implement a method named DoExecute
with 4 arguments: an input vtkm::cont::DataSet object, a vtkm::cont::ArrayHandle of the input field, a
vtkm::filter::FieldMetadata information object, and a policy class.

In this section we provide an example implementation of a field filter on cells that wraps the “cell center” worklet
provided in Example 12.8 (listed on page 164). By convention, filter implementations are split into two files.
The first file is a standard header file with a .h extension that contains the declaration of the filter class without
the implementation. So we would expect the following code to be in a file named CellCenter.h.

Example 17.3: Header declaration for a field filter using cell topology.
1 namespace vtkm
2 {
3 namespace filter
4 {
5
6 class CellCenters : public vtkm :: filter :: FilterCell < CellCenters >
7 {
8 public :
9 VTKM_CONT

10 CellCenters ();

244 Chapter 17. Creating Filters

DRAFT

17.2. Field Filters Using Cell Connectivity

11
12 template < typename ArrayHandleType , typename Policy >
13 VTKM_CONT vtkm :: cont :: DataSet DoExecute (
14 const vtkm :: cont :: DataSet & inDataSet ,
15 const ArrayHandleType & inField ,
16 const vtkm :: filter :: FieldMetadata & FieldMetadata ,
17 vtkm :: filter :: PolicyBase <Policy >);
18 };
19
20 } // namespace filter
21 } // namespace vtkm

You may have noticed that Example 17.1 provided a specialization for vtkm::filter::FilterTraits but
Example 17.3 provides no such specialization. This demonstrates that declaring filter traits is optional. If
a filter only works on some limited number of types, then it can use FilterTraits to specify the specific
types it supports. But if a filter is generally applicable to many field types, it can simply use the default
filter traits.

Did you know?

Once the filter class and (optionally) the FilterTraits are declared in the .h file, the implementation filter is by
convention given in a separate .hxx file. So the continuation of our example that follows would be expected in a
file named CellCenter.hxx. The .h file near its bottom needs an include line to the .hxx file. This convention is set
up because a near future version of VTK-m will allow the building of filter libraries containing default policies
that can be used by only including the header declaration.

Like with a FilterField, a subclass of FilterCell implements DoExecute by invoking a worklet to compute a
new field array and then return a newly constructed vtkm::cont::DataSet object.

Example 17.4: Implementation of a field filter using cell topology.
1 namespace vtkm
2 {
3 namespace filter
4 {
5
6 VTKM_CONT
7 CellCenters :: CellCenters ()
8 {
9 this -> SetOutputFieldName ("");

10 }
11
12 template < typename ArrayHandleType , typename Policy >
13 VTKM_CONT cont :: DataSet CellCenters :: DoExecute (
14 const vtkm :: cont :: DataSet & inDataSet ,
15 const ArrayHandleType & inField ,
16 const vtkm :: filter :: FieldMetadata & fieldMetadata ,
17 vtkm :: filter :: PolicyBase <Policy >)
18 {
19 VTKM_IS_ARRAY_HANDLE (ArrayHandleType);
20
21 if (! fieldMetadata . IsPointField ())
22 {
23 throw vtkm :: cont :: ErrorBadType (" Cell Centers filter operates on point data .");
24 }
25
26 vtkm :: cont :: DynamicCellSet cellSet =
27 inDataSet . GetCellSet (this -> GetActiveCellSetIndex ());

Chapter 17. Creating Filters 245

DRAFT

17.3. Data Set Filters

28
29 using ValueType = typename ArrayHandleType :: ValueType ;
30
31 vtkm :: cont :: ArrayHandle <ValueType > outField = vtkm :: worklet :: CellCenter :: Run(
32 vtkm :: filter :: ApplyPolicy (cellSet , Policy ()) , inField);
33
34 std :: string outFieldName = this -> GetOutputFieldName ();
35 if (outFieldName == "")
36 {
37 outFieldName = fieldMetadata . GetName () + " _center ";
38 }
39
40 return vtkm :: filter :: internal :: CreateResult (
41 inDataSet ,
42 outField ,
43 outFieldName ,
44 vtkm :: cont :: Field :: Association :: CELL_SET ,
45 cellSet . GetName ());
46 }
47
48 } // namespace filter
49 } // namespace vtkm

The policy passed to the DoExecute method contains information on what types of cell sets should be
supported by the execution. This list of cell set types could be different than the default types specified
the DynamicCellSet returned from GetCellSet. Thus, it is important to apply the policy to the cell set
before passing it to the dispatcher’s invoke method. The policy is applied by calling the vtkm::filter::-
ApplyPolicy function on the DynamicCellSet. The use of ApplyPolicy is demonstrated in Example 17.4.
[The details of this may change when moving to virtual methods.]

Common Errors

17.3 Data Set Filters

As described in Section 4.2 (starting on page 32), data set filters are a category of filters that generate a data set
with a new cell set based off the cells of an input data set. For example, a data set can be significantly altered
by adding, removing, or replacing cells.

Data set filters are implemented in classes that derive the vtkm::filter::FilterDataSet base class. Filter-
DataSet is a templated class that has a single template argument, which is the type of the concrete subclass.

All FilterDataSet subclasses must implement two methods: DoExecute and DoMapField. The FilterDataSet
base class implements Execute and MapFieldOntoOutput methods that process the arguments and then call the
DoExecute and DoMapField methods, respectively, of its subclass.

The DoExecute method has the following 2 arguments.

• An input data set contained in a vtkm::cont::DataSet object. (See Chapter 11 for details on DataSet
objects.)

• A policy class. [Re-add following line after policies are documented if they are still there.]
The type of the policy is generally unknown until the class is used and requires a template type.

246 Chapter 17. Creating Filters

DRAFT

17.3. Data Set Filters

The DoMapField method has the following 4 arguments.

• A vtkm::cont::DataSet object that was returned from the last call to DoExecute. The method both
needs information in the DataSet object and writes its results back to it, so the parameter should be
declared as a non-const reference. (See Chapter 11 for details on DataSet objects.)

• The field from the DataSet specified in the Execute method to operate on. The field is always passed as
an instance of vtkm::cont::ArrayHandle. (See Chapter 7 for details on ArrayHandle objects.) The type
of the ArrayHandle is generally not known until the class is used and requires a template type.

• A vtkm::filter::FieldMetadata object that contains the associated metadata of the field not contained
in the ArrayHandle of the second argument. The FieldMetadata contains information like the name of
the field and what topological element the field is associated with (such as points or cells).

• A policy class. [Re-add following line after policies are documented if they are still there.]
The type of the policy is generally unknown until the class is used and requires a template type.

In this section we provide an example implementation of a data set filter that wraps the functionality of extracting
the edges from a data set as line elements. Many variations of implementing this functionality are given in
Chapter 16. For the sake of argument, we are assuming that all the worklets required to implement edge
extraction are wrapped up in structure named vtkm::worklet ::ExtractEdges. Furthermore, we assume that
ExtractEdges has a pair of methods, Run and ProcessCellField, that create a cell set of lines from the edges
in another cell set and average a cell field from input to output, respectively. The ExtractEdges may hold state.
All of these assumptions are consistent with the examples in Chapter 16.

By convention, filter implementations are split into two files. The first file is a standard header file with a .h
extension that contains the declaration of the filter class without the implementation. So we would expect the
following code to be in a file named ExtractEdges.h.

Example 17.5: Header declaration for a data set filter.
1 template < typename Policy >
2 inline VTKM_CONT vtkm :: cont :: DataSet ExtractEdges :: DoExecute (
3 const vtkm :: cont :: DataSet & inData ,
4 vtkm :: filter :: PolicyBase <Policy > policy)
5 {
6
7 const vtkm :: cont :: DynamicCellSet & inCells =
8 inData . GetCellSet (this -> GetActiveCellSetIndex ());
9

10 vtkm :: cont :: CellSetSingleType <> outCells =
11 this -> Worklet .Run(vtkm :: filter :: ApplyPolicy (inCells , policy));
12
13 vtkm :: cont :: DataSet outData ;
14
15 outData . AddCellSet (outCells);
16
17 for (vtkm :: IdComponent coordSystemIndex = 0;
18 coordSystemIndex < inData . GetNumberOfCoordinateSystems ();
19 ++ coordSystemIndex)
20 {
21 outData . AddCoordinateSystem (inData . GetCoordinateSystem (coordSystemIndex));
22 }
23
24 return outData ;
25 }

Once the filter class and (optionally) the FilterTraits are declared in the .h file, the implementation of the
filter is by convention given in a separate .hxx file. So the continuation of our example that follows would be

Chapter 17. Creating Filters 247

DRAFT

17.3. Data Set Filters

expected in a file named ExtractEdges.hxx. The .h file near its bottom needs an include line to the .hxx file. This
convention is set up because a near future version of VTK-m will allow the building of filter libraries containing
default policies that can be used by only including the header declaration.

The implementation of DoExecute first calls the worklet methods to generate a new CellSet class. It then
constructs a DataSet containing this CellSet. It also has to pass all the coordinate systems to the new DataSet.
Finally, it returns the DataSet.

Example 17.6: Implementation of the DoExecute method of a data set filter.
1 template < typename Policy >
2 inline VTKM_CONT vtkm :: cont :: DataSet ExtractEdges :: DoExecute (
3 const vtkm :: cont :: DataSet & inData ,
4 vtkm :: filter :: PolicyBase <Policy > policy)
5 {
6
7 const vtkm :: cont :: DynamicCellSet & inCells =
8 inData . GetCellSet (this -> GetActiveCellSetIndex ());
9

10 vtkm :: cont :: CellSetSingleType <> outCells =
11 this -> Worklet .Run(vtkm :: filter :: ApplyPolicy (inCells , policy));
12
13 vtkm :: cont :: DataSet outData ;
14
15 outData . AddCellSet (outCells);
16
17 for (vtkm :: IdComponent coordSystemIndex = 0;
18 coordSystemIndex < inData . GetNumberOfCoordinateSystems ();
19 ++ coordSystemIndex)
20 {
21 outData . AddCoordinateSystem (inData . GetCoordinateSystem (coordSystemIndex));
22 }
23
24 return outData ;
25 }

The implementation of DoMapField checks to see what elements the given field is associated with (e.g. points
or cells), processes the field data as necessary, and adds the field to the DataSet. The vtkm::filter::-
FieldMetadata passed to DoMapField provides some features to make this process easier. FieldMetadata
contains methods to query what the field is associated with such as IsPointField and FieldMetadata::-
IsCellField. FieldMetadata also has a method named FieldMetadata::AsField that creates a new vtkm::-
cont::Field object with a new data array and metadata that matches the input.

Example 17.7: Implementation of the DoMapField method of a data set filter.
1 template < typename T, typename StorageType , typename Policy >
2 inline VTKM_CONT bool ExtractEdges :: DoMapField (
3 vtkm :: cont :: DataSet & result ,
4 const vtkm :: cont :: ArrayHandle <T, StorageType >& input ,
5 const vtkm :: filter :: FieldMetadata & fieldMeta ,
6 const vtkm :: filter :: PolicyBase <Policy >&)
7 {
8 vtkm :: cont :: Field output ;
9

10 if (fieldMeta . IsPointField ())
11 {
12 output = fieldMeta . AsField (input); // pass through
13 }
14 else if (fieldMeta . IsCellField ())
15 {
16 output = fieldMeta . AsField (this -> Worklet . ProcessCellField (input));
17 }
18 else

248 Chapter 17. Creating Filters

DRAFT

17.4. Data Set with Field Filters

19 {
20 return false ;
21 }
22
23 result . AddField (output);
24
25 return true;
26 }

17.4 Data Set with Field Filters

As described in Section 4.3 (starting on page 37), data set with field filters are a category of filters that generate
a data set with a new cell set based off the cells of an input data set along with the data in at least one field.
For example, a field might determine how each cell is culled, clipped, or sliced.

Data set with field filters are implemented in classes that derive the vtkm::filter::FilterDataSetWithField
base class. FilterDataSetWithField is a templated class that has a single template argument, which is the
type of the concrete subclass.

All FilterDataSetWithField subclasses must implement two methods: DoExecute and DoMapField. The
FilterDataSetWithField base class implements Execute and MapFieldOntoOutput methods that process the
arguments and then call the DoExecute and DoMapField methods, respectively, of its subclass.

The DoExecute method has the following 4 arguments. (They are the same arguments for DoExecute of field
filters as described in Section 17.1.)

• An input data set contained in a vtkm::cont::DataSet object. (See Chapter 11 for details on DataSet
objects.)

• The field from the DataSet specified in the Execute method to operate on. The field is always passed as
an instance of vtkm::cont::ArrayHandle. (See Chapter 7 for details on ArrayHandle objects.) The type
of the ArrayHandle is generally not known until the class is used and requires a template type.

• A vtkm::filter::FieldMetadata object that contains the associated metadata of the field not contained
in the ArrayHandle of the second argument. The FieldMetadata contains information like the name of
the field and what topological element the field is associated with (such as points or cells).

• A policy class. [Re-add following line after policies are documented if they are still there.]
The type of the policy is generally unknown until the class is used and requires a template type.

The DoMapField method has the following 4 arguments. (They are the same arguments for DoExecute of field
filters as described in Section 17.3.)

• A vtkm::cont::DataSet object that was returned from the last call to DoExecute. The method both
needs information in the DataSet object and writes its results back to it, so the parameter should be
declared as a non-const reference. (See Chapter 11 for details on DataSet objects.)

• The field from the DataSet specified in the Execute method to operate on. The field is always passed as
an instance of vtkm::cont::ArrayHandle. (See Chapter 7 for details on ArrayHandle objects.) The type
of the ArrayHandle is generally not known until the class is used and requires a template type.

• A vtkm::filter::FieldMetadata object that contains the associated metadata of the field not contained
in the ArrayHandle of the second argument. The FieldMetadata contains information like the name of
the field and what topological element the field is associated with (such as points or cells).

Chapter 17. Creating Filters 249

DRAFT

17.4. Data Set with Field Filters

• A policy class. [Re-add following line after policies are documented if they are still there.]
The type of the policy is generally unknown until the class is used and requires a template type.

In this section we provide an example implementation of a data set with field filter that blanks the cells in a
data set based on a field that acts as a mask (or stencil). Any cell associated with a mask value of zero will be
removed.

We leverage the worklets in the VTK-m source code that implement the Threshold functionality. The threshold
worklets are templated on a predicate class that, given a field value, returns a flag on whether to pass or cull
the given cell. The vtkm::filter::Threshold class uses a predicate that is true for field values within a range.
Our blank cells filter will instead use the predicate class vtkm::NotZeroInitialized that will cull all values
where the mask is zero.

By convention, filter implementations are split into two files. The first file is a standard header file with a .h
extension that contains the declaration of the filter class without the implementation. So we would expect the
following code to be in a file named BlankCells.h.

Example 17.8: Header declaration for a data set with field filter.
1 namespace vtkm
2 {
3 namespace filter
4 {
5
6 class BlankCells : public vtkm :: filter :: FilterDataSetWithField < BlankCells >
7 {
8 public :
9 template < typename ArrayHandleType , typename Policy >

10 VTKM_CONT vtkm :: cont :: DataSet DoExecute (
11 const vtkm :: cont :: DataSet & inDataSet ,
12 const ArrayHandleType & inField ,
13 const vtkm :: filter :: FieldMetadata & fieldMetadata ,
14 vtkm :: filter :: PolicyBase <Policy >);
15
16 template < typename T, typename StorageType , typename Policy >
17 VTKM_CONT bool DoMapField (vtkm :: cont :: DataSet & result ,
18 const vtkm :: cont :: ArrayHandle <T, StorageType >& input ,
19 const vtkm :: filter :: FieldMetadata & fieldMeta ,
20 const vtkm :: filter :: PolicyBase <Policy >& policy);
21
22 private :
23 vtkm :: worklet :: Threshold Worklet ;
24 };
25
26
27 template <>
28 struct FilterTraits <vtkm :: filter :: BlankCells >
29 {
30 struct InputFieldTypeList : vtkm :: TypeListTagScalarAll
31 {
32 };
33 };
34
35 } // namespace filter
36 } // namespace vtkm

Note that the filter class declaration is accompanied by a specialization of FilterTraits to specify the field
is meant to operate specifically on scalar types. Once the filter class and (optionally) the FilterTraits are
declared in the .h file, the implementation of the filter is by convention given in a separate .hxx file. So the
continuation of our example that follows would be expected in a file named BlankCells.hxx. The .h file near its
bottom needs an include line to the .hxx file. This convention is set up because a near future version of VTK-m

250 Chapter 17. Creating Filters

DRAFT

17.4. Data Set with Field Filters

will allow the building of filter libraries containing default policies that can be used by only including the header
declaration.

The implementation of DoExecute first calls the worklet methods to generate a new CellSet class. It then
constructs a DataSet containing this CellSet. It also has to pass all the coordinate systems to the new DataSet.
Finally, it returns the DataSet.

Example 17.9: Implementation of the DoExecute method of a data set with field filter.
1 template < typename ArrayHandleType , typename Policy >
2 VTKM_CONT vtkm :: cont :: DataSet BlankCells :: DoExecute (
3 const vtkm :: cont :: DataSet & inData ,
4 const ArrayHandleType & inField ,
5 const vtkm :: filter :: FieldMetadata & fieldMetadata ,
6 vtkm :: filter :: PolicyBase <Policy >)
7 {
8 VTKM_IS_ARRAY_HANDLE (ArrayHandleType);
9

10 if (! fieldMetadata . IsCellField ())
11 {
12 throw vtkm :: cont :: ErrorBadValue (" Blanking field must be a cell field .");
13 }
14
15 const vtkm :: cont :: DynamicCellSet & inCells =
16 inData . GetCellSet (this -> GetActiveCellSetIndex ());
17
18 vtkm :: cont :: DynamicCellSet outCells =
19 this -> Worklet .Run(vtkm :: filter :: ApplyPolicy (inCells , Policy ()) ,
20 inField ,
21 fieldMetadata . GetAssociation (),
22 vtkm :: NotZeroInitialized ());
23
24 vtkm :: cont :: DataSet outData ;
25
26 outData . AddCellSet (outCells);
27
28 for (vtkm :: IdComponent coordSystemIndex = 0;
29 coordSystemIndex < inData . GetNumberOfCoordinateSystems ();
30 ++ coordSystemIndex)
31 {
32 outData . AddCoordinateSystem (inData . GetCoordinateSystem (coordSystemIndex));
33 }
34
35 return outData ;
36 }

The implementation of DoMapField checks to see what elements the given field is associated with (e.g. points
or cells), processes the field data as necessary, and adds the field to the DataSet. The vtkm::filter::Field-
Metadata passed to DoMapField provides some features to make this process easier. FieldMetadata contains
methods to query what the field is associated with such as IsPointField and IsCellField. FieldMetadata
also has a method named AsField that creates a new vtkm::cont::Field object with a new data array and
metadata that matches the input.

Example 17.10: Implementation of the DoMapField method of a data set with field filter.
1 template < typename T, typename StorageType , typename Policy >
2 inline VTKM_CONT bool BlankCells :: DoMapField (
3 vtkm :: cont :: DataSet & result ,
4 const vtkm :: cont :: ArrayHandle <T, StorageType >& input ,
5 const vtkm :: filter :: FieldMetadata & fieldMeta ,
6 const vtkm :: filter :: PolicyBase <Policy >&)
7 {
8 vtkm :: cont :: Field output ;

Chapter 17. Creating Filters 251

DRAFT

17.4. Data Set with Field Filters

9
10 if (fieldMeta . IsPointField ())
11 {
12 output = fieldMeta . AsField (input); // pass through
13 }
14 else if (fieldMeta . IsCellField ())
15 {
16 output = fieldMeta . AsField (this -> Worklet . ProcessCellField (input));
17 }
18 else
19 {
20 return false ;
21 }
22
23 result . AddField (output);
24
25 return true;
26 }

252 Chapter 17. Creating Filters

DRAFT
CHAPTER

EIGHTEEN

CUSTOM ARRAY STORAGE

Chapter 7 introduces the vtkm::cont::ArrayHandle class. In it, we learned how an ArrayHandle manages the
memory allocation of an array, provides access to the data via array portals, and supervises the movement of
data between the control and execution environments.

In addition to these data management features, ArrayHandle also provides a configurable storage mechanism
that allows you, through efficient template configuration, to redefine how data are stored and retrieved. The
storage object provides an encapsulated interface around the data so that any necessary strides, offsets, or other
access patterns may be handled internally. The relationship between array handles and their storage object is
shown in Figure 18.1.

Array Handle

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Basic
Storage x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Permutation
Storage x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

2 9 3 0 2 1 9 7 2 6Array Handle

x2 x9 x3 x0 x2 x1 x9 x7 x2 x6

Array Handle

x0 y0 z0 x1 y1 z1 x2 y2 z2

Composite Vector
Storage y0 y1 y2

x0 x1 x2

z0 z1 z2

Array Handle

0 1 2 3 4 5 6 7 8 9

Index
Storage

Figure 18.1: Array handles, storage objects, and the underlying data source.

One interesting consequence of using a generic storage object to manage data within an array handle is that
the storage can be defined functionally rather than point to data stored in physical memory. Thus, implicit
array handles are easily created by adapting to functional “storage.” For example, the point coordinates of a
uniform rectilinear grid are implicit based on the topological position of the point. Thus, the point coordinates
for uniform rectilinear grids can be implemented as an implicit array with the same interface as explicit arrays
(where unstructured grid points would be stored). In this chapter we explore the many ways you can manipulate

DRAFT

18.1. Basic Storage

the ArrayHandle storage.

18.1 Basic Storage

As previously discussed in Chapter 7, vtkm::cont::ArrayHandle takes two template arguments.

Example 18.1: Declaration of the vtkm::cont::ArrayHandle templated class (again).
1 template <
2 typename T,
3 typename StorageTag = VTKM_DEFAULT_STORAGE_TAG >
4 class ArrayHandle ;

The first argument is the only one required and has been demonstrated multiple times before. The second (op-
tional) argument specifies something called a storage, which provides the interface between the generic vtkm::-
cont::ArrayHandle class and a specific storage mechanism in the control environment. If the storage parameter
is not explicitly defined, it is set to VTKM DEFAULT STORAGE TAG, which is a macro that resolves to vtkm::-
cont::StorageTagBasic.

The default storage can always be overridden by specifying an array storage tag. Here is an example of specifying
the storage type when declaring an array handle.

Example 18.2: Specifying the storage type for an ArrayHandle.
1 vtkm :: cont :: ArrayHandle <vtkm :: Float32 , vtkm :: cont :: StorageTagBasic > arrayHandle ;

Although setting an ArrayHandle’s storage explicitly to StorageBasic as in Example 18.2 is seldom useful (since
this is the default value), setting the storage is a good way to propagate the storage mechanism through template
parameters. The remainder of this chapter uses the storage mechanism to customize the representation of arrays.

18.2 Implementing Fancy Arrays

Although the behavior of fancy arrays might seem complicated, they are actually straightforward to implement.
VTK-m provides several mechanisms to implement fancy arrays.

18.2.1 Implicit Array Handles

The generic array handle and storage templating in VTK-m allows for any type of operations to retrieve a
particular value. Typically this is used to convert an index to some location or locations in memory. However,
it is also possible to compute a value directly from an index rather than look up some value in memory. Such
an array is completely functional and requires no storage in memory at all. Such a functional array is called
an implicit array handle. Implicit arrays are an example of fancy array handles, which are array handles that
behave like regular arrays but do special processing under the covers to provide values.

Specifying a functional or implicit array in VTK-m is straightforward. VTK-m has a special class named
vtkm::cont::ArrayHandleImplicit that makes an implicit array containing values generated by a user-specified
functor. A functor is simply a C++ class or struct that contains an overloaded parenthesis operator so that it
can be used syntactically like a function.

To demonstrate the use of ArrayHandleImplicit, let us say we want an array of even numbers. The array has
the values [0,2,4,6, . . .] (double the index) up to some given size. Although we could easily create this array in
memory, we can save space and possibly time by computing these values on demand.

254 Chapter 18. Custom Array Storage

DRAFT

18.2. Implementing Fancy Arrays

VTK-m already comes with an implicit array handle named vtkm::cont::ArrayHandleCounting that can
make implicit even numbers as well as other more general counts. So in practice you would not have to
create a special implicit array, but we are doing so here for demonstrative purposes.

Did you know?

The first step to using ArrayHandleImplicit is to declare a functor. The functor’s parenthesis operator should
accept a single argument of type vtkm::Id and return a value appropriate for that index. The parenthesis
operator should also be declared const because it is not allowed to change the class’ state.

Example 18.3: Functor that doubles an index.
1 struct DoubleIndexFunctor
2 {
3 VTKM_EXEC_CONT
4 vtkm :: Id operator ()(vtkm :: Id index) const { return 2 * index ; }
5 };

Once the functor is defined, an implicit array can be declared using the templated vtkm::cont::ArrayHan-
dleImplicit class. The single template argument is the functor’s type.

Example 18.4: Declaring a ArrayHandleImplicit.
1 vtkm :: cont :: ArrayHandleImplicit < DoubleIndexFunctor > implicitArray (
2 DoubleIndexFunctor (), 50);

For convenience, vtkm/cont/ArrayHandleImplicit.h also declares the vtkm::cont::make ArrayHandleImplicit
function. This function takes a functor and the size of the array and returns the implicit array.

Example 18.5: Using make ArrayHandleImplicit.
1 vtkm :: cont :: make_ArrayHandleImplicit (DoubleIndexFunctor (), 50);

If the implicit array you are creating tends to be generally useful and is something you use multiple times, it
might be worthwhile to make a convenience subclass of vtkm::cont::ArrayHandleImplicit for your array.

Example 18.6: Custom implicit array handle for even numbers.
1 # include <vtkm/cont/ ArrayHandleImplicit .h>
2
3 class ArrayHandleDoubleIndex
4 : public vtkm :: cont :: ArrayHandleImplicit < DoubleIndexFunctor >
5 {
6 public :
7 VTKM_ARRAY_HANDLE_SUBCLASS_NT (
8 ArrayHandleDoubleIndex ,
9 (vtkm :: cont :: ArrayHandleImplicit < DoubleIndexFunctor >));

10
11 VTKM_CONT
12 ArrayHandleDoubleIndex (vtkm :: Id numberOfValues)
13 : Superclass (DoubleIndexFunctor (), numberOfValues)
14 {
15 }
16 };

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. Both of these macros define the types Superclass, ValueType, and StorageTag as well as a
set of constructors and operators expected of all ArrayHandle classes. The difference between these two macros

Chapter 18. Custom Array Storage 255

DRAFT

18.2. Implementing Fancy Arrays

is that VTKM ARRAY HANDLE SUBCLASS is used in templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT
is used in non-templated classes.

The ArrayHandle subclass in Example 18.6 is not templated, so it uses the VTKM ARRAY HANDLE SUBCLASS NT
macro. (The other macro is described in Section 18.2.2 on page 257). This macro takes two parameters. The first
parameter is the name of the subclass where the macro is defined and the second parameter is the immediate
superclass including the full template specification. The second parameter of the macro must be enclosed in
parentheses so that the C pre-processor correctly handles commas in the template specification.

18.2.2 Transformed Arrays

Another type of fancy array handle is the transformed array. A transformed array takes another array and
applies a function to all of the elements to produce a new array. A transformed array behaves much like a map
operation except that a map operation writes its values to a new memory location whereas the transformed array
handle produces its values on demand so that no additional storage is required.

Specifying a transformed array in VTK-m is straightforward. VTK-m has a special class named vtkm::cont::-
ArrayHandleTransform that takes an array handle and a functor and provides an interface to a new array
comprising values of the first array applied to the functor.

To demonstrate the use of ArrayHandleTransform, let us say that we want to scale and bias all of the values in
a target array. That is, each value in the target array is going to be multiplied by a given scale and then offset
by adding a bias value. (The scale and bias are uniform across all entries.) We could, of course, easily create a
worklet to apply this scale and bias to each entry in the target array and save the result in a new array, but we
can save space and possibly time by computing these values on demand.

The first step to using ArrayHandleTransform is to declare a functor. The functor’s parenthesis operator should
accept a single argument of the type of the target array and return the transformed value. For more generally
applicable transform functors, it is often useful to make the parenthesis operator a template. The parenthesis
operator should also be declared const because it is not allowed to change the class’ state.

Example 18.7: Functor to scale and bias a value.
1 template < typename T>
2 struct ScaleBiasFunctor
3 {
4 VTKM_EXEC_CONT
5 ScaleBiasFunctor (T scale = T(1) , T bias = T(0))
6 : Scale (scale)
7 , Bias(bias)
8 {
9 }

10
11 VTKM_EXEC_CONT
12 T operator ()(T x) const { return this -> Scale * x + this ->Bias; }
13
14 T Scale ;
15 T Bias;
16 };

Once the functor is defined, a transformed array can be declared using the templated vtkm::cont::ArrayHan-
dleTransform class. The first template argument is the type of array being transformed. The second template
argument is the type of functor used for the transformation. The third template argument, which is optional, is
the type for an inverse functor that provides the inverse operation of the functor in the second argument. This
inverse functor is used for writing values into the array. For arrays that will only be read from, there is no need
to supply this inverse functor.

256 Chapter 18. Custom Array Storage

DRAFT

18.2. Implementing Fancy Arrays

That said, it is generally easier to use the vtkm::cont::make ArrayHandleTransform convenience function.
This function takes an array and a functor (and optionally an inverse functor) and returns a transformed array.

Example 18.8: Using make ArrayHandleTransform.
1 vtkm :: cont :: make_ArrayHandleTransform (array ,
2 ScaleBiasFunctor <vtkm :: Float32 >(2 , 3))

If the transformed array you are creating tends to be generally useful and is something you use multiple times,
it might be worthwhile to make a convenience subclass of vtkm::cont::ArrayHandleTransform or convenience
make ArrayHandle* function for your array.

Example 18.9: Custom transform array handle for scale and bias.
1 # include <vtkm/cont/ ArrayHandleTransform .h>
2
3 template < typename ArrayHandleType >
4 class ArrayHandleScaleBias : public vtkm :: cont :: ArrayHandleTransform <
5 ArrayHandleType ,
6 ScaleBiasFunctor < typename ArrayHandleType :: ValueType >>
7 {
8 public :
9 VTKM_ARRAY_HANDLE_SUBCLASS (

10 ArrayHandleScaleBias ,
11 (ArrayHandleScaleBias < ArrayHandleType >),
12 (vtkm :: cont :: ArrayHandleTransform <
13 ArrayHandleType ,
14 ScaleBiasFunctor < typename ArrayHandleType :: ValueType > >));
15
16 VTKM_CONT
17 ArrayHandleScaleBias (const ArrayHandleType & array , ValueType scale , ValueType bias)
18 : Superclass (array , ScaleBiasFunctor <ValueType >(scale , bias))
19 {
20 }
21 };
22
23 template < typename ArrayHandleType >
24 VTKM_CONT ArrayHandleScaleBias < ArrayHandleType > make_ArrayHandleScaleBias (
25 const ArrayHandleType & array ,
26 typename ArrayHandleType :: ValueType scale ,
27 typename ArrayHandleType :: ValueType bias)
28 {
29 return ArrayHandleScaleBias < ArrayHandleType >(array , scale , bias);
30 }

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. Both of these macros define the types Superclass, ValueType, and StorageTag as well as a
set of constructors and operators expected of all ArrayHandle classes. The difference between these two macros
is that VTKM ARRAY HANDLE SUBCLASS is used in templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT
is used in non-templated classes.

The ArrayHandle subclass in Example 18.9 is templated, so it uses the VTKM ARRAY HANDLE SUBCLASS macro.
(The other macro is described in Section 18.3 on page 269). This macro takes three parameters. The first
parameter is the name of the subclass where the macro is defined, the second parameter is the type of the
subclass including the full template specification, and the third parameter is the immediate superclass including
the full template specification. The second and third parameters of the macro must be enclosed in parentheses
so that the C pre-processor correctly handles commas in the template specification.

Chapter 18. Custom Array Storage 257

DRAFT

18.2. Implementing Fancy Arrays

18.2.3 Derived Storage

A derived storage is a type of fancy array that takes one or more other arrays and changes their behavior in
some way. A transformed array (Section 18.2.2) is a specific type of derived array with a simple mapping. In
this section we will demonstrate the steps required to create a more general derived storage. When applicable,
it is much easier to create a derived array as a transformed array or using the other fancy arrays than to create
your own derived storage. However, if these pre-existing fancy arrays do not work work, for example if your
derivation uses multiple arrays or requires general lookups, you can do so by creating your own derived storage.
For the purposes of the example in this section, let us say we want 2 array handles to behave as one array with
the contents concatenated together. We could of course actually copy the data, but we can also do it in place.

The first step to creating a derived storage is to build an array portal that will take portals from arrays being
derived. The portal must work in both the control and execution environment (or have a separate version for
control and execution).

Example 18.10: Derived array portal for concatenated arrays.
1 # include <vtkm/cont/ Algorithm .h>
2 # include <vtkm/cont/ ArrayHandle .h>
3 # include <vtkm/cont/ ArrayPortal .h>
4 template < typename P1 , typename P2 >
5 class ArrayPortalConcatenate
6 {
7 public :
8 using PortalType1 = P1;
9 using PortalType2 = P2;

10 using ValueType = typename PortalType1 :: ValueType ;
11
12 VTKM_SUPPRESS_EXEC_WARNINGS
13 VTKM_EXEC_CONT
14 ArrayPortalConcatenate ()
15 : Portal1 ()
16 , Portal2 ()
17 {
18 }
19
20 VTKM_SUPPRESS_EXEC_WARNINGS
21 VTKM_EXEC_CONT
22 ArrayPortalConcatenate (const PortalType1 & portal1 , const PortalType2 portal2)
23 : Portal1 (portal1)
24 , Portal2 (portal2)
25 {
26 }
27
28 /// Copy constructor for any other ArrayPortalConcatenate with a portal type
29 /// that can be copied to this portal type. This allows us to do any type
30 /// casting that the portals do (like the non - const to const cast).
31 VTKM_SUPPRESS_EXEC_WARNINGS
32 template < typename OtherP1 , typename OtherP2 >
33 VTKM_EXEC_CONT ArrayPortalConcatenate (
34 const ArrayPortalConcatenate <OtherP1 , OtherP2 >& src)
35 : Portal1 (src. GetPortal1 ())
36 , Portal2 (src. GetPortal2 ())
37 {
38 }
39
40 VTKM_SUPPRESS_EXEC_WARNINGS
41 VTKM_EXEC_CONT
42 vtkm :: Id GetNumberOfValues () const
43 {
44 return this -> Portal1 . GetNumberOfValues () + this -> Portal2 . GetNumberOfValues ();
45 }

258 Chapter 18. Custom Array Storage

DRAFT

18.2. Implementing Fancy Arrays

46
47 VTKM_SUPPRESS_EXEC_WARNINGS
48 VTKM_EXEC_CONT
49 ValueType Get(vtkm :: Id index) const
50 {
51 if (index < this -> Portal1 . GetNumberOfValues ())
52 {
53 return this -> Portal1 .Get(index);
54 }
55 else
56 {
57 return this -> Portal2 .Get(index - this -> Portal1 . GetNumberOfValues ());
58 }
59 }
60
61 VTKM_SUPPRESS_EXEC_WARNINGS
62 VTKM_EXEC_CONT
63 void Set(vtkm :: Id index , const ValueType & value) const
64 {
65 if (index < this -> Portal1 . GetNumberOfValues ())
66 {
67 this -> Portal1 .Set(index , value);
68 }
69 else
70 {
71 this -> Portal2 .Set(index - this -> Portal1 . GetNumberOfValues (), value);
72 }
73 }
74
75 VTKM_EXEC_CONT
76 const PortalType1 & GetPortal1 () const { return this -> Portal1 ; }
77 VTKM_EXEC_CONT
78 const PortalType2 & GetPortal2 () const { return this -> Portal2 ; }
79
80 private :
81 PortalType1 Portal1 ;
82 PortalType2 Portal2 ;
83 };

Like in an adapter storage, the next step in creating a derived storage is to define a tag for the adapter. We
shall call ours StorageTagConcatenate and it will be templated on the two array handle types that we are
deriving. Then, we need to create a specialization of the templated vtkm::cont::internal::Storage class.
The implementation for a Storage for a derived storage is usually trivial compared to an adapter storage
because the majority of the work is deferred to the derived arrays.

Example 18.11: Storage for derived container of concatenated arrays.
1 template < typename ArrayHandleType1 , typename ArrayHandleType2 >
2 struct StorageTagConcatenate
3 {
4 };
5
6 namespace vtkm
7 {
8 namespace cont
9 {

10 namespace internal
11 {
12
13 template < typename ArrayHandleType1 , typename ArrayHandleType2 >
14 class Storage < typename ArrayHandleType1 :: ValueType ,
15 StorageTagConcatenate < ArrayHandleType1 , ArrayHandleType2 >>
16 {
17 public :

Chapter 18. Custom Array Storage 259

DRAFT

18.2. Implementing Fancy Arrays

18 using ValueType = typename ArrayHandleType1 :: ValueType ;
19
20 using PortalType =
21 ArrayPortalConcatenate < typename ArrayHandleType1 :: PortalControl ,
22 typename ArrayHandleType2 :: PortalControl >;
23 using PortalConstType =
24 ArrayPortalConcatenate < typename ArrayHandleType1 :: PortalConstControl ,
25 typename ArrayHandleType2 :: PortalConstControl >;
26
27 VTKM_CONT
28 Storage ()
29 : Valid (false)
30 {
31 }
32
33 VTKM_CONT
34 Storage (const ArrayHandleType1 array1 , const ArrayHandleType2 array2)
35 : Array1 (array1)
36 , Array2 (array2)
37 , Valid (true)
38 {
39 }
40
41 VTKM_CONT
42 PortalType GetPortal ()
43 {
44 VTKM_ASSERT (this -> Valid);
45 return PortalType (this -> Array1 . GetPortalControl (),
46 this -> Array2 . GetPortalControl ());
47 }
48
49 VTKM_CONT
50 PortalConstType GetPortalConst () const
51 {
52 VTKM_ASSERT (this -> Valid);
53 return PortalConstType (this -> Array1 . GetPortalConstControl (),
54 this -> Array2 . GetPortalConstControl ());
55 }
56
57 VTKM_CONT
58 vtkm :: Id GetNumberOfValues () const
59 {
60 VTKM_ASSERT (this -> Valid);
61 return this -> Array1 . GetNumberOfValues () + this -> Array2 . GetNumberOfValues ();
62 }
63
64 VTKM_CONT
65 void Allocate (vtkm :: Id numberOfValues)
66 {
67 VTKM_ASSERT (this -> Valid);
68 // This implementation of allocate , which allocates the same amount in both
69 // arrays , is arbitrary . It could , for example , leave the size of Array1
70 // alone and change the size of Array2 . Or , probably most likely , it could
71 // simply throw an error and state that this operation is invalid .
72 vtkm :: Id half = numberOfValues / 2;
73 this -> Array1 . Allocate (numberOfValues - half);
74 this -> Array2 . Allocate (half);
75 }
76
77 VTKM_CONT
78 void Shrink (vtkm :: Id numberOfValues)
79 {
80 VTKM_ASSERT (this -> Valid);
81 if (numberOfValues < this -> Array1 . GetNumberOfValues ())

260 Chapter 18. Custom Array Storage

DRAFT

18.2. Implementing Fancy Arrays

82 {
83 this -> Array1 . Shrink (numberOfValues);
84 this -> Array2 . Shrink (0);
85 }
86 else
87 {
88 this -> Array2 . Shrink (numberOfValues - this -> Array1 . GetNumberOfValues ());
89 }
90 }
91
92 VTKM_CONT
93 void ReleaseResources ()
94 {
95 VTKM_ASSERT (this -> Valid);
96 this -> Array1 . ReleaseResources ();
97 this -> Array2 . ReleaseResources ();
98 }
99

100 // Requried for later use in ArrayTransfer class .
101 VTKM_CONT
102 const ArrayHandleType1 & GetArray1 () const
103 {
104 VTKM_ASSERT (this -> Valid);
105 return this -> Array1 ;
106 }
107 VTKM_CONT
108 const ArrayHandleType2 & GetArray2 () const
109 {
110 VTKM_ASSERT (this -> Valid);
111 return this -> Array2 ;
112 }
113
114 private :
115 ArrayHandleType1 Array1 ;
116 ArrayHandleType2 Array2 ;
117 bool Valid ;
118 };
119
120 } // namespace internal
121 } // namespace cont
122 } // namespace vtkm

One of the responsibilities of an array handle is to copy data between the control and execution environments.
The default behavior is to request the device adapter to copy data items from one environment to another.
This might involve transferring data between a host and device. For an array of data resting in memory, this is
necessary. However, implicit storage (described in the previous section) overrides this behavior to pass nothing
but the functional array portal. Likewise, it is undesirable to do a raw transfer of data with derived storage. The
underlying arrays being derived may be used in other contexts, and it would be good to share the data wherever
possible. It is also sometimes more efficient to copy data independently from the arrays being derived than from
the derived storage itself.

The mechanism that controls how a particular storage gets transferred to and from the execution environment
is encapsulated in the templated vtkm::cont::internal::ArrayTransfer class. By creating a specialization
of vtkm::cont::internal::ArrayTransfer, we can modify the transfer behavior to instead transfer the arrays
being derived and use the respective copies in the control and execution environments.

vtkm::cont::internal::ArrayTransfer has three template arguments: the base type of the array, the storage
tag, and the device adapter tag.

Example 18.12: Prototype for vtkm::cont::internal::ArrayTransfer.
1 namespace vtkm

Chapter 18. Custom Array Storage 261

DRAFT

18.2. Implementing Fancy Arrays

2 {
3 namespace cont
4 {
5 namespace internal
6 {
7
8 template < typename T, typename StorageTag , typename DeviceAdapterTag >
9 class ArrayTransfer ;

10 }
11 } // namespace cont
12 } // namespace vtkm

All vtkm::cont::internal::ArrayTransfer implementations must have a constructor method that accepts a
pointer to a vtkm::cont::internal::Storage object templated to the same base type and storage tag as the
ArrayTransfer object. Assuming that an ArrayHandle is templated using the parameters in Example 18.12,
the prototype for the constructor must be equivalent to the following.

Example 18.13: Prototype for ArrayTransfer constructor.
1 ArrayTransfer (vtkm :: cont :: internal :: Storage <T, StorageTag > * storage);

Typically the constructor either saves the Storage pointer or other relevant objects from the Storage for later
use in the methods.

In addition to this non-default constructor, the vtkm::cont::internal::ArrayTransfer specialization must
define the following items.

ValueType The type for each item in the array. This is the same type as the first template argument.

PortalControl The type of an array portal that is used to access the underlying data in the control environment.

PortalConstControl A read-only (const) version of PortalControl.

PortalExecution The type of an array portal that is used to access the underlying data in the execution
environment.

PortalConstExecution A read-only (const) version of PortalExecution.

GetNumberOfValues A method that returns the number of values currently allocated in the execution environ-
ment. The results may be undefined if none of the load or allocate methods have yet been called.

PrepareForInput A method responsible for transferring data from the control to the execution for input. Pre-
pareForInput has one Boolean argument that controls whether this transfer should actually take place.
When true, data from the Storage object given in the constructor should be transferred to the execution
environment; otherwise the data should not be copied. An ArrayTransfer for a derived array typically
ignores this parameter since the arrays being derived manages this transfer already. Regardless of the
Boolean flag, a PortalConstExecution is returned.

PrepareForInPlace A method that behaves just like PrepareForInput except that the data in the execution
environment is used for both reading and writing so the method returns a PortalExecution. If the array
is considered read-only, which is common for derived arrays, then this method should throw a vtkm::-
cont::ErrorControlBadValue.

PrepareForOutput A method that takes a size (in a vtkm::Id) and allocates an array in the execution environ-
ment of the specified size. The initial memory can be uninitialized. The method returns a PortalExecution
for the allocated data. If the array is considered read-only, which is common for derived arrays, then this
method should throw a vtkm::cont::ErrorControlBadValue.

262 Chapter 18. Custom Array Storage

DRAFT

18.2. Implementing Fancy Arrays

RetrieveOutputData This method takes an array storage pointer (which is the same as that passed to the
constructor, but provided for convenience), allocates memory in the control environment, and copies data
from the execution environment into it. If the derived array is considered read-only and both Prepare-
ForInPlace and PrepareForOutput throw exceptions, then this method should never be called. If it is,
then that is probably a bug in ArrayHandle, and it is OK to throw vtkm::cont::ErrorControlInternal.

Shrink A method that adjusts the size of the array in the execution environment to something that is a smaller
size. All the data up to the new length must remain valid. Typically, no memory is actually reallocated.
Instead, a different end is marked. If the derived array is considered read-only, then this method should
throw a vtkm::cont::ErrorControlBadValue.

ReleaseResources A method that frees any resources (typically memory) in the execution environment.

Continuing our example derived storage that concatenates two arrays started in Examples 18.10 and 18.11, the
following provides an ArrayTransfer appropriate for the derived storage.

Example 18.14: ArrayTransfer for derived storage of concatenated arrays.
1 namespace vtkm
2 {
3 namespace cont
4 {
5 namespace internal
6 {
7
8 template < typename ArrayHandleType1 , typename ArrayHandleType2 , typename Device >
9 class ArrayTransfer < typename ArrayHandleType1 :: ValueType ,

10 StorageTagConcatenate < ArrayHandleType1 , ArrayHandleType2 >,
11 Device >
12 {
13 public :
14 using ValueType = typename ArrayHandleType1 :: ValueType ;
15
16 private :
17 using StorageTag = StorageTagConcatenate < ArrayHandleType1 , ArrayHandleType2 >;
18 using StorageType = vtkm :: cont :: internal :: Storage <ValueType , StorageTag >;
19
20 public :
21 using PortalControl = typename StorageType :: PortalType ;
22 using PortalConstControl = typename StorageType :: PortalConstType ;
23
24 using PortalExecution = ArrayPortalConcatenate <
25 typename ArrayHandleType1 :: template ExecutionTypes <Device >:: Portal ,
26 typename ArrayHandleType2 :: template ExecutionTypes <Device >:: Portal >;
27 using PortalConstExecution = ArrayPortalConcatenate <
28 typename ArrayHandleType1 :: template ExecutionTypes <Device >:: PortalConst ,
29 typename ArrayHandleType2 :: template ExecutionTypes <Device >:: PortalConst >;
30
31 VTKM_CONT
32 ArrayTransfer (StorageType * storage)
33 : Array1 (storage -> GetArray1 ())
34 , Array2 (storage -> GetArray2 ())
35 {
36 }
37
38 VTKM_CONT
39 vtkm :: Id GetNumberOfValues () const
40 {
41 return this -> Array1 . GetNumberOfValues () + this -> Array2 . GetNumberOfValues ();
42 }
43
44 VTKM_CONT

Chapter 18. Custom Array Storage 263

DRAFT

18.2. Implementing Fancy Arrays

45 PortalConstExecution PrepareForInput (bool vtkmNotUsed (updateData))
46 {
47 return PortalConstExecution (this -> Array1 . PrepareForInput (Device ()) ,
48 this -> Array2 . PrepareForInput (Device ()));
49 }
50
51 VTKM_CONT
52 PortalExecution PrepareForInPlace (bool vtkmNotUsed (updateData))
53 {
54 return PortalExecution (this -> Array1 . PrepareForInPlace (Device ()) ,
55 this -> Array2 . PrepareForInPlace (Device ()));
56 }
57
58 VTKM_CONT
59 PortalExecution PrepareForOutput (vtkm :: Id numberOfValues)
60 {
61 // This implementation of allocate , which allocates the same amount in both
62 // arrays , is arbitrary . It could , for example , leave the size of Array1
63 // alone and change the size of Array2 . Or , probably most likely , it could
64 // simply throw an error and state that this operation is invalid .
65 vtkm :: Id half = numberOfValues / 2;
66 return PortalExecution (
67 this -> Array1 . PrepareForOutput (numberOfValues - half , Device ()) ,
68 this -> Array2 . PrepareForOutput (half , Device ()));
69 }
70
71 VTKM_CONT
72 void RetrieveOutputData (StorageType * vtkmNotUsed (storage)) const
73 {
74 // Implementation of this method should be unnecessary . The internal
75 // array handles should automatically retrieve the output data as
76 // necessary .
77 }
78
79 VTKM_CONT
80 void Shrink (vtkm :: Id numberOfValues)
81 {
82 if (numberOfValues < this -> Array1 . GetNumberOfValues ())
83 {
84 this -> Array1 . Shrink (numberOfValues);
85 this -> Array2 . Shrink (0);
86 }
87 else
88 {
89 this -> Array2 . Shrink (numberOfValues - this -> Array1 . GetNumberOfValues ());
90 }
91 }
92
93 VTKM_CONT
94 void ReleaseResources ()
95 {
96 this -> Array1 . ReleaseResourcesExecution ();
97 this -> Array2 . ReleaseResourcesExecution ();
98 }
99

100 private :
101 ArrayHandleType1 Array1 ;
102 ArrayHandleType2 Array2 ;
103 };
104
105 } // namespace internal
106 } // namespace cont
107 } // namespace vtkm

264 Chapter 18. Custom Array Storage

DRAFT

18.3. Adapting Data Structures

The final step to make a derived storage is to create a mechanism to construct an ArrayHandle with a storage
derived from the desired arrays. This can be done by creating a trivial subclass of vtkm::cont::ArrayHandle
that simply constructs the array handle to the state of an existing storage. It uses a protected constructor of
vtkm::cont::ArrayHandle that accepts a constructed storage.

Example 18.15: ArrayHandle for derived storage of concatenated arrays.
1 template < typename ArrayHandleType1 , typename ArrayHandleType2 >
2 class ArrayHandleConcatenate
3 : public vtkm :: cont :: ArrayHandle <
4 typename ArrayHandleType1 :: ValueType ,
5 StorageTagConcatenate < ArrayHandleType1 , ArrayHandleType2 >>
6 {
7 public :
8 VTKM_ARRAY_HANDLE_SUBCLASS (
9 ArrayHandleConcatenate ,

10 (ArrayHandleConcatenate < ArrayHandleType1 , ArrayHandleType2 >),
11 (vtkm :: cont :: ArrayHandle <
12 typename ArrayHandleType1 :: ValueType ,
13 StorageTagConcatenate < ArrayHandleType1 , ArrayHandleType2 > >));
14
15 private :
16 using StorageType = vtkm :: cont :: internal :: Storage <ValueType , StorageTag >;
17
18 public :
19 VTKM_CONT
20 ArrayHandleConcatenate (const ArrayHandleType1 & array1 ,
21 const ArrayHandleType2 & array2)
22 : Superclass (StorageType (array1 , array2))
23 {
24 }
25 };

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. Both of these macros define the types Superclass, ValueType, and StorageTag as well as a
set of constructors and operators expected of all ArrayHandle classes. The difference between these two macros
is that VTKM ARRAY HANDLE SUBCLASS is used in templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT
is used in non-templated classes.

The ArrayHandle subclass in Example 18.15 is templated, so it uses the VTKM ARRAY HANDLE SUBCLASS macro.
(The other macro is described in Section 18.3 on page 269). This macro takes three parameters. The first
parameter is the name of the subclass where the macro is defined, the second parameter is the type of the
subclass including the full template specification, and the third parameter is the immediate superclass including
the full template specification. The second and third parameters of the macro must be enclosed in parentheses
so that the C pre-processor correctly handles commas in the template specification.

vtkm::cont::ArrayHandleCompositeVector is an example of a derived array handle provided by VTK-m. It
references some fixed number of other arrays, pulls a specified component out of each, and produces a new
component that is a tuple of these retrieved components.

18.3 Adapting Data Structures

The intention of the storage parameter for vtkm::cont::ArrayHandle is to implement the strategy design
pattern to enable VTK-m to interface directly with the data of any third party code source. VTK-m is designed
to work with data originating in other libraries or applications. By creating a new type of storage, VTK-m can
be entirely adapted to new kinds of data structures.

Chapter 18. Custom Array Storage 265

DRAFT

18.3. Adapting Data Structures

Keep in mind that memory layout used can have an effect on the running time of algorithms in VTK-m.
Different data layouts and memory access can change cache performance and introduce memory affinity
problems. The example code given in this section will likely have poorer cache performance than the basic
storage provided by VTK-m. However, that might be an acceptable penalty to avoid data copies.

Common Errors

In this section we demonstrate the steps required to adapt the array handle to a data structure provided by a
third party. For the purposes of the example, let us say that some fictitious library named “foo” has a simple
structure named FooFields that holds the field values for a particular part of a mesh, and then maintain the
field values for all locations in a mesh in a std::deque object.

Example 18.16: Fictitious field storage used in custom array storage examples.
1 # include <deque >
2
3 struct FooFields
4 {
5 float Pressure ;
6 float Temperature ;
7 float Velocity [3];
8 // And so on ...
9 };

10
11 using FooFieldsDeque = std :: deque <FooFields >;

VTK-m expects separate arrays for each of the fields rather than a single array containing a structure holding
all of the fields. However, rather than copy each field to its own array, we can create a storage for each field that
points directly to the data in a FooFieldsDeque object.

The first step in creating an adapter storage is to create a control environment array portal to the data. This is
described in more detail in Section 7.2 and is generally straightforward for simple containers like this. Here is
an example implementation for our FooFieldsDeque container.

Example 18.17: Array portal to adapt a third-party container to VTK-m.
1 # include <vtkm/ Assert .h>
2 # include <vtkm/cont/ internal / IteratorFromArrayPortal .h>
3
4 // DequeType expected to be either FooFieldsDeque or const FooFieldsDeque
5 template < typename DequeType >
6 class ArrayPortalFooPressure
7 {
8 public :
9 using ValueType = float ;

10
11 VTKM_CONT
12 ArrayPortalFooPressure ()
13 : Container (NULL)
14 {
15 }
16
17 VTKM_CONT
18 ArrayPortalFooPressure (DequeType * container)
19 : Container (container)
20 {
21 }
22
23 // Required to copy compatible types of ArrayPortalFooPressure . Really needed

266 Chapter 18. Custom Array Storage

DRAFT

18.3. Adapting Data Structures

24 // to copy from non - const to const versions of array portals .
25 template < typename OtherDequeType >
26 VTKM_CONT ArrayPortalFooPressure (
27 const ArrayPortalFooPressure < OtherDequeType >& other)
28 : Container (other . GetContainer ())
29 {
30 }
31
32 VTKM_CONT
33 vtkm :: Id GetNumberOfValues () const
34 {
35 return static_cast <vtkm ::Id >(this ->Container ->size ());
36 }
37
38 VTKM_CONT
39 ValueType Get(vtkm :: Id index) const
40 {
41 VTKM_ASSERT (index >= 0);
42 VTKM_ASSERT (index < this -> GetNumberOfValues ());
43 return (* this -> Container)[index]. Pressure ;
44 }
45
46 VTKM_CONT
47 void Set(vtkm :: Id index , ValueType value) const
48 {
49 VTKM_ASSERT (index >= 0);
50 VTKM_ASSERT (index < this -> GetNumberOfValues ());
51 (* this -> Container)[static_cast <std :: size_t >(index)]. Pressure = value ;
52 }
53
54 // Here for the copy constructor .
55 VTKM_CONT
56 DequeType * GetContainer () const { return this -> Container ; }
57
58 private :
59 DequeType * Container ;
60 };

The next step in creating an adapter storage is to define a tag for the adapter. We shall call ours Storage-
TagFooPressure. Then, we need to create a specialization of the templated vtkm::cont::internal::Storage
class. The ArrayHandle will instantiate an object using the array container tag we give it, and we define our
own specialization so that it runs our interface into the code.

vtkm::cont::internal::Storage has two template arguments: the base type of the array and the storage tag.

Example 18.18: Prototype for vtkm::cont::internal::Storage.
1 namespace vtkm
2 {
3 namespace cont
4 {
5 namespace internal
6 {
7
8 template < typename T, class StorageTag >
9 class Storage ;

10 }
11 } // namespace cont
12 } // namespace vtkm

The vtkm::cont::internal::Storage must define the following items.

ValueType The type of each item in the array. This is the same type as the first template argument.

Chapter 18. Custom Array Storage 267

DRAFT

18.3. Adapting Data Structures

PortalType The type of an array portal that can be used to access the underlying data. This array portal needs
to work only in the control environment.

PortalConstType A read-only (const) version of PortalType.

GetPortal A method that returns an array portal of type PortalType that can be used to access the data
manged in this storage.

GetPortalConst Same as GetPortal except it returns a read-only (const) array portal.

GetNumberOfValues A method that returns the number of values the storage is currently allocated for.

Allocate A method that allocates the array to a given size. All values stored in the previous allocation may be
destroyed.

Shrink A method like Allocate with two differences. First, the size of the allocation must be smaller than the
existing allocation when the method is called. Second, any values currently stored in the array will be valid
after the array is resized. This constrained form of allocation allows the array to be resized and values
valid without ever having to copy data.

ReleaseResources A method that instructs the storage to free all of its memory.

The following provides an example implementation of our adapter to a FooFieldsDeque. It relies on the Array-
PortalFooPressure provided in Example 18.17.

Example 18.19: Storage to adapt a third-party container to VTK-m.
1 // Includes or definition for ArrayPortalFooPressure
2
3 struct StorageTagFooPressure
4 {
5 };
6
7 namespace vtkm
8 {
9 namespace cont

10 {
11 namespace internal
12 {
13
14 template <>
15 class Storage <float , StorageTagFooPressure >
16 {
17 public :
18 using ValueType = float ;
19
20 using PortalType = ArrayPortalFooPressure < FooFieldsDeque >;
21 using PortalConstType = ArrayPortalFooPressure < const FooFieldsDeque >;
22
23 VTKM_CONT
24 Storage ()
25 : Container (NULL)
26 {
27 }
28
29 VTKM_CONT
30 Storage (FooFieldsDeque * container)
31 : Container (container)
32 {
33 }
34
35 VTKM_CONT

268 Chapter 18. Custom Array Storage

DRAFT

18.3. Adapting Data Structures

36 PortalType GetPortal () { return PortalType (this -> Container); }
37
38 VTKM_CONT
39 PortalConstType GetPortalConst () const { return PortalConstType (this -> Container); }
40
41 VTKM_CONT
42 vtkm :: Id GetNumberOfValues () const
43 {
44 return static_cast <vtkm ::Id >(this ->Container ->size ());
45 }
46
47 VTKM_CONT
48 void Allocate (vtkm :: Id numberOfValues)
49 {
50 this ->Container -> resize (static_cast <std :: size_t >(numberOfValues));
51 }
52
53 VTKM_CONT
54 void Shrink (vtkm :: Id numberOfValues)
55 {
56 this ->Container -> resize (static_cast <std :: size_t >(numberOfValues));
57 }
58
59 VTKM_CONT
60 void ReleaseResources () { this ->Container -> clear (); }
61
62 private :
63 FooFieldsDeque * Container ;
64 };
65
66 } // namespace internal
67 } // namespace cont
68 } // namespace vtkm

The final step to make a storage adapter is to make a mechanism to construct an ArrayHandle that points to
a particular storage. This can be done by creating a trivial subclass of vtkm::cont::ArrayHandle that simply
constructs the array handle to the state of an existing container.

Example 18.20: Array handle to adapt a third-party container to VTK-m.
1 class ArrayHandleFooPressure
2 : public vtkm :: cont :: ArrayHandle <float , StorageTagFooPressure >
3 {
4 private :
5 using StorageType = vtkm :: cont :: internal :: Storage <float , StorageTagFooPressure >;
6
7 public :
8 VTKM_ARRAY_HANDLE_SUBCLASS_NT (
9 ArrayHandleFooPressure ,

10 (vtkm :: cont :: ArrayHandle <float , StorageTagFooPressure >));
11
12 VTKM_CONT
13 ArrayHandleFooPressure (FooFieldsDeque * container)
14 : Superclass (StorageType (container))
15 {
16 }
17 };

Subclasses of ArrayHandle provide constructors that establish the state of the array handle. All array handle
subclasses must also use either the VTKM ARRAY HANDLE SUBCLASS macro or the VTKM ARRAY HANDLE SUB-
CLASS NT macro. Both of these macros define the types Superclass, ValueType, and StorageTag as well as a
set of constructors and operators expected of all ArrayHandle classes. The difference between these two macros
is that VTKM ARRAY HANDLE SUBCLASS is used in templated classes whereas VTKM ARRAY HANDLE SUBCLASS NT

Chapter 18. Custom Array Storage 269

DRAFT

18.3. Adapting Data Structures

is used in non-templated classes.

The ArrayHandle subclass in Example 18.20 is not templated, so it uses the VTKM ARRAY HANDLE SUBCLASS NT
macro. (The other macro is described in Section 18.2.2 on page 257). This macro takes two parameters. The first
parameter is the name of the subclass where the macro is defined and the second parameter is the immediate
superclass including the full template specification. The second parameter of the macro must be enclosed in
parentheses so that the C pre-processor correctly handles commas in the template specification.

With this new version of ArrayHandle, VTK-m can now read to and write from the FooFieldsDeque structure
directly.

Example 18.21: Using an ArrayHandle with custom container.
1 VTKM_CONT
2 void GetElevationAirPressure (vtkm :: cont :: DataSet grid , FooFieldsDeque * fields)
3 {
4 // Make an array handle that points to the pressure values in the fields .
5 ArrayHandleFooPressure pressureHandle (fields);
6
7 // Use the elevation worklet to estimate atmospheric pressure based on the
8 // height of the point coordinates . Atmospheric pressure is 101325 Pa at
9 // sea level and drops about 12 Pa per meter .

10 vtkm :: worklet :: PointElevation elevation ;
11 elevation . SetLowPoint (vtkm :: make_Vec (0.0 , 0.0 , 0.0));
12 elevation . SetHighPoint (vtkm :: make_Vec (0.0 , 0.0 , 2000.0));
13 elevation . SetRange (101325.0 , 77325.0);
14
15 vtkm :: worklet :: DispatcherMapField <vtkm :: worklet :: PointElevation > dispatcher (
16 elevation);
17 dispatcher . Invoke (grid. GetCoordinateSystem (). GetData (), pressureHandle);
18
19 // Make sure the values are flushed back to the control environment .
20 pressureHandle . SyncControlArray ();
21
22 // Now the pressure field is in the fields container .
23 }

When using an ArrayHandle in VTK-m some code may be executed in an execution environment with a
different memory space. In these cases data written to an ArrayHandle with a custom storage will not
be written directly to the storage system you defined. Rather, they will be written to a separate array in
the execution environment. If you need to access data in your custom data structure, make sure you call
SyncControlArray on the ArrayHandle, as is demonstrated in Example 18.21.

Common Errors

Most of the code in VTK-m will create ArrayHandles using the default storage, which is set to the basic storage
if not otherwise specified. If you wish to replace the default storage used, then set the VTKM STORAGE macro to
VTKM STORAGE UNDEFINED and set the VTKM DEFAULT STORAGE TAG to your tag class. These definitions have
to happen before including any VTK-m header files. You will also have to declare the tag class (or at least a
prototype of it) before including VTK-m header files.

Example 18.22: Redefining the default array handle storage.
1 # define VTKM_STORAGE VTKM_STORAGE_UNDEFINED
2 # define VTKM_DEFAULT_STORAGE_TAG StorageTagFooPressure
3
4 struct StorageTagFooPressure ;

270 Chapter 18. Custom Array Storage

DRAFT

18.3. Adapting Data Structures

ArrayHandles are often stored in dynamic objects like variant arrays (Chapter 10) or data sets (Chap-
ter 11). When this happens, the array’s type information, including the storage used, is lost. VTK-m will
execute algorithms using the ArrayHandleVirtual interface. For hot path types and storages for filters it is
good to specify custom sets in the policy when executing filters. [When/if available, add references
to chap:Policies.]

Common Errors

Chapter 18. Custom Array Storage 271

DRAFT

DRAFT
CHAPTER

NINETEEN

TRY EXECUTE

Throughout this chapter and elsewhere in this book we have seen examples that require specifying the device on
which to run using a device adapter tag. This is an important aspect when writing portable parallel algorithms.
However, it is often the case that users of these algorithms are agnostic about what device VTK-m algorithms
run so long as they complete correctly and as fast as possible. Thus, rather than directly specify a device adapter,
you would like VTK-m to try using the best available device, and if that does not work try a different device.
Because of this, there are many features in VTK-m that behave this way. For example, you may have noticed
that running filters, as in the examples of Chapter 4, you do not need to specify a device; they choose a device
for you.

Internally, the filter superclasses have a mechanism to automatically select a device, try it, and fall back to other
devices if the first one fails. We saw this at work in the implementation of filters in Chapter 17. Most of the
outward facing interfaces of parallel algorithms in VTK-m are through these filter classes. For everything else,
there is the vtkm::cont::TryExecute function.

TryExecute is a simple, generic mechanism to run an algorithm that requires a device adapter without directly
specifying a device adapter. vtkm::cont::TryExecute is a templated function with two arguments. The first
argument is a functor object whose parenthesis operator takes a device adapter tag and returns a bool that is
true if the call succeeds on the given device. The second argument is a vtkm::cont::RuntimeDeviceTracker
that specifies what devices to try. RuntimeDeviceTracker is documented in Section 8.3.

To demonstrate the operation of TryExecute, consider an operation to find the average value of an array. Doing
so with a given device adapter is a straightforward use of the reduction operator.

Example 19.1: A function to find the average value of an array in parallel.
1 template < typename T, typename Storage , typename Device >
2 VTKM_CONT T ArrayAverage (const vtkm :: cont :: ArrayHandle <T, Storage >& array , Device)
3 {
4 T sum = vtkm :: cont :: Algorithm :: Reduce (array , T (0));
5 return sum / T(array . GetNumberOfValues ());
6 }

The function in Example 19.1 requires a device adapter. We want to make an alternate version of this function
that does not need a specific device adapter but rather finds one to use. To do this, we first make a functor
as described earlier. It takes a device adapter tag as an argument, calls the version of the function shown in
Example 19.1, and returns true when the operation succeeds. We then create a new version of the array average
function that does not need a specific device adapter tag and calls TryExecute with the aforementioned functor.

Example 19.2: Using TryExecute.
1 namespace detail
2 {
3

DRAFT
4 template < typename T, typename Storage >
5 struct ArrayAverageFunctor
6 {
7 using InArrayType = vtkm :: cont :: ArrayHandle <T, Storage >;
8
9 InArrayType InArray ;

10 T OutValue ;
11
12 VTKM_CONT
13 ArrayAverageFunctor (const InArrayType & array)
14 : InArray (array)
15 {
16 }
17
18 template < typename Device >
19 VTKM_CONT bool operator ()(Device)
20 {
21 // Call the version of ArrayAverage that takes a DeviceAdapter .
22 this -> OutValue = ArrayAverage (this ->InArray , Device ());
23
24 return true;
25 }
26 };
27
28 } // namespace detail
29
30 template < typename T, typename Storage >
31 VTKM_CONT T ArrayAverage (const vtkm :: cont :: ArrayHandle <T, Storage >& array)
32 {
33 detail :: ArrayAverageFunctor <T, Storage > functor (array);
34
35 bool foundAverage = vtkm :: cont :: TryExecute (functor);
36
37 if (! foundAverage)
38 {
39 throw vtkm :: cont :: ErrorExecution (" Could not compute array average .");
40 }
41
42 return functor . OutValue ;
43 }

TryExecute calls vtkm::cont::TryExecuteOnDevice internally. This means that vtkm::cont::GetRun-
timeDeviceTracker is automatically called and ensures execution on devices that have been enabled. It
is up to the application to enable/disable devices before calling TryExecute using the methods provided in
Section 8.3.

Did you know?

When TryExecute calls the operation of your functor, it will catch any exceptions that the functor might
throw. TryExecute will interpret any thrown exception as a failure on that device and try another device.
If all devices fail, TryExecute will return a false value rather than throw its own exception. This means if
you want to have an exception thrown from a call to TryExecute, you will need to check the return value
and throw the exception yourself.

Common Errors

274 Chapter 19. Try Execute

DRAFTPart IV

Advanced Development

DRAFT

DRAFT
[Need to document virtual objects (when they settle down).]

277

DRAFT

DRAFT
CHAPTER

TWENTY

IMPLEMENTING DEVICE ADAPTERS

VTK-m comes with several implementations of device adapters so that it may be ported to a variety of platforms.
It is also possible to provide new device adapters to support yet more devices, compilers, and libraries. A new
device adapter provides a tag, a class to manage arrays in the execution environment, a class to establish virtual
objects in the execution environment, a collection of algorithms that run in the execution environment, and
(optionally) a timer.

Most device adapters are associated with some type of device or library, and all source code related directly to that
device is placed in a subdirectory of vtkm/cont. For example, files associated with CUDA are in vtkm/cont/cuda,
files associated with the Intel Threading Building Blocks (TBB) are located in vtkm/cont/tbb, and files associated
with OpenMP are in vtkm/cont/openmp. The documentation here assumes that you are adding a device adapter
to the VTK-m source code and following these file conventions.

For the purposes of discussion in this section, we will give a simple example of implementing a device adapter
using the std::thread class provided by C++11. We will call our device Cxx11Thread and place it in the
directory vtkm/cont/cxx11.

By convention the implementation of device adapters within VTK-m are divided into 6 header files with the
names DeviceAdapterTag∗.h, DeviceAdapterRuntimeDetector∗.h, ArrayManagerExecution∗.h, VirtualObjectTrans-
fer∗.h, AtomicInterfaceExecution∗.h and DeviceAdapterAlgorithm∗.h, which are hidden in internal directories. The
DeviceAdapter∗.h that most code includes is a trivial header that simply includes these other 6 files. For our
example std::thread device, we will create the base header at vtkm/cont/cxx11/DeviceAdapterCxx11Thread.h.
The contents are the following (with minutia like include guards removed).

Example 20.1: Contents of the base header for a device adapter.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterRuntimeDetectorCxx11Thread .h>
3 # include <vtkm/cont/ cxx11 / internal / ArrayManagerExecutionCxx11Thread .h>
4 # include <vtkm/cont/ cxx11 / internal / VirtualObjectTransferCxx11Thread .h>
5 # include <vtkm/cont/ cxx11 / internal / AtomicInterfaceExecutionCxx11Thread .h>
6 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterAlgorithmCxx11Thread .h>

The reason VTK-m breaks up the code for its device adapters this way is that there is an interdependence between
the implementation of each device adapter and the mechanism to pick a default device adapter. Breaking up
the device adapter code in this way maintains an acyclic dependence among header files.

20.1 Tag

The device adapter tag, as described in Section 8.1 is a simple empty type that is used as a template parameter
to identify the device adapter. Every device adapter implementation provides one. The device adapter tag is

DRAFT

20.2. Runtime Detector

typically defined in an internal header file with a prefix of DeviceAdapterTag.

The device adapter tag should be created with the macro VTKM VALID DEVICE ADAPTER. This adapter takes
an abbreviated name that it will append to DeviceAdapterTag to make the tag structure. It will also create
some support classes that allow VTK-m to introspect the device adapter. The macro also expects a unique
integer identifier that is usually stored in a macro prefixed with VTKM DEVICE ADAPTER . These identifiers for
the device adapters provided by the core VTK-m are declared in vtkm/cont/internal/DeviceAdapterTag.h.

The following example gives the implementation of our custom device adapter, which by convention would be
placed in the vtkm/cont/cxx11/internal/DeviceAdapterTagCxx11Thread.h header file.

Example 20.2: Implementation of a device adapter tag.
1 # include <vtkm/cont/ DeviceAdapterTag .h>
2
3 // If this device adapter were to be contributed to VTK -m, then this macro
4 // declaration should be moved to DeviceAdapterTag .h and given a unique
5 // number . It also has te be less than VTK_MAX_DEVICE_ADAPTER_ID
6 # define VTKM_DEVICE_ADAPTER_CXX11_THREAD 7
7
8 VTKM_VALID_DEVICE_ADAPTER (Cxx11Thread , VTKM_DEVICE_ADAPTER_CXX11_THREAD);

20.2 Runtime Detector

VTK-m defines a template named vtkm::cont::DeviceAdapterRuntimeDetector that provides the ability to
detect whether a given device is available on the current system. DeviceAdapterRuntimeDetector has a single
template argument that is the device adapter tag.

Example 20.3: Prototype for DeviceAdapterRuntimeDetector.
1 namespace vtkm
2 {
3 namespace cont
4 {
5
6 template < typename DeviceAdapterTag >
7 class DeviceAdapterRuntimeDetector ;
8 }
9 } // namespace vtkm

All device adapter implementations must create a specialization of DeviceAdapterRuntimeDetector. They
must contain a method named DeviceAdapterRuntimeDetector::Exists that returns a true or false value to
indicate whether the device is available on the current runtime system. For our simple C++ threading example,
the C++ threading is always available (even if only one such processing element exists) so our implementation
simply returns true if the device has been compiled.

Example 20.4: Implementation of DeviceAdapterRuntimeDetector specialization
1 namespace vtkm
2 {
3 namespace cont
4 {
5
6 template <>
7 class DeviceAdapterRuntimeDetector <vtkm :: cont :: DeviceAdapterTagCxx11Thread >
8 {
9 public :

10 VTKM_CONT bool Exists () const
11 {
12 return vtkm :: cont :: DeviceAdapterTagCxx11Thread :: IsEnabled ;

280 Chapter 20. Implementing Device Adapters

DRAFT

20.3. Array Manager Execution

13 }
14 };
15
16 } // namespace cont
17 } // namespace vtkm

20.3 Array Manager Execution

VTK-m defines a template named vtkm::cont::internal::ArrayManagerExecution that is responsible for al-
locating memory in the execution environment and copying data between the control and execution environment.
ArrayManagerExecution is also paired with two helper classes, vtkm::cont::internal::ExecutionPortal-
FactoryBasic and vtkm::cont::internal::ExecutionArrayInterfaceBasic, which provide operations for
creating and operating on and manipulating data in standard C arrays. All 3 class specializations are typically
defined in an internal header file with a prefix of ArrayManagerExecution. The following subsections describe
each of these classes.

20.3.1 ArrayManagerExecution

Example 20.5: Prototype for vtkm::cont::internal::ArrayManagerExecution.
1 namespace vtkm
2 {
3 namespace cont
4 {
5 namespace internal
6 {
7
8 template < typename T, typename StorageTag , typename DeviceAdapterTag >
9 class ArrayManagerExecution ;

10 }
11 } // namespace cont
12 } // namespace vtkm

A device adapter must provide a partial specialization of vtkm::cont::internal::ArrayManagerExecution for
its device adapter tag. The implementation for ArrayManagerExecution is expected to manage the resources
for a single array. All ArrayManagerExecution specializations must have a constructor that takes a pointer
to a vtkm::cont::internal::Storage object. The ArrayManagerExecution should store a reference to this
Storage object and use it to pass data between control and execution environments. Additionally, ArrayMan-
agerExecution must provide the following elements.

ValueType The type for each item in the array. This is the same type as the first template argument.

PortalType The type of an array portal that can be used in the execution environment to access the array.

PortalConstType A read-only (const) version of PortalType.

GetNumberOfValues A method that returns the number of values stored in the array. The results are undefined
if the data has not been loaded or allocated.

PrepareForInput A method that ensures an array is allocated in the execution environment and valid data
is there. The method takes a bool flag that specifies whether data needs to be copied to the execution
environment. (If false, then data for this array has not changed since the last operation.) The method
returns a PortalConstType that points to the data.

Chapter 20. Implementing Device Adapters 281

DRAFT

20.3. Array Manager Execution

PrepareForInPlace A method that ensures an array is allocated in the execution environment and valid data
is there. The method takes a bool flag that specifies whether data needs to be copied to the execution
environment. (If false, then data for this array has not changed since the last operation.) The method
returns a PortalType that points to the data.

PrepareForOutput A method that takes an array size and allocates an array in the execution environment of
the specified size. The initial memory may be uninitialized. The method returns a PortalType to the
data.

RetrieveOutputData This method takes a storage object, allocates memory in the control environment, and
copies data from the execution environment into it. If the control and execution environments share arrays,
then this can be a no-operation.

CopyInto This method takes an STL-compatible iterator and copies data from the execution environment into
it.

Shrink A method that adjusts the size of the array in the execution environment to something that is a smaller
size. All the data up to the new length must remain valid. Typically, no memory is actually reallocated.
Instead, a different end is marked.

ReleaseResources A method that frees any resources (typically memory) in the execution environment.

Specializations of this template typically take on one of two forms. If the control and execution environments
have separate memory spaces, then this class behaves by copying memory in methods such as PrepareForInput
and RetrieveOutputData. This might require creating buffers in the control environment to efficiently move
data from control array portals.

However, if the control and execution environments share the same memory space, the execution array manager
can, and should, delegate all of its operations to the Storage it is constructed with. VTK-m comes with a class
called vtkm::cont::internal::ArrayManagerExecutionShareWithControl that provides the implementation
for an execution array manager that shares a memory space with the control environment. In this case, making
the ArrayManagerExecution specialization be a trivial subclass is sufficient.

Continuing our example of a device adapter based on C++11’s std::thread class, here is the im-
plementation of ArrayManagerExecution, which by convention would be placed in the vtkm/con-
t/cxx11/internal/ArrayManagerExecutionCxx11Thread.h header file.

Example 20.6: Specialization of ArrayManagerExecution.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ internal / ArrayManagerExecution .h>
4 # include <vtkm/cont/ internal / ArrayManagerExecutionShareWithControl .h>
5
6 namespace vtkm
7 {
8 namespace cont
9 {

10 namespace internal
11 {
12
13 template < typename T, typename StorageTag >
14 class ArrayManagerExecution <T, StorageTag , vtkm :: cont :: DeviceAdapterTagCxx11Thread >
15 : public vtkm :: cont :: internal :: ArrayManagerExecutionShareWithControl <T, StorageTag >
16 {
17 using Superclass =
18 vtkm :: cont :: internal :: ArrayManagerExecutionShareWithControl <T, StorageTag >;
19
20 public :

282 Chapter 20. Implementing Device Adapters

DRAFT

20.3. Array Manager Execution

21 VTKM_CONT
22 ArrayManagerExecution (typename Superclass :: StorageType * storage)
23 : Superclass (storage)
24 {
25 }
26 };
27
28 } // namespace internal
29 } // namespace cont
30 } // namespace vtkm

20.3.2 ExecutionPortalFactoryBasic

Example 20.7: Prototype for vtkm::cont::internal::ExecutionPortalFactoryBasic.
1 namespace vtkm
2 {
3 namespace cont
4 {
5 namespace internal
6 {
7
8 template < typename T, typename DeviceAdapterTag >
9 struct ExecutionPortalFactoryBasic ;

10 }
11 } // namespace cont
12 } // namespace vtkm

A device adapter must provide a partial specialization of vtkm::cont::internal::ExecutionPortalFactory-
Basic for its device adapter tag. The implementation for ExecutionPortalFactoryBasic is capable of taking
pointers to an array in the execution environment and returning an array portal to the data in that array.
ExecutionPortalFactoryBasic has no state and all of its methods are static. ExecutionPortalFactoryBasic
provides the following elements.

ValueType The type for each item in the array. This is the same type as the first template argument.

PortalType The type for the read/write portals created by the class.

PortalConstType The type for read-only portals created by the class.

CreatePortal A static method that takes two pointers of type ValueType* that point to the beginning (first
element) and end (one past the last element) of the array to create a portal for the array. Returns a portal
of type PortalType that works in the execution environment.

CreatePortalConst A static method that takes two pointers of type const ValueType* that point to the
beginning (first element) and end (one past the last element) of the array to create a portal for the array.
Returns a portal of type PortalConstType that works in the execution environment.

Specializations of this template typically take on one of two forms. If the control and execution environments share
the same memory space, then the execution array manager can, and should, return a simple vtkm::cont::inter-
nal::ArrayPortalFromIterators. VTK-m comes with a class called vtkm::cont::internal::ExecutionPor-
talFactoryBasicShareWithControl that provides the implementation for a basic execution portal factory that
shares a memory space with the control environment. In this case, making the ExecutionPortalFactoryBasic
specialization be a trivial subclass is sufficient.

However, if the control and execution environments have separate memory spaces, then the typical vtkm::-
cont::internal::ArrayPortalFromIterators class might not work in the execution environment. In this case
a custom array portal class will have to be implemented and created within the ExecutionPortalFactoryBasic.

Chapter 20. Implementing Device Adapters 283

DRAFT

20.3. Array Manager Execution

Continuing our example of a device adapter based on C++11’s std::thread class, here is the imple-
mentation of ExecutionPortalFactoryBasic, which by convention would be placed in the vtkm/con-
t/cxx11/internal/ArrayManagerExecutionCxx11Thread.h header file.

Example 20.8: Specialization of ExecutionPortalFactoryBasic.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ internal / ArrayManagerExecutionShareWithControl .h>
4
5 namespace vtkm
6 {
7 namespace cont
8 {
9 namespace internal

10 {
11
12 template < typename T>
13 struct ExecutionPortalFactoryBasic <T, vtkm :: cont :: DeviceAdapterTagCxx11Thread >
14 : public vtkm :: cont :: internal :: ExecutionPortalFactoryBasicShareWithControl <T>
15 {
16 };
17
18 } // namespace internal
19 } // namespace cont
20 } // namespace vtkm

20.3.3 ExecutionArrayInterfaceBasic

Example 20.9: Prototype for vtkm::cont::internal::ExecutionArrayInterfaceBasic.
1 namespace vtkm
2 {
3 namespace cont
4 {
5 namespace internal
6 {
7
8 template < typename DeviceAdapterTag >
9 struct ExecutionArrayInterfaceBasic ;

10 }
11 } // namespace cont
12 } // namespace vtkm

A device adapter must provide a partial specialization of vtkm::cont::internal::ExecutionArrayInterface-
Basic for its device adapter tag. The implementation for ExecutionArrayInterfaceBasic is expected to allow
allocation of basic C arrays in the execution environment and to copy data between control and execution
environments. All implementations of ExecutionArrayInterfaceBasic are expected to inherit from vtkm::-
cont::internal::ExecutionArrayInterfaceBasicBase and implement the pure virtual methods therein. All
implementations are also expected to have a constructor that takes a reference to a vtkm::cont::internal::-
StorageBasicBase, which should subsequently be passed to the ExecutionArrayInterfaceBasicBase. The
methods that vtkm::cont::internal::ExecutionArrayInterfaceBasic must override are the following.

GetDeviceId Returns a vtkm::cont::DeviceAdapterId integer representing a unique identifier for the device
associated with this implementation. This number should be the same as the VTKM DEVICE ADAPTER -
macro described in Section 20.1.

Allocate Takes a reference to a vtkm::cont::internal::TypelessExecutionArray, which holds a collection
of array pointer references, and a size of allocation in bytes. The method should allocate an array of the

284 Chapter 20. Implementing Device Adapters

DRAFT

20.3. Array Manager Execution

given size in the execution environment and return the resulting pointers in the given TypelessExecu-
tionArray reference.

Free Takes a reference to a vtkm::cont::internal::TypelessExecutionArray created in a previous call to
Allocate and frees the memory. The array references in the TypelessExecutionArray should be set to
nullptr.

CopyFromControl Takes a const void* pointer for an array in the control environment, a void* for an array in
the execution environment, and a size of the arrays in bytes. The method copies the data from the control
array to the execution array.

CopyToControl Takes a const void* pointer for an array in the execution environment, a void* for an array in
the control environment, and a size of the arrays in bytes. The method copies the data from the execution
array to the control array.

Specializations of this template typically take on one of two forms. If the control and execution environments
have separate memory spaces, then this class behaves by allocating arrays on the device and copying data between
the main CPU and the device.

However, if the control and execution environments share the same memory space, then the execution array
interface can, and should, use the storage on the control environment to allocate arrays and do simple copies
(shallow where possible). VTK-m comes with a class called vtkm::cont::internal::ExecutionArrayInter-
faceBasicShareWithControl that provides the implementation for a basic execution array interface that shares
a memory space with the control environment. In this case, it is best to make the ExecutionArrayInterfaceBa-
sic specialization a subclass of ExecutionArrayInterfaceBasicShareWithControl. Note that in this case you
still need to define a constructor that takes a reference to vtkm::cont::internal::StorageBasicBase (which
is passed straight to the superclass) and an implementation of the GetDeviceId method.

Continuing our example of a device adapter based on C++11’s std::thread class, here is the imple-
mentation of ExecutionArrayInterfaceBasic, which by convention would be placed in the vtkm/con-
t/cxx11/internal/ArrayManagerExecutionCxx11Thread.h header file.

Example 20.10: Specialization of ExecutionArrayInterfaceBasic.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ internal / ArrayManagerExecutionShareWithControl .h>
4
5 namespace vtkm
6 {
7 namespace cont
8 {
9 namespace internal

10 {
11
12 template <>
13 struct ExecutionArrayInterfaceBasic <vtkm :: cont :: DeviceAdapterTagCxx11Thread >
14 : public vtkm :: cont :: internal :: ExecutionArrayInterfaceBasicShareWithControl
15 {
16 public :
17 using Superclass =
18 vtkm :: cont :: internal :: ExecutionArrayInterfaceBasicShareWithControl ;
19
20 VTKM_CONT
21 ExecutionArrayInterfaceBasic (vtkm :: cont :: internal :: StorageBasicBase & storage)
22 : Superclass (storage)
23 {
24 }
25

Chapter 20. Implementing Device Adapters 285

DRAFT

20.4. Virtual Object Transfer

26 VTKM_CONT
27 virtual vtkm :: cont :: DeviceAdapterId GetDeviceId () const final override
28 {
29 return vtkm :: cont :: DeviceAdapterTagCxx11Thread ();
30 }
31 };
32
33 } // namespace internal
34 } // namespace cont
35 } // namespace vtkm

20.4 Virtual Object Transfer

VTK-m defines a template named vtkm::cont::internal::VirtualObjectTransfer that is responsible for in-
stantiating virtual objects in the execution environment. [Re-add the following after it is implemented.]
The VirtualObjectTransfer class is the internal mechanism that allocates space for the object and sets up the
virtual method tables for them. This class has two template parameters. The first parameter is the concrete
derived type of the virtual object to be transferred to the execution environment. It is assumed that after the
object is copied to the execution environment, a pointer to a base superclass of this concrete derived type will
be used. The second template argument is the device adapter on which to put the object.

Example 20.11: Prototype for vtkm::cont::internal::VirtualObjectTransfer.
1 namespace vtkm
2 {
3 namespace cont
4 {
5 namespace internal
6 {
7
8 template < typename VirtualDerivedType , typename DeviceAdapter >
9 struct VirtualObjectTransfer ;

10 }
11 } // namespace cont
12 } // namespace vtkm

A device adapter must provide a partial specialization of VirtualObjectTransfer for its device adapter tag.
This partial specialization is typically defined in an internal header file with a prefix of VirtualObjectTransfer.
The implementation for VirtualObjectTransfer can establish a virtual object in the execution environment
based on an object in the control environment, update the state of said object, and release all the resources for
the object. VirtualObjectTransfer must provide the following methods.

VirtualObjectTransfer (constructor) A VirtualObjectTransfer has a constructor that takes a pointer to the
derived type that (eventually) gets transferred to the execution environment of the given device adapter.
The object provided must stay valid for the lifespan of the VirtualObjectTransfer object.

PrepareForExecution Transfers the virtual object (given in the constructor) to the execution environment and
returns a pointer to the object that can be used in the execution environment. The returned object may
not be valid in the control environment and should not be used there. PrepareForExecution takes a single
bool argument. If the argument is false and PrepareForExecution was called previously, then the method
can return the same data as the last call without any updates. If the argument is true, then the data in
the execution environment is always updated regardless of whether data was copied in a previous call to
PrepareForExecution. This argument is used to tell the VirtualObjectTransfer whether the object in
the control environment has changed and has to be updated in the execution environment.

286 Chapter 20. Implementing Device Adapters

DRAFT

20.4. Virtual Object Transfer

ReleaseResources Frees up any resources in the execution environment. Any previously returned virtual object
from PrepareForExecution becomes invalid. (The destructor for VirtualObjectTransfer should also
release the resources.)

Specializations of this template typically take on one of two forms. If the control and execution environments
have separate memory spaces, then this class behaves by copying the concrete control object to the execution
environment (where the virtual table will be invalid) and a new object is created in the execution environment
by copying the object from the control environment. It can be assumed that the object can be trivially copied
(with the exception of the virtual method table).

For some devices, like CUDA, it is either only possible or more efficient to allocate data from the host
(the control environment). To avoid having to allocate data from the device (the execution environment),
implement PrepareForExecution by first allocating data from the host and then running code on the device
that does a “placement new” to create and copy the object in the pre-allocated space.

Did you know?

However, if the control and execution environments share the same memory space, the virtual object transfer
can, and should, just bind directly with the target concrete object. VTK-m comes with a class called vtkm::-
cont::internal::VirtualObjectTransferShareWithControl that provides the implementation for a virtual
object transfer that shares a memory space with the control environment. In this case, making the VirtualOb-
jectTransfer specialization be a trivial subclass is sufficient. Continuing our example of a device adapter based
on C++11’s std::thread class, here is the implementation of VirtualObjectTransfer, which by convention
would be placed in the vtkm/cont/cxx11/internal/VirtualObjectTransferCxx11Thread.h header file.

Example 20.12: Specialization of VirtualObjectTransfer.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ internal / VirtualObjectTransfer .h>
4 # include <vtkm/cont/ internal / VirtualObjectTransferShareWithControl .h>
5
6 namespace vtkm
7 {
8 namespace cont
9 {

10 namespace internal
11 {
12
13 template < typename VirtualDerivedType >
14 struct VirtualObjectTransfer < VirtualDerivedType ,
15 vtkm :: cont :: DeviceAdapterTagCxx11Thread >
16 : VirtualObjectTransferShareWithControl < VirtualDerivedType >
17 {
18 VTKM_CONT VirtualObjectTransfer (const VirtualDerivedType * virtualObject)
19 : VirtualObjectTransferShareWithControl < VirtualDerivedType >(virtualObject)
20 {
21 }
22 };
23
24 } // namespace internal
25 } // namespace cont
26 } // namespace vtkm

Chapter 20. Implementing Device Adapters 287

DRAFT

20.5. Atomic Interface Execution

20.5 Atomic Interface Execution

VTK-m defines a template named vtkm::cont::internal::AtomicInterfaceExecution that is responsible for
performing atomic operations on raw addresses. vtkm::cont::internal::AtomicInterfaceExecution defines
a WordTypePreferred member that is the fastest available for bitwise operations of the given device. At mini-
mum, the interface must support operations on WordTypePreferred and vtkm::WordTypeDefault, which may
be the same. A full list of the supported word types is advertised in the type list stored in WordTypes. vtkm::-
cont::internal::AtomicInterfaceExecution must provide the following methods for inputs of both pointer
types WordTypePrefered and vtkm::WordTypeDefault:

Load Atomically load a value from memory while enforcing, at a minimum, ”acquire” memory ordering.

Store Atomically write a value to memory while enforcing, at a minimum ”release” memory ordering.

Not Perform a bitwise atomic not operation on the word at the provided address.

And Perform a bitwise atomic and operation on the word at the provided address.

Or Perform a bitwise atomic or operation on the word at the provided address.

Xor Perform a bitwise atomic xor operation on the word at the provided address.

CompareAndSwap Perform a bitwise atomic Compare and Swap operation on the word at the provided address.

VTK-m provides a default implementation of the above operations that can be used on devices that share the
control environment. In order to use this implementation, simply subclass vtkm::cont::internal::AtomicIn-
terfaceControl from a template specialization of vtkm::cont::internal::AtomicInterfaceExecution that
takes a template argument of the new device adapter tag.

Example 20.13: Specialization of AtomicInterfaceExecution.
1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ internal / AtomicInterfaceControl .h>
4 # include <vtkm/cont/ internal / AtomicInterfaceExecution .h>
5
6 namespace vtkm
7 {
8 namespace cont
9 {

10 namespace internal
11 {
12
13 template <>
14 class AtomicInterfaceExecution < DeviceAdapterTagCxx11Thread >
15 : public AtomicInterfaceControl
16 {
17 };
18
19 } // namespace internal
20 } // namespace cont
21 } // namespace vtkm

20.6 Algorithms

A device adapter implementation must also provide a specialization of vtkm::cont::DeviceAdapterAlgorithm,
which is documented in Section 8.5. The implementation for the device adapter algorithms is typically placed
in a header file with a prefix of DeviceAdapterAlgorithm.

288 Chapter 20. Implementing Device Adapters

DRAFT

20.6. Algorithms

Although there are many methods in DeviceAdapterAlgorithm, it is seldom necessary to implement them all.
Instead, VTK-m comes with vtkm::cont::internal::DeviceAdapterAlgorithmGeneral that provides generic
implementation for most of the required algorithms. By deriving the specialization of DeviceAdapterAlgorithm
from DeviceAdapterAlgorithmGeneral, only the implementations for Schedule and Synchronize need to be
implemented. All other algorithms can be derived from those.

That said, not all of the algorithms implemented in DeviceAdapterAlgorithmGeneral are optimized for all
types of devices. Thus, it is worthwhile to provide algorithms optimized for the specific device when possible.
In particular, it is best to provide specializations for the sort, scan, and reduce algorithms.

It is standard practice to implement a specialization of DeviceAdapterAlgorithm by having it inherit
from vtkm::cont::internal::DeviceAdapterAlgorithmGeneral and specializing those methods that are
optimized for a particular system. DeviceAdapterAlgorithmGeneral is a templated class that takes as
its single template parameter the type of the subclass. For example, a device adapter algorithm struc-
ture named DeviceAdapterAlgorithm<DeviceAdapterTagFoo> will subclass DeviceAdapterAlgorithmGen-
eral<DeviceAdapterAlgorithm<DeviceAdapterTagFoo> >.

The convention of having a subclass be templated on the derived class’ type is known as the Curiously
Recurring Template Pattern (CRTP). In the case of DeviceAdapterAlgorithmGeneral, VTK-m uses
this CRTP behavior to allow the general implementation of these algorithms to run Schedule and other
specialized algorithms in the subclass.

Did you know?

One point to note when implementing the Schedule methods is to make sure that errors handled in the exe-
cution environment are handled correctly. As described in Section 12.11, errors are signaled in the execution
environment by calling RaiseError on a functor or worklet object. This is handled internally by the vtkm::-
exec::internal::ErrorMessageBuffer class. ErrorMessageBuffer really just holds a small string buffer,
which must be provided by the device adapter’s Schedule method.

So, before Schedule executes the functor it is given, it should allocate a small string array in the execution
environment, initialize it to the empty string, encapsulate the array in an ErrorMessageBuffer object, and set
this buffer object in the functor. When the execution completes, Schedule should check to see if an error exists
in this buffer and throw a vtkm::cont::ErrorExecution if an error has been reported.

Exceptions are generally not supposed to be thrown in the execution environment, but it could happen on
devices that support them. Nevertheless, few thread schedulers work well when an exception is thrown in
them. Thus, when implementing adapters for devices that do support exceptions, it is good practice to catch
them within the thread and report them through the ErrorMessageBuffer.

Common Errors

The following example is a minimal implementation of device adapter algorithms using C++11’s std::thread
class. Note that no attempt at providing optimizations has been attempted (and many are possible). By
convention this code would be placed in the vtkm/cont/cxx11/internal/DeviceAdapterAlgorithmCxx11Thread.h
header file.

Example 20.14: Minimal specialization of DeviceAdapterAlgorithm.

Chapter 20. Implementing Device Adapters 289

DRAFT

20.6. Algorithms

1 # include <vtkm/cont/ cxx11 / internal / DeviceAdapterTagCxx11Thread .h>
2
3 # include <vtkm/cont/ DeviceAdapterAlgorithm .h>
4 # include <vtkm/cont/ ErrorExecution .h>
5 # include <vtkm/cont/ internal / DeviceAdapterAlgorithmGeneral .h>
6
7 # include <thread >
8
9 namespace vtkm

10 {
11 namespace cont
12 {
13
14 template <>
15 struct DeviceAdapterAlgorithm <vtkm :: cont :: DeviceAdapterTagCxx11Thread >
16 : vtkm :: cont :: internal :: DeviceAdapterAlgorithmGeneral <
17 DeviceAdapterAlgorithm <vtkm :: cont :: DeviceAdapterTagCxx11Thread >,
18 vtkm :: cont :: DeviceAdapterTagCxx11Thread >
19 {
20 private :
21 template < typename FunctorType >
22 struct ScheduleKernel1D
23 {
24 VTKM_CONT
25 ScheduleKernel1D (const FunctorType & functor)
26 : Functor (functor)
27 {
28 }
29
30 VTKM_EXEC
31 void operator ()() const
32 {
33 try
34 {
35 for (vtkm :: Id threadId = this -> BeginId ; threadId < this -> EndId ; threadId ++)
36 {
37 this -> Functor (threadId);
38 // If an error is raised , abort execution .
39 if (this -> ErrorMessage . IsErrorRaised ())
40 {
41 return ;
42 }
43 }
44 }
45 catch (const vtkm :: cont :: Error & error)
46 {
47 this -> ErrorMessage . RaiseError (error . GetMessage (). c_str ());
48 }
49 catch (const std :: exception & error)
50 {
51 this -> ErrorMessage . RaiseError (error .what ());
52 }
53 catch (...)
54 {
55 this -> ErrorMessage . RaiseError (" Unknown exception raised .");
56 }
57 }
58
59 FunctorType Functor ;
60 vtkm :: exec :: internal :: ErrorMessageBuffer ErrorMessage ;
61 vtkm :: Id BeginId ;
62 vtkm :: Id EndId ;
63 };
64

290 Chapter 20. Implementing Device Adapters

DRAFT

20.6. Algorithms

65 template < typename FunctorType >
66 struct ScheduleKernel3D
67 {
68 VTKM_CONT
69 ScheduleKernel3D (const FunctorType & functor , vtkm :: Id3 maxRange)
70 : Functor (functor)
71 , MaxRange (maxRange)
72 {
73 }
74
75 VTKM_EXEC
76 void operator ()() const
77 {
78 vtkm :: Id3 threadId3D (this -> BeginId % this -> MaxRange [0] ,
79 (this -> BeginId / this -> MaxRange [0]) % this -> MaxRange [1] ,
80 this -> BeginId / (this -> MaxRange [0] * this -> MaxRange [1]));
81
82 try
83 {
84 for (vtkm :: Id threadId = this -> BeginId ; threadId < this -> EndId ; threadId ++)
85 {
86 this -> Functor (threadId3D);
87 // If an error is raised , abort execution .
88 if (this -> ErrorMessage . IsErrorRaised ())
89 {
90 return ;
91 }
92
93 threadId3D [0]++;
94 if (threadId3D [0] >= MaxRange [0])
95 {
96 threadId3D [0] = 0;
97 threadId3D [1]++;
98 if (threadId3D [1] >= MaxRange [1])
99 {

100 threadId3D [1] = 0;
101 threadId3D [2]++;
102 }
103 }
104 }
105 }
106 catch (const vtkm :: cont :: Error & error)
107 {
108 this -> ErrorMessage . RaiseError (error . GetMessage (). c_str ());
109 }
110 catch (const std :: exception & error)
111 {
112 this -> ErrorMessage . RaiseError (error .what ());
113 }
114 catch (...)
115 {
116 this -> ErrorMessage . RaiseError (" Unknown exception raised .");
117 }
118 }
119
120 FunctorType Functor ;
121 vtkm :: exec :: internal :: ErrorMessageBuffer ErrorMessage ;
122 vtkm :: Id BeginId ;
123 vtkm :: Id EndId ;
124 vtkm :: Id3 MaxRange ;
125 };
126
127 template < typename KernelType >
128 VTKM_CONT static void DoSchedule (KernelType kernel , vtkm :: Id numInstances)

Chapter 20. Implementing Device Adapters 291

DRAFT

20.6. Algorithms

129 {
130 if (numInstances < 1)
131 {
132 return ;
133 }
134
135 const vtkm :: Id MESSAGE_SIZE = 1024;
136 char errorString [MESSAGE_SIZE];
137 errorString [0] = ’\0’;
138 vtkm :: exec :: internal :: ErrorMessageBuffer errorMessage (errorString , MESSAGE_SIZE);
139 kernel . Functor . SetErrorMessageBuffer (errorMessage);
140 kernel . ErrorMessage = errorMessage ;
141
142 vtkm :: Id numThreads = static_cast <vtkm ::Id >(std :: thread :: hardware_concurrency ());
143 if (numThreads > numInstances)
144 {
145 numThreads = numInstances ;
146 }
147 vtkm :: Id numInstancesPerThread = (numInstances + numThreads - 1) / numThreads ;
148
149 std :: thread * threadPool = new std :: thread [numThreads];
150 vtkm :: Id beginId = 0;
151 for (vtkm :: Id threadIndex = 0; threadIndex < numThreads ; threadIndex ++)
152 {
153 vtkm :: Id endId = std :: min(beginId + numInstancesPerThread , numInstances);
154 KernelType threadKernel = kernel ;
155 threadKernel . BeginId = beginId ;
156 threadKernel . EndId = endId ;
157 std :: thread newThread (threadKernel);
158 threadPool [threadIndex]. swap(newThread);
159 beginId = endId ;
160 }
161
162 for (vtkm :: Id threadIndex = 0; threadIndex < numThreads ; threadIndex ++)
163 {
164 threadPool [threadIndex]. join ();
165 }
166
167 delete [] threadPool ;
168
169 if (errorMessage . IsErrorRaised ())
170 {
171 throw vtkm :: cont :: ErrorExecution (errorString);
172 }
173 }
174
175 public :
176 template < typename FunctorType >
177 VTKM_CONT static void Schedule (FunctorType functor , vtkm :: Id numInstances)
178 {
179 DoSchedule (ScheduleKernel1D < FunctorType >(functor), numInstances);
180 }
181
182 template < typename FunctorType >
183 VTKM_CONT static void Schedule (FunctorType functor , vtkm :: Id3 maxRange)
184 {
185 vtkm :: Id numInstances = maxRange [0] * maxRange [1] * maxRange [2];
186 DoSchedule (ScheduleKernel3D < FunctorType >(functor , maxRange), numInstances);
187 }
188
189 VTKM_CONT
190 static void Synchronize ()
191 {
192 // Nothing to do. This device schedules all of its operations using a

292 Chapter 20. Implementing Device Adapters

DRAFT

20.7. Timer Implementation

193 // split /join paradigm . This means that the if the control threaad is
194 // calling this method , then nothing should be running in the execution
195 // environment .
196 }
197 };
198
199 } // namespace cont
200 } // namespace vtkm

20.7 Timer Implementation

The VTK-m timer, described in Chapter 9, delegates to an internal class named vtkm::cont::DeviceAdapter-
TimerImplementation. The interface for this class is the same as that for vtkm::cont::Timer. A default im-
plementation of this templated class uses the system timer and the Synchronize method in the device adapter
algorithms.

However, some devices might provide alternate or better methods for implementing timers. For example, the TBB
and CUDA libraries come with high resolution timers that have better accuracy than the standard system timers.
Thus, the device adapter can optionally provide a specialization of DeviceAdapterTimerImplementation, which
is typically placed in the same header file as the device adapter algorithms.

Continuing our example of a custom device adapter using C++11’s std::thread class, we could use the de-
fault timer and it would work fine. But C++11 also comes with a std::chrono package that contains some
portable time functions. The following code demonstrates creating a custom timer for our device adapter us-
ing this package. By convention, DeviceAdapterTimerImplementation is placed in the same header file as
DeviceAdapterAlgorithm.

Example 20.15: Specialization of DeviceAdapterTimerImplementation.
1 # include <chrono >
2
3 namespace vtkm
4 {
5 namespace cont
6 {
7
8 template <>
9 class DeviceAdapterTimerImplementation <vtkm :: cont :: DeviceAdapterTagCxx11Thread >

10 {
11 public :
12 VTKM_CONT
13 DeviceAdapterTimerImplementation () { this -> Reset (); }
14
15 VTKM_CONT
16 void Reset ()
17 {
18 vtkm :: cont :: DeviceAdapterAlgorithm <
19 vtkm :: cont :: DeviceAdapterTagCxx11Thread >:: Synchronize ();
20 this -> StartTime = std :: chrono :: high_resolution_clock :: now ();
21 }
22
23 VTKM_CONT
24 vtkm :: Float64 GetElapsedTime ()
25 {
26 vtkm :: cont :: DeviceAdapterAlgorithm <
27 vtkm :: cont :: DeviceAdapterTagCxx11Thread >:: Synchronize ();
28 std :: chrono :: high_resolution_clock :: time_point endTime =
29 std :: chrono :: high_resolution_clock :: now ();
30

Chapter 20. Implementing Device Adapters 293

DRAFT

20.7. Timer Implementation

31 std :: chrono :: high_resolution_clock :: duration elapsedTicks =
32 endTime - this -> StartTime ;
33
34 std :: chrono :: duration <vtkm :: Float64 > elapsedSeconds (elapsedTicks);
35
36 return elapsedSeconds . count ();
37 }
38
39 private :
40 std :: chrono :: high_resolution_clock :: time_point StartTime ;
41 };
42
43 } // namespace cont
44 } // namespace vtkm

[At some point add a chapter on OpenGL interoperability (I guess).]

294 Chapter 20. Implementing Device Adapters

DRAFT
CHAPTER

TWENTYONE

FUNCTION INTERFACE OBJECTS

For flexibility’s sake a worklet is free to declare a ControlSignature with whatever number of arguments are
sensible for its operation. The Invoke method of the dispatcher is expected to support arguments that match
these arguments, and part of the dispatching operation may require these arguments to be augmented before
the worklet is scheduled. This leaves dispatchers with the tricky task of managing some collection of arguments
of unknown size and unknown types.

[FunctionInterface is in the vtkm::internal interface. I still can’t decide if it should be moved
to the vtkm interface.]

To simplify this management, VTK-m has the vtkm::internal::FunctionInterface class. FunctionInter-
face is a templated class that manages a generic set of arguments and return value from a function. An instance
of FunctionInterface holds an instance of each argument. You can apply the arguments in a FunctionInter-
face object to a functor of a compatible prototype, and the resulting value of the function call is saved in the
FunctionInterface.

21.1 Declaring and Creating

vtkm::internal::FunctionInterface is a templated class with a single parameter. The parameter is the
signature of the function. A signature is a function type. The syntax in C++ is the return type followed by the
argument types encased in parentheses.

Example 21.1: Declaring vtkm::internal::FunctionInterface.
1 // FunctionInterfaces matching some common POSIX functions .
2 vtkm :: internal :: FunctionInterface < size_t (const char *)> strlenInterface ;
3
4 vtkm :: internal :: FunctionInterface <char *(char*, const char* s2 , size_t)>
5 strncpyInterface ;

The vtkm::internal::make FunctionInterface function provies an easy way to create a FunctionInterface
and initialize the state of all the parameters. make FunctionInterface takes a variable number of arguments,
one for each parameter. Since the return type is not specified as an argument, you must always specify it as a
template parameter.

Example 21.2: Using vtkm::internal::make FunctionInterface.
1 const char* s = " Hello World ";
2 static const size_t BUFFER_SIZE = 100;
3 char* buffer = (char *) malloc (BUFFER_SIZE);
4
5 strlenInterface = vtkm :: internal :: make_FunctionInterface <size_t >(s);

DRAFT

21.2. Parameters

6
7 strncpyInterface =
8 vtkm :: internal :: make_FunctionInterface <char *>(buffer , s, BUFFER_SIZE);

21.2 Parameters

One created, FunctionInterface contains methods to query and manage the parameters and objects associated
with them. The number of parameters can be retrieved either with the constant field ARITY or with the GetArity
method.

Example 21.3: Getting the arity of a FunctionInterface.
1 VTKM_STATIC_ASSERT (vtkm :: internal :: FunctionInterface < size_t (const char *) >:: ARITY ==
2 1);
3
4 vtkm :: IdComponent arity = strncpyInterface . GetArity (); // arity = 3

To get a particular parameter, FunctionInterface has the templated method GetParameter. The template
parameter is the index of the parameter. Note that the parameters in FunctionInterface start at index 1.
Although this is uncommon in C++, it is customary to number function arguments starting at 1.

There are two ways to specify the index for GetParameter. The first is to directly specify the template parameter
(e.g. GetParameter<1>()). However, note that in a templated function or method where the type is not fully
resolved the compiler will not register GetParameter as a templated method and will fail to parse the template
argument without a template keyword. The second way to specify the index is to provide a vtkm::internal::-
IndexTag object as an argument to GetParameter. Although this syntax is more verbose, it works the same
whether the FunctionInterface is fully resolved or not. The following example shows both methods in action.

Example 21.4: Using FunctionInterface::GetParameter().
1 void GetFirstParameterResolved (
2 const vtkm :: internal :: FunctionInterface < void (std :: string)>& interface)
3 {
4 // The following two uses of GetParameter are equivalent
5 std :: cout << interface . GetParameter <1 >() << std :: endl;
6 std :: cout << interface . GetParameter (vtkm :: internal :: IndexTag <1 >()) << std :: endl;
7 }
8
9 template < typename FunctionSignature >

10 void GetFirstParameterTemplated (
11 const vtkm :: internal :: FunctionInterface < FunctionSignature >& interface)
12 {
13 // The following two uses of GetParameter are equivalent
14 std :: cout << interface . template GetParameter <1 >() << std :: endl;
15 std :: cout << interface . GetParameter (vtkm :: internal :: IndexTag <1 >()) << std :: endl;
16 }

Likewise, there is a SetParmeter method for changing parameters. The same rules for indexing and template
specification apply.

Example 21.5: Using FunctionInterface::SetParameter().
1 void SetFirstParameterResolved (
2 vtkm :: internal :: FunctionInterface < void (std :: string)>& interface ,
3 const std :: string & newFirstParameter)
4 {
5 // The following two uses of SetParameter are equivalent
6 interface . SetParameter <1 >(newFirstParameter);
7 interface . SetParameter (newFirstParameter , vtkm :: internal :: IndexTag <1 >());

296 Chapter 21. Function Interface Objects

DRAFT

21.3. Invoking

8 }
9

10 template < typename FunctionSignature , typename T>
11 void SetFirstParameterTemplated (
12 vtkm :: internal :: FunctionInterface < FunctionSignature >& interface ,
13 T newFirstParameter)
14 {
15 // The following two uses of SetParameter are equivalent
16 interface . template SetParameter <1 >(newFirstParameter);
17 interface . SetParameter (newFirstParameter , vtkm :: internal :: IndexTag <1 >());
18 }

21.3 Invoking

FunctionInterface can invoke a functor of a matching signature using the parameters stored within. If the
functor returns a value, that return value will be stored in the FunctionInterface object for later retrieval.
There are several versions of the invoke method. There are always seperate versions of invoke methods for the
control and execution environments so that functors for either environment can be executed. The basic version
of invoke passes the parameters directly to the function and directly stores the result.

Example 21.6: Invoking a FunctionInterface.
1 vtkm :: internal :: FunctionInterface < size_t (const char *)> strlenInterface ;
2 strlenInterface . SetParameter <1 >(" Hello world ");
3
4 strlenInterface . InvokeCont (strlen);
5
6 size_t length = strlenInterface . GetReturnValue (); // length = 11

Another form of the invoke methods takes a second transform functor that is applied to each argument before
passed to the main function. If the main function returns a value, the transform is applied to that as well before
being stored back in the FunctionInterface.

Example 21.7: Invoking a FunctionInterface with a transform.
1 // Our transform converts C strings to integers , leaves everything else alone .
2 struct TransformFunctor
3 {
4 template < typename T>
5 VTKM_CONT const T& operator ()(const T& x) const
6 {
7 return x;
8 }
9

10 VTKM_CONT
11 vtkm :: Int32 operator ()(const char* x) const { return atoi(x); }
12 };
13
14 // The function we are invoking simply compares two numbers .
15 struct IsSameFunctor
16 {
17 template < typename T1 , typename T2 >
18 VTKM_CONT bool operator ()(const T1& x, const T2& y) const
19 {
20 return x == y;
21 }
22 };
23
24 void TryTransformedInvoke ()
25 {

Chapter 21. Function Interface Objects 297

DRAFT

21.3. Invoking

26 vtkm :: internal :: FunctionInterface <bool(const char*, vtkm :: Int32)>
27 functionInterface = vtkm :: internal :: make_FunctionInterface <bool >(
28 (const char *)"42" , (vtkm :: Int32)42);
29
30 functionInterface . InvokeCont (IsSameFunctor (), TransformFunctor ());
31
32 bool isSame = functionInterface . GetReturnValue (); // isSame = true
33 }

As demonstrated in the previous examples, FunctionInterface has a method named GetReturnValue that
returns the value from the last invoke. Care should be taken to only use GetReturnValue when the function
specification has a return value. If the function signature has a void return type, using GetReturnValue will
cause a compile error.

FunctionInterface has an alternate method named GetReturnValueSafe that returns the value wrapped in
a templated structure named vtkm::internal::FunctionInterfaceReturnContainer. This structure always
has a static constant Boolean named VALID that is false if there is no return type and true otherwise. If the
container is valid, it also has an entry named Value containing the result.

Example 21.8: Getting return value from FunctionInterface safely.
1 template < typename ResultType , bool Valid >
2 struct PrintReturnFunctor ;
3
4 template < typename ResultType >
5 struct PrintReturnFunctor < ResultType , true >
6 {
7 VTKM_CONT
8 void operator ()(
9 const vtkm :: internal :: FunctionInterfaceReturnContainer < ResultType >& x) const

10 {
11 std :: cout << x. Value << std :: endl;
12 }
13 };
14
15 template < typename ResultType >
16 struct PrintReturnFunctor < ResultType , false >
17 {
18 VTKM_CONT
19 void operator ()(
20 const vtkm :: internal :: FunctionInterfaceReturnContainer < ResultType >&) const
21 {
22 std :: cout << "No return type ." << std :: endl;
23 }
24 };
25
26 template < typename FunctionInterfaceType >
27 void PrintReturn (const FunctionInterfaceType & functionInterface)
28 {
29 using ResultType = typename FunctionInterfaceType :: ResultType ;
30 using ReturnContainerType =
31 vtkm :: internal :: FunctionInterfaceReturnContainer < ResultType >;
32
33 PrintReturnFunctor < ResultType , ReturnContainerType :: VALID > printReturn ;
34 printReturn (functionInterface . GetReturnValueSafe ());
35 }

298 Chapter 21. Function Interface Objects

DRAFT

21.4. Modifying Parameters

21.4 Modifying Parameters

In addition to storing and querying parameters and invoking functions, FunctionInterface also contains mul-
tiple ways to modify the parameters to augment the function calls. This can be used in the same use case as a
chain of function calls that generally pass their parameters but also augment the data along the way.

The Append method returns a new FunctionInterface object with the same parameters plus a new parameter
(the argument to Append) to the end of the parameters. There is also a matching AppendType templated structure
that can return the type of an augmented FunctionInterface with a new type appended.

Example 21.9: Appending parameters to a FunctionInterface.
1 using vtkm :: internal :: FunctionInterface ;
2 using vtkm :: internal :: make_FunctionInterface ;
3
4 using InitialFunctionInterfaceType =
5 FunctionInterface < void (std :: string , vtkm :: Id)>;
6 InitialFunctionInterfaceType initialFunctionInterface =
7 make_FunctionInterface <void >(std :: string (" Hello World "), vtkm :: Id (42));
8
9 using AppendedFunctionInterfaceType1 =

10 FunctionInterface < void (std :: string , vtkm ::Id , std :: string)>;
11 AppendedFunctionInterfaceType1 appendedFunctionInterface1 =
12 initialFunctionInterface . Append (std :: string (" foobar "));
13 // appendedFunctionInterface1 has parameters (" Hello World ", 42, " foobar ")
14
15 using AppendedFunctionInterfaceType2 =
16 InitialFunctionInterfaceType :: AppendType <vtkm :: Float32 >:: type;
17 AppendedFunctionInterfaceType2 appendedFunctionInterface2 =
18 initialFunctionInterface . Append (vtkm :: Float32 (3.141));
19 // appendedFunctionInterface2 has parameters (" Hello World ", 42, 3.141)

Replace is a similar method that returns a new FunctionInterface object with the same paraemters except
with a specified parameter replaced with a new parameter (the argument to Replace). There is also a matching
ReplaceType templated structure that can return the type of an augmented FunctionInterface with one of
the parameters replaced.

Example 21.10: Replacing parameters in a FunctionInterface.
1 using vtkm :: internal :: FunctionInterface ;
2 using vtkm :: internal :: make_FunctionInterface ;
3
4 using InitialFunctionInterfaceType =
5 FunctionInterface < void (std :: string , vtkm :: Id)>;
6 InitialFunctionInterfaceType initialFunctionInterface =
7 make_FunctionInterface <void >(std :: string (" Hello World "), vtkm :: Id (42));
8
9 using ReplacedFunctionInterfaceType1 =

10 FunctionInterface < void (vtkm :: Float32 , vtkm :: Id)>;
11 ReplacedFunctionInterfaceType1 replacedFunctionInterface1 =
12 initialFunctionInterface .Replace <1 >(vtkm :: Float32 (3.141));
13 // replacedFunctionInterface1 has parameters (3.141 , 42)
14
15 using ReplacedFunctionInterfaceType2 =
16 InitialFunctionInterfaceType :: ReplaceType <2, std :: string >:: type;
17 ReplacedFunctionInterfaceType2 replacedFunctionInterface2 =
18 initialFunctionInterface .Replace <2 >(std :: string (" foobar "));
19 // replacedFunctionInterface2 has parameters (" Hello World ", " foobar ")

It is sometimes desirable to make multiple modifications at a time. This can be achieved by chaining modifications
by calling Append or Replace on the result of a previous call.

Chapter 21. Function Interface Objects 299

DRAFT

21.5. Transformations

Example 21.11: Chaining Replace and Append with a FunctionInterface.
1 template < typename FunctionInterfaceType >
2 void FunctionCallChain (const FunctionInterfaceType & parameters , vtkm :: Id arraySize)
3 {
4 // In this hypothetical function call chain , this function replaces the
5 // first parameter with an array of that type and appends the array size
6 // to the end of the parameters .
7
8 using ArrayValueType =
9 typename FunctionInterfaceType :: template ParameterType <1 >:: type;

10
11 // Allocate and initialize array .
12 ArrayValueType value = parameters . template GetParameter <1 >();
13 ArrayValueType * array = new ArrayValueType [arraySize];
14 for (vtkm :: Id index = 0; index < arraySize ; index ++)
15 {
16 array [index] = value ;
17 }
18
19 // Call next function with modified parameters .
20 NextFunctionChainCall (parameters . template Replace <1 >(array). Append (arraySize));
21
22 // Clean up.
23 delete [] array ;
24 }

21.5 Transformations

Rather than replace a single item in a FunctionInterface, it is sometimes desirable to change them all in a
similar way. FunctionInterface supports two basic transform operations on its parameters: a static transform
and a dynamic transform. The static transform determines its types at compile-time whereas the dynamic
transform happens at run-time.

The static transform methods (named StaticTransformCont and StaticTransformExec) operate by accepting
a functor that defines a function with two arguments. The first argument is the FunctionInterface parameter
to transform. The second argument is an instance of the vtkm::internal::IndexTag templated class that
statically identifies the parameter index being transformed. An IndexTag object has no state, but the class
contains a static integer named INDEX. The function returns the transformed argument.

The functor must also contain a templated class named ReturnType with an internal type named type that
defines the return type of the transform for a given parameter type. ReturnType must have two template
parameters. The first template parameter is the type of the FunctionInterface parameter to transform. It is
the same type as passed to the operator. The second template parameter is a vtkm::IdComponent specifying
the index.

The transformation is only applied to the parameters of the function. The return argument is unaffected.

The return type can be determined with the StaticTransformType template in the FunctionInterface class.
StaticTransformType has a single parameter that is the transform functor and contains a type named type
that is the transformed FunctionInterface.

In the following example, a static transform is used to convert a FunctionInterface to a new object that has
the pointers to the parameters rather than the values themselves. The parameter index is always ignored as all
parameters are uniformly transformed.

Example 21.12: Using a static transform of function interface class.
1 struct ParametersToPointersFunctor

300 Chapter 21. Function Interface Objects

DRAFT

21.5. Transformations

2 {
3 template < typename T, vtkm :: IdComponent Index >
4 struct ReturnType
5 {
6 using type = const T*;
7 };
8
9 template < typename T, vtkm :: IdComponent Index >

10 VTKM_CONT const T* operator ()(const T& x, vtkm :: internal :: IndexTag <Index >) const
11 {
12 return &x;
13 }
14 };
15
16 template < typename FunctionInterfaceType >
17 VTKM_CONT typename FunctionInterfaceType :: template StaticTransformType <
18 ParametersToPointersFunctor >:: type
19 ParametersToPointers (FunctionInterfaceType & functionInterface)
20 {
21 return functionInterface . StaticTransformCont (ParametersToPointersFunctor ());
22 }

There are cases where one set of parameters must be transformed to another set, but the types of the new
set are not known until run-time. That is, the transformed type depends on the contents of the data. The
FunctionInterface::DynamicTransformCont method achieves this using a templated callback that gets called
with the correct type at run-time.

The dynamic transform works with two functors provided by the user code (as opposed to the one functor in
static transform). These functors are called the transform functor and the finish functor. The transform functor
accepts three arguments. The first argument is a parameter to transform. The second argument is a continue
function. Rather than return the transformed value, the transform functor calls the continue function, passing
the transformed value as an argument. The third argument is a vtkm::internal::IndexTag for the index of
the argument being transformed.

Unlike its static counterpart, the dynamic transform method does not return the transformed FunctionInter-
face. Instead, it passes the transformed FunctionInterface to the finish functor passed into DynamicTrans-
formCont.

In the following contrived but illustrative example, a dynamic transform is used to convert strings containing
numbers into number arguments. Strings that do not have numbers and all other arguments are passed through.
Note that because the types for strings are not determined till run-time, this transform cannot be determined
at compile time with meta-template programming. The index argument is ignored because all arguments are
transformed the same way.

Example 21.13: Using a dynamic transform of a function interface.
1 struct UnpackNumbersTransformFunctor
2 {
3 template < typename InputType , typename ContinueFunctor , vtkm :: IdComponent Index >
4 VTKM_CONT void operator ()(const InputType & input ,
5 const ContinueFunctor & continueFunction ,
6 vtkm :: internal :: IndexTag <Index >) const
7 {
8 continueFunction (input);
9 }

10
11 template < typename ContinueFunctor , vtkm :: IdComponent Index >
12 VTKM_CONT void operator ()(const std :: string & input ,
13 const ContinueFunctor & continueFunction ,
14 vtkm :: internal :: IndexTag <Index >) const
15 {

Chapter 21. Function Interface Objects 301

DRAFT

21.5. Transformations

16 if ((input [0] >= ’0’) && (input [0] <= ’9’))
17 {
18 std :: stringstream stream (input);
19 vtkm :: FloatDefault value ;
20 stream >> value ;
21 continueFunction (value);
22 }
23 else
24 {
25 continueFunction (input);
26 }
27 }
28 };
29
30 struct UnpackNumbersFinishFunctor
31 {
32 template < typename FunctionInterfaceType >
33 VTKM_CONT void operator ()(FunctionInterfaceType & functionInterface) const
34 {
35 // Do something
36 }
37 };
38
39 template < typename FunctionInterfaceType >
40 void DoUnpackNumbers (const FunctionInterfaceType & functionInterface)
41 {
42 functionInterface . DynamicTransformCont (UnpackNumbersTransformFunctor (),
43 UnpackNumbersFinishFunctor ());
44 }

One common use for the FunctionInterface dynamic transform is to convert parameters of virtual polymor-
phic type like vtkm::cont::VariantArrayHandle and vtkm::cont::DynamicPointCoordinates. This use case
is handled with a functor named vtkm::cont::internal::DynamicTransform. When used as the dynamic
transform functor, it will convert all of these dynamic types to their static counterparts.

Example 21.14: Using DynamicTransform to cast dynamic arrays in a function interface.
1 template < typename Device >
2 struct ArrayCopyFunctor
3 {
4 template < typename Signature >
5 VTKM_CONT void operator ()(
6 vtkm :: internal :: FunctionInterface <Signature > functionInterface) const
7 {
8 functionInterface . InvokeCont (* this);
9 }

10
11 template < typename T, typename SIn , typename SOut >
12 VTKM_CONT void operator ()(const vtkm :: cont :: ArrayHandle <T, SIn >& input ,
13 vtkm :: cont :: ArrayHandle <T, SOut >& output) const
14 {
15 vtkm :: cont :: Algorithm :: Copy(input , output);
16 }
17
18 template < typename TIn , typename SIn , typename TOut , typename SOut >
19 VTKM_CONT void operator ()(const vtkm :: cont :: ArrayHandle <TIn , SIn >&,
20 vtkm :: cont :: ArrayHandle <TOut , SOut >&) const
21 {
22 throw vtkm :: cont :: ErrorBadType (" Arrays to copy must be the same type .");
23 }
24 };
25
26 template < typename Device >
27 void CopyVariantArrays (vtkm :: cont :: VariantArrayHandle input ,

302 Chapter 21. Function Interface Objects

DRAFT

21.6. For Each

28 vtkm :: cont :: VariantArrayHandle output ,
29 Device)
30 {
31 vtkm :: internal :: FunctionInterface < void (vtkm :: cont :: VariantArrayHandle ,
32 vtkm :: cont :: VariantArrayHandle)>
33 functionInterface = vtkm :: internal :: make_FunctionInterface <void >(input , output);
34
35 functionInterface . DynamicTransformCont (vtkm :: cont :: internal :: DynamicTransform (),
36 ArrayCopyFunctor <Device >());
37 }

21.6 For Each

The invoke methods (principally) make a single function call passing all of the parameters to this function. The
transform methods call a function on each parameter to convert it to some other data type. It is also sometimes
helpful to be able to call a unary function on each parameter that is not expected to return a value. Typically
the use case is for the function to have some sort of side effect. For example, the function might print out some
value (such as in the following example) or perform some check on the data and throw an exception on failure.

This feature is implemented in the for each methods of FunctionInterface. As with all the FunctionInterface
methods that take functors, there are separate implementations for the control environment and the execution
environment. There are also separate implementations taking const and non-const references to functors to
simplify making functors with side effects.

Example 21.15: Using the ForEach feature of FunctionInterface.
1 struct PrintArgumentFunctor
2 {
3 template < typename T, vtkm :: IdComponent Index >
4 VTKM_CONT void operator ()(const T& argument , vtkm :: internal :: IndexTag <Index >) const
5 {
6 std :: cout << Index << ":" << argument << " ";
7 }
8 };
9

10 template < typename FunctionInterfaceType >
11 VTKM_CONT void PrintArguments (const FunctionInterfaceType & functionInterface)
12 {
13 std :: cout << "(";
14 functionInterface . ForEachCont (PrintArgumentFunctor ());
15 std :: cout << ")" << std :: endl;
16 }

Chapter 21. Function Interface Objects 303

DRAFT

DRAFT
CHAPTER

TWENTYTWO

WORKLET ARGUMENTS

From the ControlSignature and ExecutionSignature defined in worklets, VTK-m uses template meta-
programming to build the code required to manage data from control to execution environment. These signatures
contain tags that define the meaning of each argument and control how the argument data are transferred from
the control to execution environments and broken up for each worklet instance.

Chapter 12 documents the many ControlSignature and ExecutionSignature tags that come with the worklet
types. This chapter discusses the internals of these tags and how they control data management. Defining new
worklet argument types can allow you to define new data structures in VTK-m. New worklet arguments are also
usually a critical components for making new worklet types, as described in Chapter 23.

The management of data in worklet arguments is handled by three classes that provide type checking, trans-
portation, and fetching. This chapter will first describe these type checking, transportation, and fetching classes
and then describe how ControlSignature and ExecutionSignature tags specify these classes.

Throughout this chapter we demonstrate the definition of worklet arguments using an example of a worklet
argument that represents line segments in 2D. The input for such an argument expects an ArrayHandle con-
taining floating point vtkm::Vec s of size 2 to represent coordinates in the plane. The values in the array are
paired up to define the two endpoints of each segment, and the worklet instance will receive a Vec-2 of Vec-2’s
representing the two endpoints. In practice, it is generally easier to use a vtkm::cont::ArrayHandleGroupVec
(see Section 7.4.12), but this is a simple example for demonstration purposes. Plus, we will use this special
worklet argument for our example of a custom worklet type in Chapter 23.

22.1 Type Checks

Before attempting to move data from the control to the execution environment, the VTK-m dispatchers check
the input types to ensure that they are compatible with the associated ControlSignature concept. This is done
with the vtkm::cont::arg::TypeCheck struct.

The TypeCheck struct is templated with two parameters. The first parameter is a tag that identifies which
check to perform. The second parameter is the type of the control argument (after any dynamic casts). The
TypeCheck class contains a static constant Boolean named value that is true if the type in the second parameter
is compatible with the tag in the first or false otherwise.

Type checks are implemented with a defined type check tag (which, by convention, is defined in the vtkm::-
cont::arg namespace and starts with TypeCheckTag) and a partial specialization of the vtkm::cont::arg::-
TypeCheck structure. The following type checks (identified by their tags) are provided in VTK-m.

vtkm::cont::arg::TypeCheckTagExecObject True if the type is an execution object. All execution objects

DRAFT

22.1. Type Checks

must derive from vtkm::cont::ExecutionObjectBase and follow the conventions of that class.

vtkm::cont::arg::TypeCheckTagArray True if the type is a vtkm::cont::ArrayHandle.

vtkm::cont::arg::TypeCheckTagAtomicArray Similar to TypeCheckTagArray except it only returns true for
array types with values that are supported for atomic arrays.

vtkm::cont::arg::TypeCheckTagCellSet True if and only if the object is a vtkm::cont::CellSet or one of
its subclasses.

vtkm::cont::arg::TypeCheckTagKeys True if and only if the object is a vtkm::worklet::Keys class.

Here are some trivial examples of using TypeCheck. Typically these checks are done internally in the base
VTK-m dispatcher code, so these examples are for demonstration only.

Example 22.1: Behavior of vtkm::cont::arg::TypeCheck.
1 struct MyExecObject : vtkm :: cont :: ExecutionObjectBase
2 {
3 vtkm :: Id Value ;
4 };
5
6 void DoTypeChecks ()
7 {
8 using vtkm :: cont :: arg :: TypeCheck ;
9 using vtkm :: cont :: arg :: TypeCheckTagArray ;

10 using vtkm :: cont :: arg :: TypeCheckTagExecObject ;
11
12 bool check1 = TypeCheck < TypeCheckTagExecObject , MyExecObject >:: value ; // true
13 bool check2 = TypeCheck < TypeCheckTagExecObject , vtkm ::Id >:: value ; // false
14
15 using ArrayType = vtkm :: cont :: ArrayHandle <vtkm :: Float32 >;
16
17 bool check3 = TypeCheck < TypeCheckTagArray , ArrayType >:: value ; // true
18 bool check4 = TypeCheck < TypeCheckTagExecObject , ArrayType >:: value ; // false
19 }

A type check is created by first defining a type check tag object, which by convention is placed in the vtkm::-
cont::arg namespace and whose name starts with TypeCheckTag. Then, create a specialization of the vtkm::-
cont::arg::TypeCheck template class with the first template argument matching the aforementioned tag. As
stated previously, the TypeCheck class must contain a value static constant Boolean representing whether the
type is acceptable for the corresponding Invoke argument.

This example of a TypeCheck returns true for control objects that are ArrayHandles with a value type that is a
floating point vtkm::Vec of size 2.

Example 22.2: Defining a custom TypeCheck.
1 namespace vtkm
2 {
3 namespace cont
4 {
5 namespace arg
6 {
7
8 struct TypeCheckTag2DCoordinates
9 {

10 };
11
12 template < typename ArrayType >
13 struct TypeCheck < TypeCheckTag2DCoordinates , ArrayType >
14 {

306 Chapter 22. Worklet Arguments

DRAFT

22.2. Transport

15 static constexpr bool value = false ;
16 };
17
18 template < typename T, typename Storage >
19 struct TypeCheck < TypeCheckTag2DCoordinates , vtkm :: cont :: ArrayHandle <T, Storage >>
20 {
21 static constexpr bool value =
22 vtkm :: ListContains <vtkm :: TypeListTagFieldVec2 , T >:: value ;
23 };
24
25 } // namespace arg
26 } // namespace cont
27 } // namespace vtkm

The type check defined in Example 22.2 could actually be replaced by the more general TypeCheckTagArray
that already comes with VTK-m (and, in fact, the implementation uses this type check internally for
simplicity). This example is mostly provided for demonstrative purposes. In practice, it is often useful to
use std::is same or std::is base of, which are provided by the standard template library starting with
C++11, to determine value in a TypeCheck.

Did you know?

22.2 Transport

After all the argument types are checked, the base dispatcher must load the data into the execution environment
before scheduling a job to run there. This is done with the vtkm::cont::arg::Transport struct.

The Transport struct is templated with three parameters. The first parameter is a tag that identifies which
transport to perform. The second parameter is the type of the control parameter (after any dynamic casts). The
third parameter is a device adapter tag for the device on which the data will be loaded.

A Transport contains a type named ExecObjectType that is the type used after data is moved to the execution
environment. A Transport also has a const parenthesis operator that takes 4 arguments: the control-side object
that is to be transported to the execution environment, the control-side object that represents the input domain,
the size of the input domain, and the size of the output domain and returns an execution-side object. This
operator is called in the control environment, and the operator returns an object that is ready to be used in the
execution environment.

Transports are implemented with a defined transport tag (which, by convention, is defined in the vtkm::cont::-
arg namespace and starts with TransportTag) and a partial specialization of the vtkm::cont::arg::Transport
structure. The following transports (identified by their tags) are provided in VTK-m.

vtkm::cont::arg::TransportTagExecObject Simply returns the given execution object, which should be
ready to load onto the device.

vtkm::cont::arg::TransportTagArrayIn Loads data from a vtkm::cont::ArrayHandle onto the specified
device using the array handle’s PrepareForInput method. The size of the array must be the same as the
input domain. The returned execution object is an array portal.

vtkm::cont::arg::TransportTagArrayOut Allocates data onto the specified device for a vtkm::cont::Ar-
rayHandle using the array handle’s PrepareForOutput method. The array is allocated to the size of the
output domain. The returned execution object is an array portal.

Chapter 22. Worklet Arguments 307

DRAFT

22.2. Transport

vtkm::cont::arg::TransportTagArrayInOut Loads data from a vtkm::cont::ArrayHandle onto the speci-
fied device using the array handle’s PrepareForInPlace method. The size of the array must be the same
size as the output domain (which is not necessarily the same size as the input domain). The returned
execution object is an array portal.

vtkm::cont::arg::TransportTagWholeArrayIn Loads data from a vtkm::cont::ArrayHandle onto the spec-
ified device using the array handle’s PrepareForInput method. This transport is designed to be used with
random access whole arrays, so unlike TransportTagArrayIn the array size can be unassociated with the
input domain. The returned execution object is an array portal.

vtkm::cont::arg::TransportTagWholeArrayOut Readies data from a vtkm::cont::ArrayHandle onto the
specified device using the array handle’s PrepareForOutput method. This transport is designed to be used
with random access whole arrays, so unlike TransportTagArrayOut the array size can be unassociated
with the input domain. Thus, the array must be pre-allocated and its size is not changed. The returned
execution object is an array portal.

vtkm::cont::arg::TransportTagWholeArrayInOut Loads data from a vtkm::cont::ArrayHandle onto the
specified device using the array handle’s PrepareForInPlace method. This transport is designed to be used
with random access whole arrays, so unlike TransportTagArrayInOut the array size can be unassociated
with the input domain. The returned execution object is an array portal.

vtkm::cont::arg::TransportTagAtomicArray Loads data from a vtkm::cont::ArrayHandle and creates a
vtkm::exec::AtomicArray.

vtkm::cont::arg::TransportTagCellSetIn Loads data from a vtkm::cont::CellSet object. The Trans-
portTagCellSetIn it a templated class with two parameters: the “from” topology and the “to” topology.
(See Section 12.5.2 for a description of “from” and “to” topologies.) The returned execution object is a
connectivity object (as described in Section 12.8).

vtkm::cont::arg::TransportTagTopologyFieldIn Similar to TransportTagArrayIn except that the size is
checked against the “from” topology of a cell set for the input domain. The input domain object is assumed
to be a vtkm::cont::CellSet.

vtkm::cont::arg::TransportTagKeysIn Loads data from a vtkm::worklet::Keys object. This transport
is intended to be used for the input domain of a vtkm::worklet::WorkletReduceByKey. The returned
execution object is of type vtkm::exec::internal::ReduceByKeyLookup.

vtkm::cont::arg::TransportTagKeyedValuesIn Loads data from a vtkm::cont::ArrayHandle onto the
specified device using the array handle’s PrepareForInput method. This transport uses the input do-
main object, which is expected to be a vtkm::worklet::Keys object, and groups the entries in the array
by unique keys. The returned execution object is an array portal of grouped values.

vtkm::cont::arg::TransportTagKeyedValuesOut Loads data from a vtkm::cont::ArrayHandle onto the
specified device using the array handle’s PrepareForOutput method. This transport uses the input domain
object, which is expected to be a vtkm::worklet::Keys object, and groups the entries in the array by
unique keys. The returned execution object is an array portal of grouped values.

vtkm::cont::arg::TransportTagKeyedValuesInOut Loads data from a vtkm::cont::ArrayHandle onto the
specified device using the array handle’s PrepareForInPlace method. This transport uses the input
domain object, which is expected to be a vtkm::worklet::Keys object, and groups the entries in the
array by unique keys. The returned execution object is an array portal of grouped values.

Here are some trivial examples of using Transport. Typically this movement is done internally in the base
VTK-m dispatcher code, so these examples are for demonstration only.

308 Chapter 22. Worklet Arguments

DRAFT

22.2. Transport

Example 22.3: Behavior of vtkm::cont::arg::Transport.
1 template < typename ArrayType , typename Device >
2 void DoTransport (ArrayType inArray , ArrayType outArray , Device)
3 {
4 VTKM_IS_ARRAY_HANDLE (ArrayType);
5 VTKM_IS_DEVICE_ADAPTER_TAG (Device);
6
7 using vtkm :: cont :: arg :: Transport ;
8 using vtkm :: cont :: arg :: TransportTagArrayIn ;
9 using vtkm :: cont :: arg :: TransportTagArrayOut ;

10 using vtkm :: cont :: arg :: TransportTagWholeArrayInOut ;
11
12 // The array in transport returns a read -only array portal .
13 using ArrayInTransport = Transport < TransportTagArrayIn , ArrayType , Device >;
14 typename ArrayInTransport :: ExecObjectType inPortal =
15 ArrayInTransport ()(inArray , inArray , 10, 10);
16
17 // The array out transport returns an allocated array portal .
18 using ArrayOutTransport = Transport < TransportTagArrayOut , ArrayType , Device >;
19 typename ArrayOutTransport :: ExecObjectType outPortal =
20 ArrayOutTransport ()(outArray , inArray , 10, 10);
21
22 // The whole array in transport returns a read -only array portal wrapped in
23 // a vtkm :: exec :: ExecutionWholeArrayConst .
24 using WholeArrayTransport =
25 Transport < TransportTagWholeArrayInOut , ArrayType , Device >;
26 typename WholeArrayTransport :: ExecObjectType wholeArray =
27 WholeArrayTransport ()(inArray , inArray , 10, 10);
28 }

A transport is created by first defining a transport tag object, which by convention is placed in the vtkm::-
cont::arg namespace and whose name starts with TransportTag. Then, create a specialization of the vtkm::-
cont::arg::Transport template class with the first template argument matching the aforementioned tag. As
stated previously, the Transport class must contain an ExecObjectType type and a parenthesis operator turning
the associated control argument into an execution environment object.

This example internally uses a vtkm::cont::ArrayHandleGroupVec to take values from an input ArrayHandle
and pair them up to represent line segments. The resulting execution object is an array portal containing Vec-2
values of Vec-2’s.

Example 22.4: Defining a custom Transport.
1 namespace vtkm
2 {
3 namespace cont
4 {
5 namespace arg
6 {
7
8 struct TransportTag2DLineSegmentsIn
9 {

10 };
11
12 template < typename ContObjectType , typename Device >
13 struct Transport <vtkm :: cont :: arg :: TransportTag2DLineSegmentsIn ,
14 ContObjectType ,
15 Device >
16 {
17 VTKM_IS_ARRAY_HANDLE (ContObjectType);
18
19 using GroupedArrayType = vtkm :: cont :: ArrayHandleGroupVec < ContObjectType , 2>;
20
21 using ExecObjectType =

Chapter 22. Worklet Arguments 309

DRAFT

22.3. Fetch

22 typename GroupedArrayType :: template ExecutionTypes <Device >:: PortalConst ;
23
24 template < typename InputDomainType >
25 VTKM_CONT ExecObjectType operator ()(const ContObjectType & object ,
26 const InputDomainType &,
27 vtkm :: Id inputRange ,
28 vtkm :: Id) const
29 {
30 if (object . GetNumberOfValues () != inputRange * 2)
31 {
32 throw vtkm :: cont :: ErrorBadValue (
33 "2D line segment array size does not agree with input size .");
34 }
35
36 GroupedArrayType groupedArray (object);
37 return groupedArray . PrepareForInput (Device ());
38 }
39 };
40
41 } // namespace arg
42 } // namespace cont
43 } // namespace vtkm

It is fair to assume that the Transport’s control object type matches whatever the associated TypeCheck
allows. However, it is good practice to provide a secondary compile-time check in the Transport class
for debugging purposes in case there is a problem with the TypeCheck or this Transport is used with an
unexpected TypeCheck.

Common Errors

22.3 Fetch

Before the function of a worklet is invoked, the VTK-m internals pull the appropriate data out of the execution
object and pass it to the worklet function. A class named vtkm::exec::arg::Fetch is responsible for pulling
this data out and putting computed data in to the execution objects.

The Fetch struct is templated with four parameters. The first parameter is a tag that identifies which type of
fetch to perform. The second parameter is a different tag that identifies the aspect of the data to fetch.

The third template parameter to a Fetch struct is a type of thread indices object, which manages the indices
and other metadata associated with the thread for which the Fetch operator gets called. The specific type of
the thread indices object depends on the type of worklet begin invoked, but all thread indices classes implement
methods named GetInputIndex, GetOutputIndex, and GetVisitIndex to get those respective indices. The
thread indices object may also contain other methods to get information pertinent to the associated worklet’s
execution. For example a thread indices object associated with a topology map has methods to get the shape
identifier and incident from indices of the current input object. Thread indices objects are discussed in more
detail in Section 23.2.

The fourth template parameter to a Fetch struct is the type of the execution object that is created by the
Transport (as described in Section 22.2). This is generally where the data are fetched from.

A Fetch contains a type named ValueType that is the type of data that is passed to and from the worklet

310 Chapter 22. Worklet Arguments

DRAFT

22.3. Fetch

function. A Fetch also has a pair of methods named Load and Store that get data from and add data to the
execution object at a given domain or thread index.

Fetches are specified with a pair of fetch and aspect tags. Fetch tags are by convention defined in the vtkm::-
exec::arg namespace and start with FetchTag. Likewise, aspect tags are also defined in the vtkm::exec::arg
namespace and start with AspectTag. The Fetch class is partially specialized on these two tags.

The most common aspect tag is vtkm::exec::arg::AspectTagDefault, and all fetch tags should have a spe-
cialization of vtkm::exec::arg::Fetch with this tag. The following list of fetch tags describes the execution
objects they work with and the data they pull for each aspect tag they support.

vtkm::exec::arg::FetchTagExecObject Simply returns an execution object. This fetch only supports the
AspectTagDefault aspect. The Load returns the executive object in the associated parameter. The Store
does nothing.

vtkm::exec::arg::FetchTagWholeCellSetIn Loads data from a cell set. The Load simply returns the execu-
tion object created with a TransportTagCellSetIn and the Store does nothing.

vtkm::exec::arg::FetchTagArrayDirectIn Loads data from an array portal. This fetch only supports the
AspectTagDefault aspect. The Load gets data directly from the domain (thread) index. The Store does
nothing.

vtkm::exec::arg::FetchTagArrayDirectOut Stores data to an array portal. This fetch only supports the
AspectTagDefault aspect. The Store sets data directly to the domain (thread) index. The Load does
nothing.

vtkm::exec::arg::FetchTagCellSetIn Load data from a cell set. This fetch is used with the worklet topology
maps to pull topology information from a cell set. The Load simply returns the cell shape of the given input
cells and the Store method does nothing. This tag is typically used with the input domain object, and as-
pects like vtkm::exec::arg::AspectTagFromCount and vtkm::exec::arg::AspectTagFromIndices are
used to get more detailed information.

vtkm::exec::arg::FetchTagArrayTopologyMapIn Loads data from the “from” topology in a topology map.
For example, in a point to cell topology map, this fetch will get the field values for all points attached to
the cell being visited. The Load returns a Vec-like object containing all the incident field values whereas
the Store method does nothing. This fetch is designed for use in topology maps and expects the input
domain to be a cell set.

A fetch is created by first defining a fetch tag object, which by convention is placed in the vtkm::exec::arg
namespace and whose name starts with FetchTag. Then, create a specialization of the vtkm::exec::arg::-
Fetch template class with the first template argument matching the aforementioned tag. As stated previously,
the Fetch class must contain a ValueType type and a pair of Load and Store methods that get a value out of
the data and store a value in the data, respectively.

Example 22.5: Defining a custom Fetch.
1 namespace vtkm
2 {
3 namespace exec
4 {
5 namespace arg
6 {
7
8 struct FetchTag2DLineSegmentsIn
9 {

10 };
11

Chapter 22. Worklet Arguments 311

DRAFT

22.3. Fetch

12 template < typename ThreadIndicesType , typename ExecObjectType >
13 struct Fetch <vtkm :: exec :: arg :: FetchTag2DLineSegmentsIn ,
14 vtkm :: exec :: arg :: AspectTagDefault ,
15 ThreadIndicesType ,
16 ExecObjectType >
17 {
18 using ValueType = typename ExecObjectType :: ValueType ;
19
20 VTKM_SUPPRESS_EXEC_WARNINGS
21 VTKM_EXEC
22 ValueType Load(const ThreadIndicesType & indices ,
23 const ExecObjectType & arrayPortal) const
24 {
25 return arrayPortal .Get(indices . GetInputIndex ());
26 }
27
28 VTKM_EXEC
29 void Store (const ThreadIndicesType &, const ExecObjectType &, const ValueType &) const
30 {
31 // Store is a no -op for this fetch .
32 }
33 };
34
35 } // namespace arg
36 } // namespace exec
37 } // namespace vtkm

The fetch defined in Example 22.5 could actually be replaced by the more general FetchTagArrayDirectIn
that already comes with VTK-m. This example is mostly provided for demonstrative purposes.

Did you know?

In addition to the aforementioned aspect tags that are explicitly paired with fetch tags, VTK-m also provides
some aspect tags that either modify the behavior of a general fetch or simply ignore the type of fetch.

vtkm::exec::arg::AspectTagDefault Performs the “default” fetch. Every fetch tag should have an imple-
mentation of vtkm::exec::arg::Fetch with that tag and AspectTagDefault.

vtkm::exec::arg::AspectTagWorkIndex Simply returns the domain (or thread) index ignoring any associated
data. This aspect is used to implement the WorkIndex execution signature tag.

vtkm::exec::arg::AspectTagInputIndex Returns the index of the element being used from the input domain.
This is often the same as the work index but can be different if a scatter is being used. (See Section 12.10
for information on scatters in worklets.)

vtkm::exec::arg::AspectTagOutputIndex Returns the index of the element being written to the output.
This is generally the same as the work index.

vtkm::exec::arg::AspectTagVisitIndex Returns the visit index corresponding to the current input. To-
gether the pair of input index and visit index are unique.

vtkm::exec::arg::AspectTagCellShape Returns the cell shape from the input domain. This aspect is de-
signed to be used with topology maps.

vtkm::exec::arg::AspectTagFromCount Returns the number of elements associated with the “from” topology
that are incident to the input element of the “to” topology. This aspect is designed to be used with topology
maps.

312 Chapter 22. Worklet Arguments

DRAFT

22.4. Creating New ControlSignature Tags

vtkm::exec::arg::AspectTagFromIndices Returns a Vec-like object containing the indices to the elements
associated with the “from” topology that are incident to the input element of the “to” topology. This
aspect is designed to be used with topology maps.

vtkm::exec::arg::AspectTagValueCount Returns the number of times the key associated with the current
input. This aspect is designed to be used with reduce by key maps.

An aspect is created by first defining an aspect tag object, which by convention is placed in the vtkm::exec::arg
namespace and whose name starts with AspectTag. Then, create specializations of the vtkm::exec::arg::-
Fetch template class where appropriate with the second template argument matching the aforementioned tag.

This example creates a specialization of a Fetch to retrieve the first point of a line segment.

Example 22.6: Defining a custom Aspect.
1 namespace vtkm
2 {
3 namespace exec
4 {
5 namespace arg
6 {
7
8 struct AspectTagFirstPoint
9 {

10 };
11
12 template < typename ThreadIndicesType , typename ExecObjectType >
13 struct Fetch <vtkm :: exec :: arg :: FetchTag2DLineSegmentsIn ,
14 vtkm :: exec :: arg :: AspectTagFirstPoint ,
15 ThreadIndicesType ,
16 ExecObjectType >
17 {
18 using ValueType = typename ExecObjectType :: ValueType :: ComponentType ;
19
20 VTKM_SUPPRESS_EXEC_WARNINGS
21 VTKM_EXEC
22 ValueType Load(const ThreadIndicesType & indices ,
23 const ExecObjectType & arrayPortal) const
24 {
25 return arrayPortal .Get(indices . GetInputIndex ())[0];
26 }
27
28 VTKM_EXEC
29 void Store (const ThreadIndicesType &, const ExecObjectType &, const ValueType &) const
30 {
31 // Store is a no -op for this fetch .
32 }
33 };
34
35 } // namespace arg
36 } // namespace exec
37 } // namespace vtkm

22.4 Creating New ControlSignature Tags

The type checks, transports, and fetches defined in the previous sections of this chapter conspire to interpret the
arguments given to a dispatcher’s Invoke method and provide data to an instance of a worklet. What remains
to be defined are the tags used in the ControlSignature and ExecutionSignature that bring these three items
together. These two types of tags are defined differently. In this section we discuss the ControlSignature tags.

Chapter 22. Worklet Arguments 313

DRAFT

22.5. Creating New ExecutionSignature Tags

A ControlSignature tag is defined by a struct (or equivocally a class). This struct is typically defined inside
a worklet (or, more typically, a worklet superclass) so that it can be used without qualifying its namespace.
VTK-m has requirements for every defined ControlSignature tag.

The first requirement of a ControlSignature tag is that it must inherit from vtkm::cont::arg::ControlSig-
natureTagBase. You will get a compile error if you attempt to use a type that is not a subclass of ControlSig-
natureTagBase in a ControlSignature.

The second requirement of a ControlSignature tag is that it must contain the following three types: TypeCheck-
Tag, TransportTag, and FetchTag. As the names would imply, these specify tags for TypeCheck, Transport,
and Fetch classes, respectively, which were discussed earlier in this chapter.

The following example defines a ControlSignature tag for an array that represents 2D line segments using the
classes defined in previous examples.

Example 22.7: Defining a new ControlSignature tag.
1 struct LineSegment2DCoordinatesIn : vtkm :: cont :: arg :: ControlSignatureTagBase
2 {
3 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTag2DCoordinates ;
4 using TransportTag = vtkm :: cont :: arg :: TransportTag2DLineSegmentsIn ;
5 using FetchTag = vtkm :: exec :: arg :: FetchTag2DLineSegmentsIn ;
6 };

Once defined, this tag can be used like any other ControlSignature tag.

Example 22.8: Using a custom ControlSignature tag.
1 using ControlSignature = void (LineSegment2DCoordinatesIn coordsIn ,
2 FieldOut vecOut ,
3 FieldIn index);

22.5 Creating New ExecutionSignature Tags

An ExecutionSignature tag is defined by a struct (or equivocally a class). This struct is typically defined
inside a worklet (or, more typically, a worklet superclass) so that it can be used without qualifying its namespace.
VTK-m has requirements for every defined ExecutionSignature tag.

The first requirement of an ExecutionSignature tag is that it must inherit from vtkm::exec::arg::Execu-
tionSignatureTagBase. You will get a compile error if you attempt to use a type that is not a subclass of
ExecutionSignatureTagBase in an ExecutionSignature.

The second requirement of an ExecutionSignature tag is that it must contain a type named AspectTag, which
is set to an aspect tag. As discussed in Section 22.3, the aspect tag is passed as a template argument to the
vtkm::exec::arg::Fetch class to modify the data it loads and stores. The numerical ExecutionSignature
tags (i.e. 1, 2, etc.) operate by setting the AspectTag to vtkm::exec::arg::AspectTagDefault, effectively
engaging the default fetch.

The third requirement of an ExecutionSignature tag is that it contains an INDEX member that is a static
const vtkm::IdComponent. The number that INDEX is set to refers to the ControlSignature argument from
which that data come from (indexed starting at 1). The numerical ExecutionSignature tags (i.e. 1, 2, etc.)
operate by setting their INDEX values to the corresponding number (i.e. 1, 2, etc.). An ExecutionSignature tag
might take another tag as a template argument and copy the INDEX from one to another. This allows you to use
a tag to modify the aspect of another tag. Most often this is used to apply a particular aspect to a numerical
ExecutionSignature tag (i.e. 1, 2, etc.). Still other ExecutionSignature tags might not need direct access
to any ControlSignature arguments (such as those that pull information from thread indices). If the INDEX
does not matter (because the execution object parameter to the Fetch Load and Store is ignored). In this case,

314 Chapter 22. Worklet Arguments

DRAFT

22.5. Creating New ExecutionSignature Tags

the ExecutionSignature tag can set the INDEX to 1, because there is guaranteed to be at least one control
argument.

The following example defines an ExecutionSignature tag to get the coordinates for only the first point in a
2D line segment. The defined tag takes as an argument another tag (generally one of the numeric tags), which
is expected to point to a ControlSignature argument with a LineSegment2DCoordinatesIn (as defined in
Example 22.7).

Example 22.9: Defining a new ExecutionSignature tag.
1 template < typename ArgTag >
2 struct FirstPoint : vtkm :: exec :: arg :: ExecutionSignatureTagBase
3 {
4 static const vtkm :: IdComponent INDEX = ArgTag :: INDEX ;
5 using AspectTag = vtkm :: exec :: arg :: AspectTagFirstPoint ;
6 };

Once defined, this tag can be used like any other ExecutionSignature tag.

Example 22.10: Using a custom ExecutionSignature tag.
1 using ControlSignature = void (LineSegment2DCoordinatesIn coordsIn ,
2 FieldOut vecOut ,
3 FieldIn index);
4 using ExecutionSignature = void (FirstPoint <_1 >, SecondPoint <_1 >, _2);

Chapter 22. Worklet Arguments 315

DRAFT

DRAFT
CHAPTER

TWENTYTHREE

NEW WORKLET TYPES

The basic building block for an algorithm in VTK-m is the worklet. Chapter 12 describes the different types of
worklet types provided by VTK-m and how to use them to create algorithms. However, it is entirely possible that
this set of worklet types does not directly cover what is needed to implement a particular algorithm. One way
around this problem is to use some of the numerous back doors provided by VTK-m to provide less restricted
access in the execution environment such as using whole arrays for random access.

However, it make come to pass that you encounter a particular pattern of execution that you find useful for
implementing several algorithms. If such is the case, it can be worthwhile to create a new worklet type that
directly supports such a pattern. Creating a new worklet type can provide two key advantages. First, it
makes implementing algorithms of this nature easier, which saves developer time. Second, it can make the
implementation of such algorithms safer. By encapsulating the management of structures and regulating the
data access, users of the worklet type can be more assured of correct behavior.

This chapter documents the process for creating new worklet types. The operation of a worklet requires the
coordination of several different object types such as dispatchers, argument handlers, and thread indices. This
chapter will provide examples of all these required components. To tie all these features together, we start this
chapter with a motivating example for an implementation of a custom worklet type. The chapter then discusses
the individual components of the worklet, which in the end come together for the worklet type that is then
demonstrated.

23.1 Motivating Example

For our motivation to create a new worklet type, let us consider the use case of building fractals. Fractals are
generally not a primary concern of visualization libraries like VTK-m, but building a fractal (or approximations
of fractals) has similarities the the computational geometry problems in scientific visualization. In particular,
we consider the class of fractals that is generated by replacing each line in a shape with some collection of lines.
These types of fractals are interesting because, in addition to other reasons, the right parameters result in a
shape that has infinite length confined to a finite area.

A simple but well known example of a line fractal is the Koch Snowflake. The Koch Snowflake starts as a line
or triangle that gets replaced with the curve shown in Figure 23.1.

The fractal is formed by iteratively replacing the curve’s lines with this basic shape. Figure 23.2 shows the
second iteration and then several subsequent iterations that create a “fuzzy” curve. The curve is confined to a
limited area regardless of how many iterations are performed, but the length of the curve approaches infinity as
the number of iterations approaches infinity.

In our finite world we want to estimate the curve of the Koch Snowflake by performing a finite amount of

DRAFT

23.1. Motivating Example

Figure 23.1: Basic shape for the Koch Snowflake.

Figure 23.2: The Koch Snowflake after the second iteration (left image) and after several more iterations (right
image).

iterations. This is similar to a Lindenmayer system but with less formality. The size of the curve grows quickly
and in practice it takes few iterations to make close approximations.

The Koch Snowflake is just one example of many line fractals we can make with this recursive line sub-
stitution, which is why it is fruitful to create a worklet type to implement such fractals. We use the Koch
Snowflake to set up the example here. Section 23.6 provides several more examples.

Did you know?

To implement line fractals of this nature, we want to be able to define the lines of the base shape in terms of
parametric coordinates and then transform the coordinates to align with a line segment. For example, the Koch
Snowflake base shape could be defined with parametric coordinates shown in Figure 23.3.

(0,0) (0.33,0)

(0.5,0.29)

(0.67,0) (1,0)

Figure 23.3: Parametric coordinates for the Koch Snowflake shape.

Given these parametric coordinates, for each line we define an axis with the main axis along the line segment
and the secondary axis perpendicular to that. Given this definition, we can perform each fractal iteration by
applying this transform for each line segment as shown in Figure 23.4.

To implement the application of the line fractal demonstrated in Figure 23.4, let us define a class named Line-
FractalTransform that takes as its constructor the coordinates of two ends of the original line. As its operator,
LineFractalTransform takes a point in parametric space and returns the coordinates in world space in respect
to the original line segment. We define this class in the vtkm::exec namespace because the intended use case is
by worklets of the type we are making. A definition of LineFractalTransform is given in Example 23.1

Example 23.1: A support class for a line fractal worklet.

318 Chapter 23. New Worklet Types

DRAFT

23.1. Motivating Example

Figure 23.4: Applying the line fractal transform for the Koch Snowflake.

1 namespace vtkm
2 {
3 namespace exec
4 {
5
6 class LineFractalTransform
7 {
8 using VecType = vtkm ::Vec <vtkm :: FloatDefault , 2>;
9

10 public :
11 template < typename T>
12 VTKM_EXEC LineFractalTransform (const vtkm ::Vec <T, 2>& point0 ,
13 const vtkm ::Vec <T, 2>& point1)
14 {
15 this -> Offset = point0 ;
16 this -> UAxis = point1 - point0 ;
17 this -> VAxis = vtkm :: make_Vec (-this -> UAxis [1] , this -> UAxis [0]);
18 }
19
20 template < typename T>
21 VTKM_EXEC vtkm ::Vec <T, 2> operator ()(const vtkm ::Vec <T, 2>& ppoint) const
22 {
23 VecType ppointCast (ppoint);
24 VecType transform =
25 ppointCast [0] * this -> UAxis + ppointCast [1] * this -> VAxis + this -> Offset ;
26 return vtkm ::Vec <T, 2>(transform);
27 }
28
29 template < typename T>
30 VTKM_EXEC vtkm ::Vec <T, 2> operator ()(T x, T y) const
31 {
32 return (* this)(vtkm ::Vec <T, 2>(x, y));
33 }
34
35 private :
36 VecType Offset ;
37 VecType UAxis ;
38 VecType VAxis ;
39 };
40
41 } // namespace exec
42 } // namespace vtkm

The definition of LineFractalTransform (or something like it) is not strictly necessary for implementing
a worklet type. However, it is common to implement such supporting classes that operate in the execution
environment in support of the operations typically applied by the worklet type.

Did you know?

Chapter 23. New Worklet Types 319

DRAFT

23.2. Thread Indices

The remainder of this chapter is dedicated to defining a WorkletLineFractal class and supporting objects that
allow you to easily make line fractals. Example 23.2 demonstrates how we intend to use this worklet type.

Example 23.2: Demonstration of how we want to use the line fractal worklet.
1 struct KochSnowflake
2 {
3 struct FractalWorklet : vtkm :: worklet :: WorkletLineFractal
4 {
5 using ControlSignature = void (SegmentsIn , SegmentsOut <4 >);
6 using ExecutionSignature = void (Transform , _2);
7 using InputDomain = _1;
8
9 template < typename SegmentsOutVecType >

10 void operator ()(const vtkm :: exec :: LineFractalTransform & transform ,
11 SegmentsOutVecType & segmentsOutVec) const
12 {
13 segmentsOutVec [0][0] = transform (0.00f, 0.00f);
14 segmentsOutVec [0][1] = transform (0.33f, 0.00f);
15
16 segmentsOutVec [1][0] = transform (0.33f, 0.00f);
17 segmentsOutVec [1][1] = transform (0.50f, 0.29f);
18
19 segmentsOutVec [2][0] = transform (0.50f, 0.29f);
20 segmentsOutVec [2][1] = transform (0.67f, 0.00f);
21
22 segmentsOutVec [3][0] = transform (0.67f, 0.00f);
23 segmentsOutVec [3][1] = transform (1.00f, 0.00f);
24 }
25 };
26
27 VTKM_CONT static vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault , 2>> Run(
28 vtkm :: IdComponent numIterations)
29 {
30 using VecType = vtkm ::Vec <vtkm :: Float32 , 2>;
31
32 vtkm :: cont :: ArrayHandle <VecType > points ;
33
34 // Initialize points array with a single line
35 points . Allocate (2);
36 points . GetPortalControl (). Set (0, VecType (0.0f, 0.0f));
37 points . GetPortalControl (). Set (1, VecType (1.0f, 0.0f));
38
39 vtkm :: worklet :: DispatcherLineFractal < KochSnowflake :: FractalWorklet > dispatcher ;
40
41 for (vtkm :: IdComponent i = 0; i < numIterations ; ++i)
42 {
43 vtkm :: cont :: ArrayHandle <VecType > outPoints ;
44 dispatcher . Invoke (points , outPoints);
45 points = outPoints ;
46 }
47
48 return points ;
49 }
50 };

23.2 Thread Indices

The first internal support class for implementing a worklet type is a class that manages indices for a thread.
As the name would imply, the thread indices class holds a reference to an index identifying work to be done
by the current thread. This includes indices to the current input element and the current output element.

320 Chapter 23. New Worklet Types

DRAFT

23.2. Thread Indices

The thread indices object can also hold other information (that may not strictly be index data) about the
input and output data. For example, the thread indices object for topology maps (named vtkm::exec::arg::-
ThreadIndicesTopologyMap) maintains cell shape and connection indices for the current input object.

As is discussed briefly in Section 22.3, a thread indices object is given to the vtkm::exec::arg::Fetch class to
retrieve data from the execution object. The thread indices object serves two important functions for the Fetch.
The first function is to cache information about the current thread that is likely to be used by multiple objects
retrieving information. For example, in a point to cell topology map data from point fields must be retrieved by
looking up indices in the topology connections. It is more efficient to retrieve the topology connections once and
store them in the thread indices than it is to look them up independently for each field.

The second function of thread indices is to make it easier to find information about the input domain when
fetching data. Once again, getting point data in a point to cell topology map requires looking up connectivity
information in the input domain. However, the Fetch object for the point field does not have direct access to
the data for the input domain. Instead, it gets this information from the thread indices.

All worklet classes have a method named GetThreadIndices that constructs a thread indices object for a given
thread. GetThreadIndices is called with 6 parameters: a unique index for the thread (i.e. worklet instance),
an array portal that maps output indices to input indices (which might not be one-to-one if a scatter is being
used), an array portal that gives the visit index for each output index, an array portal that maps each unique
thread index to output index for that thread, the execution object for the input domain, and an offset of the
current index of the local invoke to a global indexing (used for streaming).

The base worklet implementation provides an implementation of GetThreadIndices that creates a vtkm::-
exec::arg::ThreadIndicesBasic object. This provides the minimum information required in a thread indices
object, but non-trivial worklet types are likely to need to provide their own thread indices type. This following
example shows the implementation of GetThreadIndices we will use in our worklet type superclass (discussed
in more detail in Section 23.4).

Example 23.3: Implementation of GetThreadIndices in a worklet superclass.
1 VTKM_SUPPRESS_EXEC_WARNINGS
2 template < typename OutToInPortalType ,
3 typename VisitPortalType ,
4 typename ThreadToOutType ,
5 typename InputDomainType >
6 VTKM_EXEC vtkm :: exec :: arg :: ThreadIndicesLineFractal GetThreadIndices (
7 vtkm :: Id threadIndex ,
8 const OutToInPortalType & outToIn ,
9 const VisitPortalType & visit ,

10 const ThreadToOutType & threadToOut ,
11 const InputDomainType & inputPoints ,
12 vtkm :: Id globalThreadIndexOffset) const
13 {
14 vtkm :: Id outputIndex = threadToOut .Get(threadIndex);
15 vtkm :: Id inputIndex = outToIn .Get(outputIndex);
16 vtkm :: IdComponent visitIndex = visit .Get(outputIndex);
17 return vtkm :: exec :: arg :: ThreadIndicesLineFractal (threadIndex ,
18 inputIndex ,
19 visitIndex ,
20 outputIndex ,
21 inputPoints ,
22 globalThreadIndexOffset);
23 }

As we can see in Example 23.3, our new worklet type needs a custom thread indices class. Specifically, we want
the thread indices class to manage the coordinate information of the input line segment.

Chapter 23. New Worklet Types 321

DRAFT

23.2. Thread Indices

The implementation of a thread indices object we demonstrate here stores point coordinate information in
addition to actual indices. It is acceptable for a thread indices object to store data that are not strictly
indices. That said, the thread indices object should only load data (index or not) that is almost certain to
be used by any worklet implementation. The thread indices object is created before any time that the worklet
operator is called. If the thread indices object loads data that is never used by a worklet, that is a waste.

Did you know?

An implementation of a thread indices object usually derives from vtkm::exec::arg::ThreadIndicesBasic (or
some other existing thread indices class) and adds to it information specific to a particular worklet type.

Example 23.4: Implementation of a thread indices class.
1 namespace vtkm
2 {
3 namespace exec
4 {
5 namespace arg
6 {
7
8 class ThreadIndicesLineFractal : public vtkm :: exec :: arg :: ThreadIndicesBasic
9 {

10 using Superclass = vtkm :: exec :: arg :: ThreadIndicesBasic ;
11
12 public :
13 using CoordinateType = vtkm ::Vec <vtkm :: FloatDefault , 2>;
14
15 VTKM_SUPPRESS_EXEC_WARNINGS
16 template < typename InputPointPortal >
17 VTKM_EXEC ThreadIndicesLineFractal (vtkm :: Id threadIndex ,
18 vtkm :: Id inputIndex ,
19 vtkm :: IdComponent visitIndex ,
20 vtkm :: Id outputIndex ,
21 const InputPointPortal & inputPoints ,
22 vtkm :: Id globalThreadIndexOffset = 0)
23 : Superclass (threadIndex ,
24 inputIndex ,
25 visitIndex ,
26 outputIndex ,
27 globalThreadIndexOffset)
28 {
29 this -> Point0 = inputPoints .Get(this -> GetInputIndex ())[0];
30 this -> Point1 = inputPoints .Get(this -> GetInputIndex ())[1];
31 }
32
33 VTKM_EXEC
34 const CoordinateType & GetPoint0 () const { return this -> Point0 ; }
35
36 VTKM_EXEC
37 const CoordinateType & GetPoint1 () const { return this -> Point1 ; }
38
39 private :
40 CoordinateType Point0 ;
41 CoordinateType Point1 ;
42 };
43
44 } // namespace arg
45 } // namespace exec
46 } // namespace vtkm

322 Chapter 23. New Worklet Types

DRAFT

23.3. Signature Tags

23.3 Signature Tags

It is common that when defining a new worklet type, the new worklet type is associated with new types of data.
Thus, it is common that implementing new worklet types involves defining custom tags for ControlSignatures
and ExecutionSignatures. This in turn typically requires creating custom TypeCheck, Transport, and Fetch
classes.

Chapter 22 describes in detail the process of defining new worklet types and the associated code to manage data
from an argument to the dispatcher’s Invoke to the data that are passed to the worklet operator. Rather than
repeat the discussion, readers should review Chapter 22 for details on how custom arguments are defined for a
new worklet type. In particular, we use the code from Examples 22.2 (page 306), 22.4 (page 309), and 22.5 (page
311) to implement an argument representing 2D line segments (which is our input domain). All these examples
culminate in the definition of a ControlSignature tag in our worklet superclass.

Example 23.5: Custom ControlSignature tag for the input domain of our example worklet type.
1 struct SegmentsIn : vtkm :: cont :: arg :: ControlSignatureTagBase
2 {
3 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTag2DCoordinates ;
4 using TransportTag = vtkm :: cont :: arg :: TransportTag2DLineSegmentsIn ;
5 using FetchTag = vtkm :: exec :: arg :: FetchTag2DLineSegmentsIn ;
6 };

As you have worked with different existing worklet types, you have likely noticed that different worklet types
have special ExecutionSignature tags to point to information in the input domain. For example, a point to cell
topology map has special ExecutionSignature tags for getting the input cell shape and the indices to all points
incident on the current input cell. We described in the beginning of the chapter that we wanted our worklet
type to provide worklet implementations an object named LineFractalTransform (Example 23.1), so it makes
sense to define our own custom ExecutionSignature tag to provide this object.

Chapter 22 gives an example of a custom ExecutionSignature tag that modifies what information is fetched
from an argument (Examples 22.6 and 22.9). However, ExecutionSignature tags that only pull data from input
domain behave a little differently because they only get information from the thread indices object and ignore
the associated data object. This is done by providing a partial specialization of vtkm::exec::arg::Fetch that
specializes on the aspect tag but not on the fetch tag.

Example 23.6: A Fetch for an aspect that does not depend on any control argument.
1 namespace vtkm
2 {
3 namespace exec
4 {
5 namespace arg
6 {
7
8 struct AspectTagLineFractalTransform
9 {

10 };
11
12 template < typename FetchTag , typename ExecObjectType >
13 struct Fetch <FetchTag ,
14 vtkm :: exec :: arg :: AspectTagLineFractalTransform ,
15 vtkm :: exec :: arg :: ThreadIndicesLineFractal ,
16 ExecObjectType >
17 {
18 using ValueType = LineFractalTransform ;
19
20 VTKM_SUPPRESS_EXEC_WARNINGS
21 VTKM_EXEC
22 ValueType Load(const vtkm :: exec :: arg :: ThreadIndicesLineFractal & indices ,

Chapter 23. New Worklet Types 323

DRAFT

23.3. Signature Tags

23 const ExecObjectType &) const
24 {
25 return ValueType (indices . GetPoint0 (), indices . GetPoint1 ());
26 }
27
28 VTKM_EXEC
29 void Store (const vtkm :: exec :: arg :: ThreadIndicesLineFractal &,
30 const ExecObjectType &,
31 const ValueType &) const
32 {
33 // Store is a no -op for this fetch .
34 }
35 };
36
37 } // namespace arg
38 } // namespace exec
39 } // namespace vtkm

The definition of an associated ExecutionSignature tag simply has to use the define aspect as its AspectTag.
The tag also has to define a INDEX member (which is required of all ExecutionSignature tags). This is problem-
atic as this execution argument does not depend on any particular control argument. Thus, it is customary to
simply set the INDEX to 1. There is guaranteed to be at least one ControlSignature argument for any worklet
implementation. Thus, the first argument is sure to exist and can then be ignored.

Example 23.7: Custom ExecutionSignature tag that only relies on input domain information in the thread
indices.

1 struct Transform : vtkm :: exec :: arg :: ExecutionSignatureTagBase
2 {
3 static const vtkm :: IdComponent INDEX = 1;
4 using AspectTag = vtkm :: exec :: arg :: AspectTagLineFractalTransform ;
5 };

So far we have discussed how to get input line segments into our worklet. We also need a ControlSignature
tag to represent the output line segments created by instances of our worklet. The motivating example has each
worklet outputting a fixed number (greater than 1) of line segments for each input line segment. To manage
this, we will define another ControlSignature tag that outputs these line segments (as two Vec-2 coordinates).
This is defined as a Vec of Vec-2’s. The tag takes the number of line segments as a template argument.

Example 23.8: Output ControlSignature tag for our motivating example.
1 template <vtkm :: IdComponent NumSegments >
2 struct SegmentsOut : vtkm :: cont :: arg :: ControlSignatureTagBase
3 {
4 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTag2DCoordinates ;
5 using TransportTag = vtkm :: cont :: arg :: TransportTag2DLineSegmentsOut < NumSegments >;
6 using FetchTag = vtkm :: exec :: arg :: FetchTagArrayDirectOut ;
7 };

You can see that the tag in Example 23.8 relies on a custom transport named TransportTag2DLineSegmentsOut.
There is nothing particularly special about this transport, but we provide the implementation here for complete-
ness.

Example 23.9: Implementation of Transport for the output in our motivating example.
1 namespace vtkm
2 {
3 namespace cont
4 {
5 namespace arg
6 {
7

324 Chapter 23. New Worklet Types

DRAFT

23.4. Worklet Superclass

8 template <vtkm :: IdComponent NumOutputPerInput >
9 struct TransportTag2DLineSegmentsOut

10 {
11 };
12
13 template <vtkm :: IdComponent NumOutputPerInput ,
14 typename ContObjectType ,
15 typename Device >
16 struct Transport <vtkm :: cont :: arg :: TransportTag2DLineSegmentsOut < NumOutputPerInput >,
17 ContObjectType ,
18 Device >
19 {
20 VTKM_IS_ARRAY_HANDLE (ContObjectType);
21
22 using GroupedArrayType = vtkm :: cont :: ArrayHandleGroupVec <
23 vtkm :: cont :: ArrayHandleGroupVec < ContObjectType , 2>,
24 NumOutputPerInput >;
25
26 using ExecObjectType =
27 typename GroupedArrayType :: template ExecutionTypes <Device >:: Portal ;
28
29 template < typename InputDomainType >
30 VTKM_CONT ExecObjectType operator ()(const ContObjectType & object ,
31 const InputDomainType &,
32 vtkm ::Id ,
33 vtkm :: Id outputRange) const
34 {
35 GroupedArrayType groupedArray (vtkm :: cont :: make_ArrayHandleGroupVec <2 >(object));
36 return groupedArray . PrepareForOutput (outputRange , Device ());
37 }
38 };
39
40 } // namespace arg
41 } // namespace cont
42 } // namespace vtkm

In addition to these special ControlSignature tags that are specific to the nature of our worklet type, it is
common to need to replicate some more common or general ControlSignature tags. One such tag, which is
appropriate for our worklet type, is a “field” type that takes an array with exactly one value associated with
each input or output element. We can build these field tags using existing type checks, transports, and fetches.
The following example defines a FieldIn tag for our fractal worklet type. A FieldOut tag can be made in a
similar manner.

Example 23.10: Implementing a FieldIn tag.
1 struct FieldIn : vtkm :: cont :: arg :: ControlSignatureTagBase
2 {
3 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTagArray ;
4 using TransportTag = vtkm :: cont :: arg :: TransportTagArrayIn ;
5 using FetchTag = vtkm :: exec :: arg :: FetchTagArrayDirectIn ;
6 };

23.4 Worklet Superclass

The penultimate step in defining a new worklet type is to define a class that will serve as the superclass of
all implementations of worklets of this type. This class itself must inherit from vtkm::worklet::internal::-
WorkletBase. By convention the worklet superclass is placed in the vtkm::worklet namespace and its name
starts with Worklet.

Chapter 23. New Worklet Types 325

DRAFT

23.4. Worklet Superclass

Within the worklet superclass we define the signature tags (as discussed in Section 23.3) and the Get-
ThreadIndices method (as discussed in Section 23.2. The worklet superclass can also override other default
behavior of the WorkletBase (such as special scatter). And the worklet superclass can provide other items that
might be particularly useful to its subclasses (such as commonly used tags).

Example 23.11: Superclass for a new type of worklet.
1 namespace vtkm
2 {
3 namespace worklet
4 {
5
6 class WorkletLineFractal : public vtkm :: worklet :: internal :: WorkletBase
7 {
8 public :
9 /// Control signature tag for line segments in the plane . Used as the input

10 /// domain .
11 ///
12 struct SegmentsIn : vtkm :: cont :: arg :: ControlSignatureTagBase
13 {
14 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTag2DCoordinates ;
15 using TransportTag = vtkm :: cont :: arg :: TransportTag2DLineSegmentsIn ;
16 using FetchTag = vtkm :: exec :: arg :: FetchTag2DLineSegmentsIn ;
17 };
18
19 /// Control signature tag for a group of output line segments . The template
20 /// argument specifies how many line segments are outputted for each input .
21 /// The type is a Vec -like (of size NumSegments) of Vec -2’s.
22 ///
23 template <vtkm :: IdComponent NumSegments >
24 struct SegmentsOut : vtkm :: cont :: arg :: ControlSignatureTagBase
25 {
26 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTag2DCoordinates ;
27 using TransportTag = vtkm :: cont :: arg :: TransportTag2DLineSegmentsOut < NumSegments >;
28 using FetchTag = vtkm :: exec :: arg :: FetchTagArrayDirectOut ;
29 };
30
31 /// Control signature tag for input fields . There is one entry per input line
32 /// segment . This tag takes a template argument that is a type list tag that
33 /// limits the possible value types in the array .
34 ///
35 struct FieldIn : vtkm :: cont :: arg :: ControlSignatureTagBase
36 {
37 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTagArray ;
38 using TransportTag = vtkm :: cont :: arg :: TransportTagArrayIn ;
39 using FetchTag = vtkm :: exec :: arg :: FetchTagArrayDirectIn ;
40 };
41
42 /// Control signature tag for input fields . There is one entry per input line
43 /// segment . This tag takes a template argument that is a type list tag that
44 /// limits the possible value types in the array .
45 ///
46 struct FieldOut : vtkm :: cont :: arg :: ControlSignatureTagBase
47 {
48 using TypeCheckTag = vtkm :: cont :: arg :: TypeCheckTagArray ;
49 using TransportTag = vtkm :: cont :: arg :: TransportTagArrayOut ;
50 using FetchTag = vtkm :: exec :: arg :: FetchTagArrayDirectOut ;
51 };
52
53 /// Execution signature tag for a LineFractalTransform from the input .
54 ///
55 struct Transform : vtkm :: exec :: arg :: ExecutionSignatureTagBase
56 {
57 static const vtkm :: IdComponent INDEX = 1;

326 Chapter 23. New Worklet Types

DRAFT

23.5. Dispatcher

58 using AspectTag = vtkm :: exec :: arg :: AspectTagLineFractalTransform ;
59 };
60
61 VTKM_SUPPRESS_EXEC_WARNINGS
62 template < typename OutToInPortalType ,
63 typename VisitPortalType ,
64 typename ThreadToOutType ,
65 typename InputDomainType >
66 VTKM_EXEC vtkm :: exec :: arg :: ThreadIndicesLineFractal GetThreadIndices (
67 vtkm :: Id threadIndex ,
68 const OutToInPortalType & outToIn ,
69 const VisitPortalType & visit ,
70 const ThreadToOutType & threadToOut ,
71 const InputDomainType & inputPoints ,
72 vtkm :: Id globalThreadIndexOffset) const
73 {
74 vtkm :: Id outputIndex = threadToOut .Get(threadIndex);
75 vtkm :: Id inputIndex = outToIn .Get(outputIndex);
76 vtkm :: IdComponent visitIndex = visit .Get(outputIndex);
77 return vtkm :: exec :: arg :: ThreadIndicesLineFractal (threadIndex ,
78 inputIndex ,
79 visitIndex ,
80 outputIndex ,
81 inputPoints ,
82 globalThreadIndexOffset);
83 }
84 };
85
86 } // namespace worklet
87 } // namespace vtkm

Be wary of creating worklet superclasses that are templated. The C++ compiler rules for superclass tem-
plates that are only partially specialized are non-intuitive. If a subclass does not fully resolve the template,
features of the superclass such as signature tags will have to be qualified with typename keywords, which
reduces the usability of the class.

Common Errors

23.5 Dispatcher

The final element required for a new worklet type is an associated dispatcher class for invoking the worklet.
As documented in Chapter 12, each worklet type has its own associated dispatcher object. By convention,
the dispatcher is placed in the vtkm::worklet and has the same name as the worklet superclass with the
Worklet replaced with Dispatcher. So since the worklet superclass for our motivating example is named
WorkletLineFractal, we name the associated dispatcher DispatcherLineFractal.

Also by convention, a dispatcher is a templated class. The first template argument should be the type of the
worklet (which should be a subclass of the associated worklet superclass). Other template arguments could
follow, but typically the dispatcher only has this single template argument.

Example 23.12: Standard template arguments for a dispatcher class.
1 template < typename WorkletType >
2 class DispatcherLineFractal

Chapter 23. New Worklet Types 327

DRAFT

23.5. Dispatcher

A dispatcher implementation inherits from vtkm::worklet::internal::DispatcherBase. DispatcherBase is
itself a templated class with the following three templated arguments.

1. The dispatcher class that is subclassing DispatcherBase. All template arguments must be given.

2. The type of the worklet being dispatched (which by convention is the first argument of the dispatcher’s
template).

3. The expected superclass of the worklet, which is associated with the dispatcher implementation. Dis-
patcherBase will check that the worklet has the appropriate superclass and provide a compile error if
there is a mismatch.

The convention of having a subclass be templated on the derived class’ type is known as the Curiously
Recurring Template Pattern (CRTP). In the case of DispatcherBase, VTK-m uses this CRTP behavior
to allow the general implementation of Invoke to run DoInvoke in the subclass, which as we see in a
moment is itself templated.

Did you know?

Example 23.13: Subclassing DispatcherBase.
1 template < typename WorkletType >
2 class DispatcherLineFractal
3 : public vtkm :: worklet :: internal :: DispatcherBase <
4 DispatcherLineFractal < WorkletType >,
5 WorkletType ,
6 vtkm :: worklet :: WorkletLineFractal >

The dispatcher should have two constructors. The first constructor takes a worklet and a dispatcher. Both
arguments should have a default value that is a new object created with its default constructor. It is good
practice to put a warning on this constructor letting users know if they get a compile error there it is probably
because the worklet or dispatcher does not have a default constructor and they need to provide one. The second
constructor just takes a dispatcher.

Example 23.14: Typical constructor for a dispatcher.
1 // If you get a compile error here about there being no appropriate constructor
2 // for ScatterType , then that probably means that the worklet you are trying to
3 // execute has defined a custom ScatterType and that you need to create one
4 // (because there is no default way to construct the scatter). By convention ,
5 // worklets that define a custom scatter type usually provide a static method
6 // named MakeScatter that constructs a scatter object .
7 VTKM_CONT
8 DispatcherLineFractal (const WorkletType & worklet = WorkletType (),
9 const ScatterType & scatter = ScatterType ())

10 : Superclass (worklet , scatter)
11 {
12 }
13
14 VTKM_CONT
15 DispatcherLineFractal (const ScatterType & scatter)
16 : Superclass (WorkletType (), scatter)
17 {
18 }

Finally, the dispatcher must implement a const method named DoInvoke. The DoInvoke method should take a
single argument. The argument will be an object of type vtkm::internal::Invocation although it is usually

328 Chapter 23. New Worklet Types

DRAFT

23.5. Dispatcher

more convenient to just express the argument type as a single template parameter. The Invocation could
contain several data items, so it is best to pass this argument as a constant reference.

Example 23.15: Declaration of DoInvoke of a dispatcher.
1 template < typename Invocation >
2 VTKM_CONT void DoInvoke (Invocation & invocation) const

Invocation is an object that encapsulates the state and data relevant to the invoke. Invocation contains
multiple types and data items. For brevity only the ones most likely to be used in a DoInvoke method are
documented here. We discuss these briefly before getting back to the implementation of DoInvoke.

vtkm::internal::Invocation contains a data member named Parameters that contains the data passed to
the Invoke method of the dispatcher (with some possible transformations applied). Parameters is stored in a
vtkm::internal::FunctionInterface template object. (FunctionInterface is described in Chapter 21.) The
specific type of Parameters is defined as type ParameterInterface in the Invoke object.

The Invoke object also contains the types ControlInterface and ExecutionInterface that are FunctionIn-
terface classes built from the ControlSignature and ExecutionSignature of the worklet. These Function-
Interface classes provide a simple mechanism for introspecting the arguments of the worklet’s signatures.

All worklets must also define an input domain index, which points to one of the ControlSignature/Invoke
arguments. This number is also captured in the vtkm::internal::Invocation object in a field named In-
putDomainIndex. For convenience, Invocation also has the type InputDomainTag set to be the same as the
ControlSignature argument corresponding to the input domain. Likewise, Invocation has the type InputDo-
mainType set to be the same type as the (transformed) input domain argument to Invoke. Invocation also has
a method name GetInputDomain that returns the invocation object passed to Invoke.

Getting back to the implementation of a dispatcher, the DoInvoke should first verify that the ControlSignature
argument associated with the input domain is of the expected type. This can be done by comparing the
Invocation::InputDomainTag with the expected signature tag using a tool like std::is same. This step
is not strictly necessary, but is invaluable to users diagnosing issues with using the dispatcher. It does not
hurt to also check that the Invoke argument for the input domain is also the same as expected (by checking
Invocation::InputDomainType). It is additionally helpful to have a descriptive comment near these checks.

Example 23.16: Checking the input domain tag and type.
1 // Get the control signature tag for the input domain .
2 using InputDomainTag = typename Invocation :: InputDomainTag ;
3
4 // If you get a compile error on this line , then you have set the input
5 // domain to something that is not a SegmentsIn parameter , which is not
6 // valid .
7 VTKM_STATIC_ASSERT (
8 (std :: is_same < InputDomainTag ,
9 vtkm :: worklet :: WorkletLineFractal :: SegmentsIn >:: value));

10
11 // This is the type for the input domain
12 using InputDomainType = typename Invocation :: InputDomainType ;
13
14 // If you get a compile error on this line , then you have tried to use
15 // something that is not a vtkm :: cont :: ArrayHandle as the input domain to a
16 // topology operation (that operates on a cell set connection domain).
17 VTKM_IS_ARRAY_HANDLE (InputDomainType);

Next, DoInvoke must determine the size in number of elements of the input domain. When the default identity
scatter is used, the input domain size corresponds to the number of instances the worklet is executed. (Other scat-
ters will transform the input domain size to an output domain size, and that output domain size will determine the
number of instances.) The input domain size is generally determined by using Invocation::::GetInputDomain

Chapter 23. New Worklet Types 329

DRAFT

23.5. Dispatcher

and querying the input domain argument. In our motivating example, the input domain is an ArrayHandle and
the input domain size is half the size of the array (since array entries are paired up into line segments).

The final thing DoInvoke does is call BasicInvoke on its DispatcherBase superclass. BasicInvoke does the
complicated work of transferring arguments, scheduling the parallel job, and calling the worklet’s operator.
BasicInvoke takes three arguments: the Invocation object, the size of the input domain, and the device
adapter tag to run on.

Example 23.17: Calling BasicInvoke from a dispatcher’s DoInvoke.
1 // We can pull the input domain parameter (the data specifying the input
2 // domain) from the invocation object .
3 const InputDomainType & inputDomain = invocation . GetInputDomain ();
4
5 // Now that we have the input domain , we can extract the range of the
6 // scheduling and call BasicInvoke .
7 this -> BasicInvoke (invocation , inputDomain . GetNumberOfValues () / 2);

Putting this all together, the following example demonstrates the full implementation of the dispatcher for our
motivating example.

Example 23.18: Implementation of a dispatcher for a new type of worklet.
1 namespace vtkm
2 {
3 namespace worklet
4 {
5
6 template < typename WorkletType >
7 class DispatcherLineFractal
8 : public vtkm :: worklet :: internal :: DispatcherBase <
9 DispatcherLineFractal < WorkletType >,

10 WorkletType ,
11 vtkm :: worklet :: WorkletLineFractal >
12 {
13 using Superclass =
14 vtkm :: worklet :: internal :: DispatcherBase < DispatcherLineFractal < WorkletType >,
15 WorkletType ,
16 vtkm :: worklet :: WorkletLineFractal >;
17 using ScatterType = typename Superclass :: ScatterType ;
18
19 public :
20 // If you get a compile error here about there being no appropriate constructor
21 // for ScatterType , then that probably means that the worklet you are trying to
22 // execute has defined a custom ScatterType and that you need to create one
23 // (because there is no default way to construct the scatter). By convention ,
24 // worklets that define a custom scatter type usually provide a static method
25 // named MakeScatter that constructs a scatter object .
26 VTKM_CONT
27 DispatcherLineFractal (const WorkletType & worklet = WorkletType (),
28 const ScatterType & scatter = ScatterType ())
29 : Superclass (worklet , scatter)
30 {
31 }
32
33 VTKM_CONT
34 DispatcherLineFractal (const ScatterType & scatter)
35 : Superclass (WorkletType (), scatter)
36 {
37 }
38
39 template < typename Invocation >
40 VTKM_CONT void DoInvoke (Invocation & invocation) const
41 {

330 Chapter 23. New Worklet Types

DRAFT

23.6. Using the Worklet

42 // Get the control signature tag for the input domain .
43 using InputDomainTag = typename Invocation :: InputDomainTag ;
44
45 // If you get a compile error on this line , then you have set the input
46 // domain to something that is not a SegmentsIn parameter , which is not
47 // valid .
48 VTKM_STATIC_ASSERT (
49 (std :: is_same < InputDomainTag ,
50 vtkm :: worklet :: WorkletLineFractal :: SegmentsIn >:: value));
51
52 // This is the type for the input domain
53 using InputDomainType = typename Invocation :: InputDomainType ;
54
55 // If you get a compile error on this line , then you have tried to use
56 // something that is not a vtkm :: cont :: ArrayHandle as the input domain to a
57 // topology operation (that operates on a cell set connection domain).
58 VTKM_IS_ARRAY_HANDLE (InputDomainType);
59
60 // We can pull the input domain parameter (the data specifying the input
61 // domain) from the invocation object .
62 const InputDomainType & inputDomain = invocation . GetInputDomain ();
63
64 // Now that we have the input domain , we can extract the range of the
65 // scheduling and call BasicInvoke .
66 this -> BasicInvoke (invocation , inputDomain . GetNumberOfValues () / 2);
67 }
68 };
69
70 } // namespace worklet
71 } // namespace vtkm

23.6 Using the Worklet

Now that we have our full implementation of a worklet type that generates line fractals, let us have some fun
with it. The beginning of this chapter shows an implementation of the Koch Snowflake. The remainder of this
chapter demonstrates other fractals that are easily implemented with our worklet type.

23.6.1 Quadratic Type 2 Curve

There are multiple variants of the Koch Snowflake. One simple but interesting version is the quadratic type 1
curve. This fractal has a shape similar to what we used for Koch but has right angles and goes both up and
down as shown in Figure 23.5.

The quadratic type 2 curve is implemented exactly like the Koch Snowflake except we output 8 lines to every
input instead of 4, and, of course, the positions of the lines we generate are different.

Example 23.19: A worklet to generate a quadratic type 2 curve fractal.
1 struct QuadraticType2
2 {
3 struct FractalWorklet : vtkm :: worklet :: WorkletLineFractal
4 {
5 using ControlSignature = void (SegmentsIn , SegmentsOut <8 >);
6 using ExecutionSignature = void (Transform , _2);
7 using InputDomain = _1;
8
9 template < typename SegmentsOutVecType >

10 void operator ()(const vtkm :: exec :: LineFractalTransform & transform ,

Chapter 23. New Worklet Types 331

DRAFT

23.6. Using the Worklet

Figure 23.5: The quadratic type 2 curve fractal. The left image gives the first iteration. The middle image gives
the second iteration. The right image gives the result after a few iterations.

11 SegmentsOutVecType & segmentsOutVec) const
12 {
13 segmentsOutVec [0][0] = transform (0.00f, 0.00f);
14 segmentsOutVec [0][1] = transform (0.25f, 0.00f);
15
16 segmentsOutVec [1][0] = transform (0.25f, 0.00f);
17 segmentsOutVec [1][1] = transform (0.25f, 0.25f);
18
19 segmentsOutVec [2][0] = transform (0.25f, 0.25f);
20 segmentsOutVec [2][1] = transform (0.50f, 0.25f);
21
22 segmentsOutVec [3][0] = transform (0.50f, 0.25f);
23 segmentsOutVec [3][1] = transform (0.50f, 0.00f);
24
25 segmentsOutVec [4][0] = transform (0.50f, 0.00f);
26 segmentsOutVec [4][1] = transform (0.50f, -0.25f);
27
28 segmentsOutVec [5][0] = transform (0.50f, -0.25f);
29 segmentsOutVec [5][1] = transform (0.75f, -0.25f);
30
31 segmentsOutVec [6][0] = transform (0.75f, -0.25f);
32 segmentsOutVec [6][1] = transform (0.75f, 0.00f);
33
34 segmentsOutVec [7][0] = transform (0.75f, 0.00f);
35 segmentsOutVec [7][1] = transform (1.00f, 0.00f);
36 }
37 };
38
39 VTKM_CONT static vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault , 2>> Run(
40 vtkm :: IdComponent numIterations)
41 {
42 using VecType = vtkm ::Vec <vtkm :: Float32 , 2>;
43
44 vtkm :: cont :: ArrayHandle <VecType > points ;
45
46 // Initialize points array with a single line
47 points . Allocate (2);
48 points . GetPortalControl (). Set (0, VecType (0.0f, 0.0f));
49 points . GetPortalControl (). Set (1, VecType (1.0f, 0.0f));
50
51 vtkm :: worklet :: DispatcherLineFractal < QuadraticType2 :: FractalWorklet > dispatcher ;
52
53 for (vtkm :: IdComponent i = 0; i < numIterations ; ++i)
54 {
55 vtkm :: cont :: ArrayHandle <VecType > outPoints ;
56 dispatcher . Invoke (points , outPoints);
57 points = outPoints ;

332 Chapter 23. New Worklet Types

DRAFT

23.6. Using the Worklet

58 }
59
60 return points ;
61 }
62 };

23.6.2 Tree Fractal

Another type of fractal we can make is a tree fractal. We will make a fractal similar to a Pythagoras tree except
using lines instead of squares. Our fractal will start with a vertical line that will be replaced with the off-center
“Y” shape shown in Figure 23.6. Iterative replacing using this “Y” shape produces a bushy tree shape.

Figure 23.6: The tree fractal replaces each line with the “Y” shape shown at left. An iteration grows branches
at the end (middle). After several iterations the tree branches out to the bushy shape at right.

One complication of implementing this tree fractal is that we really only want to apply the “Y” shape to the
“leaves” of the tree. For example, once we apply the “Y” to the trunk, we do not want to apply it to the trunk
again. If we were to apply it to the trunk again, we would create duplicates of the first layer of branches.

We can implement this feature in our worklet by using a count scatter. (Worklet scatters are described in
Section 12.10.) Instead of directing the fractal worklet to generate 3 output line segments for every input line
segment, we tell the fractal worklet to generate just 1 output line segment. We then use a scatter counting to
generate 3 line segments for the leaves and 1 line segment for all other line segments. The count array for the
initial iteration is initialized to a single 3. Each iteration then creates the count array for the next iteration by
writing a 1 for the base line segment and a 3 from the other two line segments.

Example 23.20: A worklet to generate a tree fractal.
1 struct TreeFractal
2 {
3 struct FractalWorklet : vtkm :: worklet :: WorkletLineFractal
4 {
5 using ControlSignature = void (SegmentsIn ,
6 SegmentsOut <1>,
7 FieldOut countNextIteration);
8 using ExecutionSignature = void (Transform , VisitIndex , _2 , _3);
9 using InputDomain = _1;

10
11 using ScatterType = vtkm :: worklet :: ScatterCounting ;
12

Chapter 23. New Worklet Types 333

DRAFT

23.6. Using the Worklet

13 template < typename Storage >
14 VTKM_CONT static ScatterType MakeScatter (
15 const vtkm :: cont :: ArrayHandle <vtkm :: IdComponent , Storage >& count)
16 {
17 return ScatterType (count);
18 }
19
20 template < typename SegmentsOutVecType >
21 void operator ()(const vtkm :: exec :: LineFractalTransform & transform ,
22 vtkm :: IdComponent visitIndex ,
23 SegmentsOutVecType & segmentsOutVec ,
24 vtkm :: IdComponent & countNextIteration) const
25 {
26 switch (visitIndex)
27 {
28 case 0:
29 segmentsOutVec [0][0] = transform (0.0f, 0.0f);
30 segmentsOutVec [0][1] = transform (1.0f, 0.0f);
31 countNextIteration = 1;
32 break ;
33 case 1:
34 segmentsOutVec [0][0] = transform (1.0f, 0.0f);
35 segmentsOutVec [0][1] = transform (1.5f, -0.25f);
36 countNextIteration = 3;
37 break ;
38 case 2:
39 segmentsOutVec [0][0] = transform (1.0f, 0.0f);
40 segmentsOutVec [0][1] = transform (1.5f, 0.35f);
41 countNextIteration = 3;
42 break ;
43 default :
44 this -> RaiseError (" Unexpected visit index .");
45 }
46 }
47 };
48
49 VTKM_CONT static vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault , 2>> Run(
50 vtkm :: IdComponent numIterations)
51 {
52 using VecType = vtkm ::Vec <vtkm :: Float32 , 2>;
53
54 vtkm :: cont :: ArrayHandle <VecType > points ;
55
56 // Initialize points array with a single line
57 points . Allocate (2);
58 points . GetPortalControl (). Set (0, VecType (0.0f, 0.0f));
59 points . GetPortalControl (). Set (1, VecType (0.0f, 1.0f));
60
61 vtkm :: cont :: ArrayHandle <vtkm :: IdComponent > count ;
62
63 // Initialize count array with 3 (meaning iterate)
64 count . Allocate (1);
65 count . GetPortalControl (). Set (0, 3);
66
67 for (vtkm :: IdComponent i = 0; i < numIterations ; ++i)
68 {
69 vtkm :: worklet :: DispatcherLineFractal < TreeFractal :: FractalWorklet > dispatcher (
70 FractalWorklet :: MakeScatter (count));
71
72 vtkm :: cont :: ArrayHandle <VecType > outPoints ;
73 dispatcher . Invoke (points , outPoints , count);
74 points = outPoints ;
75 }
76

334 Chapter 23. New Worklet Types

DRAFT

23.6. Using the Worklet

77 return points ;
78 }
79 };

23.6.3 Dragon Fractal

The next fractal we will implement is known as the dragon fractal. The dragon fractal is also sometimes known
as the Heighway dragon or the Harter-Heighway dragon after creators John Heighway, Bruce Banks, and William
Harter. It is also sometimes colloquially referred to as the Jurassic Park dragon as the fractal was prominently
featured in the Jurassic Park novel by Michael Crichton.

The basic building block is simple. Each line segment is replaced by two line segments bent at 90 degrees and
attached to the original segments endpoints as shown in Figure 23.7. As you can see by the fourth iteration a
more complicated pattern starts to emerge. Figure 23.8 shows the twelfth iteration a demonstrates a repeating
spiral.

Figure 23.7: The first four iterations of the dragon fractal. The cyan lines give the previous iteration for reference.

What makes the dragon fractal different than the Koch Snowflake and similar fractals like the the quadratic
curves implementation-wise is that the direction shape flips from one side to another. Note in the second image
of Figure 23.7 the first bend is under the its associated line segment whereas the second is above its line segment.
The easiest way for us to control the bend is to alternate the direction of the line segments. In Figure 23.7 each
line segment has an arrowhead indicating the orientation of the first and second point with the arrowhead at the
second point. Note that the shape is defined such that the first point of both line segments meet at the right
angle. With the shape defined this way, each iteration is applied to put the bend to the left of the segment with
respect to an observer at the first point looking at the second point.

Other than reversing the direction of half the line segments, the implementation of the dragon fractal is nearly
identical to the Koch Snowflake.

Example 23.21: A worklet to generate the dragon fractal.
1 struct DragonFractal
2 {
3 struct FractalWorklet : vtkm :: worklet :: WorkletLineFractal
4 {
5 using ControlSignature = void (SegmentsIn , SegmentsOut <2 >);
6 using ExecutionSignature = void (Transform , _2);
7 using InputDomain = _1;
8
9 template < typename SegmentsOutVecType >

10 void operator ()(const vtkm :: exec :: LineFractalTransform & transform ,
11 SegmentsOutVecType & segmentsOutVec) const
12 {
13 segmentsOutVec [0][0] = transform (0.5f, 0.5f);
14 segmentsOutVec [0][1] = transform (0.0f, 0.0f);
15
16 segmentsOutVec [1][0] = transform (0.5f, 0.5f);
17 segmentsOutVec [1][1] = transform (1.0f, 0.0f);

Chapter 23. New Worklet Types 335

DRAFT

23.6. Using the Worklet

Figure 23.8: The dragon fractal after 12 iterations.

18 }
19 };
20
21 VTKM_CONT static vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault , 2>> Run(
22 vtkm :: IdComponent numIterations)
23 {
24 using VecType = vtkm ::Vec <vtkm :: Float32 , 2>;
25
26 vtkm :: cont :: ArrayHandle <VecType > points ;
27
28 // Initialize points array with a single line
29 points . Allocate (2);
30 points . GetPortalControl (). Set (0, VecType (0.0f, 0.0f));
31 points . GetPortalControl (). Set (1, VecType (1.0f, 0.0f));
32
33 vtkm :: worklet :: DispatcherLineFractal < DragonFractal :: FractalWorklet > dispatcher ;
34
35 for (vtkm :: IdComponent i = 0; i < numIterations ; ++i)
36 {
37 vtkm :: cont :: ArrayHandle <VecType > outPoints ;
38 dispatcher . Invoke (points , outPoints);
39 points = outPoints ;
40 }
41
42 return points ;

336 Chapter 23. New Worklet Types

DRAFT

23.6. Using the Worklet

43 }
44 };

23.6.4 Hilbert Curve

For our final example we will look into using our fractal worklet to construct a space-filling curve. A space-filling
curve is a type of fractal that defines a curve that, when iterated to its infinite length, completely fills a space.
Space-filling curves have several practical uses by allowing you to order points in a 2 dimensional or higher space
in a 1 dimensional array in such a way that points close in the higher dimensional space are usually close in the
1 dimensional ordering. For this fractal we will be generating the well-known Hilbert curve. (Specifically, we
will be generating the 2D Hilbert curve.)

The 2D Hilbert curve fills in a rectangular region in space. (Our implementation will fill a unit square in the [0,1]
range, but a simple scaling can generalize it to any rectangle.) Without loss of generality, we will say that the
curve starts in the lower left corner of the region and ends in the lower right corner. The Hilbert curve starts by
snaking around the lower-left corner then into the upper-left followed by the upper-right and then lower-right.
The curve is typically generated by recursively dividing and orienting these quadrants.

To generate the Hilbert curve in our worklet system, we will define our line segments as the connection from
the lower left of (entrance to) the region to the lower right of (exit from) the region. The fractal generation
breaks this line to a 4 segment curve that moves up, then right, then back down. Figure 23.9 demonstrates
the Hilbert curve. (Readers familiar with the Hilbert curve might notice the shape is a bit different than other
representations. Where many derivations derive the Hilbert curve by connecting the center of oriented boxes,
our derivation uses a line segment along one edge of these boxes. The result is a more asymmetrical shape in
early iterations, but the two approaches are equivalent as the iterations approach infinity.)

Figure 23.9: The first, second, third, and sixth iterations, respectively, of the Hilbert curve fractal.

Like the dragon fractal, the Hilbert curve needs to flip the shape in different directions. For example, the first
iteration, shown at left in Figure 23.9, is drawn to the “left” of the initial line along the horizontal axis. The
next iteration, the second image in Figure 23.9, is created by drawing the shape to the “right” of the vertical
line segments but to the left of the horizontal segments.

Section 23.6.3 solved this problem for the dragon fractal by flipping the direction of some of the line segments.
Such an approach would work for the Hilbert curve, but it results in line segments being listed out of order and
with inconsistent directions with respect to the curve. For the dragon fractal, the order and orientation of line
segments is of little consequence. But for many applications of a space-filling curve the distance along the curve
is the whole point, so we want the order of the line segments to be consistent with the curve.

To support this flipped shape while preserving the line segment order, we will use a data field attached to the
line segments. That is, each line segment will have a value to represent which way to draw the shape. If the field
value is set to 1 (represented by the blue line segments in Figure 23.9), then the shape is drawn to the “left.” If

Chapter 23. New Worklet Types 337

DRAFT

23.6. Using the Worklet

the field value is set to -1 (represented by the red line segments in Figure 23.9), then the shape is inverted and
drawn to the “right.” This field is passed in and out of the worklet using the FieldIn and FieldOut tags.

Example 23.22: A worklet to generate the Hilbert curve.
1 struct HilbertCurve
2 {
3 struct FractalWorklet : vtkm :: worklet :: WorkletLineFractal
4 {
5 using ControlSignature = void (SegmentsIn ,
6 FieldIn directionIn ,
7 SegmentsOut <4>,
8 FieldOut directionOut);
9 using ExecutionSignature = void (Transform , _2 , _3 , _4);

10 using InputDomain = _1;
11
12 template < typename SegmentsOutVecType >
13 void operator ()(const vtkm :: exec :: LineFractalTransform & transform ,
14 vtkm :: Int8 directionIn ,
15 SegmentsOutVecType & segmentsOutVec ,
16 vtkm ::Vec <vtkm :: Int8 , 4>& directionOut) const
17 {
18 segmentsOutVec [0][0] = transform (0.0f, directionIn * 0.0f);
19 segmentsOutVec [0][1] = transform (0.0f, directionIn * 0.5f);
20 directionOut [0] = -directionIn ;
21
22 segmentsOutVec [1][0] = transform (0.0f, directionIn * 0.5f);
23 segmentsOutVec [1][1] = transform (0.5f, directionIn * 0.5f);
24 directionOut [1] = directionIn ;
25
26 segmentsOutVec [2][0] = transform (0.5f, directionIn * 0.5f);
27 segmentsOutVec [2][1] = transform (1.0f, directionIn * 0.5f);
28 directionOut [2] = directionIn ;
29
30 segmentsOutVec [3][0] = transform (1.0f, directionIn * 0.5f);
31 segmentsOutVec [3][1] = transform (1.0f, directionIn * 0.0f);
32 directionOut [3] = -directionIn ;
33 }
34 };
35
36 VTKM_CONT static vtkm :: cont :: ArrayHandle <vtkm ::Vec <vtkm :: FloatDefault , 2>> Run(
37 vtkm :: IdComponent numIterations)
38 {
39 using VecType = vtkm ::Vec <vtkm :: Float32 , 2>;
40
41 vtkm :: cont :: ArrayHandle <VecType > points ;
42
43 // Initialize points array with a single line
44 points . Allocate (2);
45 points . GetPortalControl (). Set (0, VecType (0.0f, 0.0f));
46 points . GetPortalControl (). Set (1, VecType (1.0f, 0.0f));
47
48 vtkm :: cont :: ArrayHandle <vtkm :: Int8 > directions ;
49
50 // Initialize direction with positive .
51 directions . Allocate (1);
52 directions . GetPortalControl (). Set (0, 1);
53
54 vtkm :: worklet :: DispatcherLineFractal < HilbertCurve :: FractalWorklet > dispatcher ;
55
56 for (vtkm :: IdComponent i = 0; i < numIterations ; ++i)
57 {
58 vtkm :: cont :: ArrayHandle <VecType > outPoints ;
59 vtkm :: cont :: ArrayHandle <vtkm :: Int8 > outDirections ;
60 dispatcher . Invoke (points ,

338 Chapter 23. New Worklet Types

DRAFT

23.6. Using the Worklet

61 directions ,
62 outPoints ,
63 vtkm :: cont :: make_ArrayHandleGroupVec <4 >(outDirections));
64 points = outPoints ;
65 directions = outDirections ;
66 }
67
68 return points ;
69 }
70 };

Chapter 23. New Worklet Types 339

DRAFT

DRAFTPart V

Appendix

DRAFT

DRAFT
INDEX

π, 199, 200
1, 157, 159, 163, 166, 170, 172, 177, 314
2, 157, 159, 163, 166, 170, 172, 177, 314

device , 64
host , 64

Abs, 197
absolute value, 197
ACos, 197
ACosH, 197
Actor, 45, 57
actor, 45
Add, 184
AddActor, 45
AddBlock, 149
AddBlocks, 149
AddCell, 142
AddCellField, 143
AddHelp, 65
AddPoint, 142
AddPointField, 143
Algorithm, xx, xxi, 119, 121, 129

Copy, 122
CopyIf, 122
CopySubRange, 123
LowerBounds, 123
Reduce, 124
ReduceByKey, 124
ScanExclusive, 125
ScanExclusiveByKey, 125
ScanInclusive, 126
ScanInclusiveByKey, 126
Schedule, 127
Sort, 127
SortByKey, 127
Unique, 128
UpperBounds, 128

algorithm, 121–129, 288–293
copy, 122
copy if, 122
copy sub range, 123
lower bounds, 123

reduce, 124
reduce by key, 124
scan

exclusive, 125
exclusive by key, 125
inclusive, 126
inclusive by key, 126

schedule, 127
selecting device, 129
sort, 127

by key, 127
stream compact, 122
synchronize, 128
unique, 128
upper bounds, 128

Allocate, 89, 94, 122, 268
Append, 299
AppendType, 299
ApplyPolicy, 246
arccosine, 197
arcsine, 197
arctangent, 197
arg namespace, 305–307, 309, 311, 313
argc, 64
argv, 64
ARITY, 296
array handle, 89–111, 253–271

adapting, 265–271
allocate, 94
Cartesian product, 101–102
cast, 97–98
composite vector arrays, 102–103
constant, 95–96
counting, 96–97
deep copy, 109
derived, 258–265
discard, 98
execution environment, 110–111
extract component, 103–104
fancy, 95–265
group vector, 104–106
implicit, 254–256

DRAFT

Index

index, 96–97
maximum, 109–110
minimum, 109–110
permutation, 98–100
populate, 95
portal, 92–94
range, 109–110
rectilinear point coordinates, 101–102
storage, 253–271

default, 254, 270
subclassing, 255, 264, 269
swizzle, 104
transform, 256–257
uniform point coordinates, 101
variant, 133–137
view, 96
virtual, 106–108
zip, 100

array manager execution, 281–286
array portal, 92–94
array transfer, 261–264
ArrayCopy, 109, 118
ArrayCopy.h, 109
ArrayHandle, xix, xxiii, 54, 63, 89–91, 93, 94, 109, 242, 244,

247, 249, 253, 254, 265, 269, 306–308
Allocate, 89, 94, 122
ExecutionTypes, 93, 110
GetDeviceAdapterId, 90
GetNumberOfValues, 89
GetPortalConstControl, 90, 93
GetPortalControl, 90, 93, 95
GetStorage, 90
PortalConstControl, 93
PortalControl, 93
PrepareForInPlace, 90, 110, 308
PrepareForInput, 90, 110, 189, 307, 308
PrepareForOutput, 90, 110, 114, 307, 308
ReleaseResources, 89
ReleaseResourcesExecution, 89
Shrink, 89
StorageTag, 255, 257, 265, 269
Superclass, 255, 257, 265, 269
SyncControlArray, 89, 93, 270
ValueType, 103, 104, 255, 257, 265, 269

ArrayHandle.h, 63
ArrayHandleCartesianProduct, 101
ArrayHandleCast, 97
ArrayHandleCast.h, 98
ArrayHandleCompositeVector, 102, 265
ArrayHandleCompositeVector.h, 103
ArrayHandleConstant, 95
ArrayHandleConstant.h, 96
ArrayHandleCounting, 97, 194, 255
ArrayHandleCounting.h, 97
ArrayHandleDiscard, 98

ArrayHandleExtractComponent, 103
ArrayHandleExtractComponent.h, 104
ArrayHandleGroupVec, 105, 223, 226, 232, 305, 309
ArrayHandleGroupVec.h, 105
ArrayHandleGroupVecVariable, 105, 236
ArrayHandleGroupVecVariable.h, 106
ArrayHandleImplicit, 254, 255
ArrayHandleImplicit.h, 255
ArrayHandleIndex, 96
ArrayHandlePermutation, 99, 223
ArrayHandlePermutation.h, 99
ArrayHandleSwizzle, 104
ArrayHandleSwizzle.h, 104
ArrayHandleTransform, 256, 257
ArrayHandleUniformPointCoordinates, 101
ArrayHandleView, 96
ArrayHandleView.h, 96
ArrayHandleVirtual, 107

Cast, 108
IsType, 108
NewInstance, 108

ArrayHandleZip, 100
ArrayHandleZip.h, 100
ArrayManagerExecution, xxiv, 281
ArrayManagerExecutionShareWithControl, 282
ArrayPortal

Get, 92, 181
GetNumberOfValues, 92
Set, 92, 181
ValueType, 92

ArrayPortalFromIterators, 92, 283
ArrayPortalToIteratorBegin, 93
ArrayPortalToIteratorEnd, 93
ArrayPortalToIterators, 93

GetBegin, 93
GetEnd, 93
IteratorType, 93

ArrayPortalToIterators.h, 93
ArrayRangeCompute, 109
ArrayRangeCompute.h, 109
ArrayTransfer, xxiv, 261, 262

GetNumberOfValues, 262
PortalConstControl, 262
PortalConstExecution, 262
PortalControl, 262
PortalExecution, 262
PrepareForInPlace, 262, 263
PrepareForInput, 262
PrepareForOutput, 262, 263
ReleaseResources, 263
RetrieveOutputData, 263
Shrink, 263
ValueType, 262

AsField, 248, 251
ASin, 197

344 Index

DRAFT

Index

ASinH, 197
aspect, 311–314

cell shape, 312
default, 311, 312, 314
from count, 312
from indices, 313
input index, 312
output index, 312
value count, 313
visit index, 312
work index, 312

AspectTag, 314
AspectTagCellShape, 312
AspectTagDefault, 311, 312, 314
AspectTagFromCount, 311, 312
AspectTagFromIndices, 311, 313
AspectTagInputIndex, 312
AspectTagOutputIndex, 312
AspectTagValueCount, 313
AspectTagVisitIndex, 312
AspectTagWorkIndex, 312
assert, 80–81, 196

static, 81
Assert.h, 80
ASSOC ANY, 42
ASSOC CELL SET, 42
ASSOC POINTS, 42
ASSOC WHOLE MESH, 42
AssociationEnum, 44
AsVirtual, 135
ATan, 197
ATan2, 197
ATanH, 198
atomic array, 184–185
atomic interface execution, 288
AtomicArray, 159, 163, 166, 170, 172, 184, 308

Add, 184
CompareAndSwap, 184

AtomicArrayInOut, xxii, 159, 163, 166, 170, 172, 184, 185
AtomicInterfaceControl, 288
AtomicInterfaceExecution, 288
average, 18, 26
AverageByKey, 227
Azimuth, 52, 53
azimuth, 52

background color, 47
basic execution array interface, 284–286
basic execution portal factory, 283–284
BitwiseAnd, 120
BitwiseOr, 120
BitwiseXor, 120
Boundary, 172, 173
BoundaryState, 172, 173

InBoundary, 174
InXBoundary, 174

InYBoundary, 174
InZBoundary, 174
MaxNeighborIndices, 173, 174
MinNeighborIndices, 173, 174

Bounds, xviii, 49, 70, 71, 149, 150
Center, 70
Contains, 70
Include, 70, 71
IsNonEmpty, 70
Union, 71
X, 70
Y, 70
Z, 70

BoundsCompute, 150
BoundsGlobalCompute, 150
BUILD SHARED LIBS, 9

Camera, xviii, 49, 52, 53, 55
Azimuth, 52, 53
Dolly, 53
Elevation, 52, 53
Pan, 50, 53, 56
ResetToBounds, 53, 54
Roll, 53
SetClippingRange, 52
SetFieldOfView, 51
SetLookAt, 51
SetModeTo2D, 49
SetModeTo3D, 49
SetPosition, 51
SetViewRange2D, 49
SetViewUp, 51
TrackballRotate, 55
Zoom, 50, 53, 57

camera, 49–53
2D, 49–50
3D, 50–53
azimuth, 52
clipping range, 51
elevation, 52
far clip plane, 51
field of view, 51
focal point, 51
interactive, 55–57
look at, 51
mouse, 55–57
near clip plane, 51
pan, 50, 53
pinhole, 50
position, 51
reset, 53–54
up, 51
view range, 49
view up, 51
zoom, 50, 53

CanRunOn, 117

Index 345

DRAFT

Index

Canvas, 46
GetColorBuffer, 54

canvas, 46
ray tracer, 46

CanvasRayTracer, 46, 48
Cartesian product array handle, 101–102
Cast, 84, 108, 148
cast array handle, 97–98
CastAndCall, 135, 136, 148
CastToBase, 148
Cbrt, 198
Ceil, 198
ceiling, 198
Cell, 186
cell, 205–213

derivative, 209–210
edge, 145, 210–211
face, 145, 210–213
gradient, 209–210
interpolation, 209
parametric coordinates, 208–209
point, 145, 210
shape, 210
world coordinates, 208–209

cell average, 18
cell gradients, 24–25
cell locator, 215–218

bounding interval hierarchy, 216
general, 216
rectilinear grid, 216
uniform bins, 216
uniform grid, 216

cell set, 139, 144–148
dynamic, 147–148
explicit, 146–147
generate, 221–239
permutation, 147
shape, 145
single type, 146–147
structured, 145–146
whole, 185–189

cell shape, 145, 205–208
cell to point map worklet, 165–168
cell to point worklet, 153
cell traits, 207–208
CELL SHAPE EMPTY, 205
CELL SHAPE HEXAHEDRON, 206
CELL SHAPE LINE, 206
CELL SHAPE POLYGON, 206
CELL SHAPE PYRAMID, 206
CELL SHAPE QUAD, 206
CELL SHAPE TETRA, 206
CELL SHAPE TRIANGLE, 206
CELL SHAPE VERTEX, 206
CELL SHAPE WEDGE, 206

CellAverage, 18
CellClassification, 38

GHOST, 36, 38
INVALID, 38
NORMAL, 36, 38

CellCount, 166
CellDerivative, 209
CellDerivative.h, 209
CellEdge.h, 210, 225
CellEdgeCanonicalId, 210, 225, 228, 229
CellEdgeLocalIndex, 210
CellEdgeNumberOfEdges, 210
CellFace.h, 211
CellFaceCanonicalId, 212
CellFaceLocalIndex, 212
CellFaceNumberOfFaces, 211
CellFaceNumberOfPoints, 211
CellIndices, 166
CellInterpolate, 209
CellInterpolate.h, 209
CellLocator, 215–217

FindCell, 216, 217
GetCellSet, 216
GetCoordinates, 216
SetCellSet, 216
SetCoordinates, 216
Update, 216

CellLocatorBoundingIntervalHierarchy, 216
SetMaxLeafSize, 216
SetNumberOfPlanes, 216

CellLocatorGeneral, 216
SetConfigurator, 216

CellLocatorRectilinearGrid, 216
CellLocatorUniformBins, 216

SetDensityL1, 216
SetDensityL2, 216

CellLocatorUniformGrid, 216
CellSet, 145, 147, 159, 163, 166, 170, 172, 189, 221, 306, 308
CellSetConnectivity, 21
CellSetExplicit, 146, 186, 234

generate, 234–239
CellSetIn, 157, 162, 165, 169, 171
CellSetListTag.h, 148
CellSetPermutation, 147
CellSetSingleType, 147, 221, 222, 226, 232

generate, 221–234
CellSetStructured, 145, 171, 186
CellShape, 163, 170
CellShape.h, 205
CellShapeIdToTag, 205

Tag, 206
CellShapeTag, 186, 206
CellShapeTagEmpty, 205
CellShapeTagGeneric, 186, 205

Id, 205

346 Index

DRAFT

Index

CellShapeTagHexahedron, 206
CellShapeTagLine, 206
CellShapeTagPolygon, 206
CellShapeTagPyramid, 206
CellShapeTagQuad, 206
CellShapeTagTetra, 206
CellShapeTagTriangle, 206
CellShapeTagVertex, 206
CellShapeTagWedge, 206
CellTopologicalDimensionsTag, 207
CellTraits, 207

IsSizeFixed, 207
NUM POINTS, 207
TOPOLOGICAL DIMENSIONS, 207
TopologicalDimensionsTag, 207

CellTraits.h, 207
CellTraitsTagSizeFixed, 207
CellTraitsTagSizeVariable, 207
Center, 70
classify ghost cells, 36
clean grid, 33–34
CleanGrid, 33

GetCompactPointFields, 33
GetFastMerge, 34
GetMergePoints, 33
GetRemoveDegenerateCells, 34
GetTolerance, 33
GetToleranceIsAbsolute, 33
SetCompactPointFields, 33
SetFastMerge, 34
SetMergePoints, 33
SetRemoveDegenerateCells, 34
SetTolerance, 33
SetToleranceIsAbsolute, 33

clip
field, 37–38
implicit function, 34–35

clipping range, 51
ClipWithField, 37

GetClipValue, 38
GetComputeFastNormalsForStructured, 39
GetComputeFastNormalsForUnstructured, 39
GetGenerateNormals, 39
GetIsoValue, 39
GetMergeDuplicatePoints, 39
GetNormalArrayName, 39
SetClipValue, 38
SetComputeFastNormalsForStructured, 39
SetComputeFastNormalsForUnstructured, 39
SetGenerateNormals, 39
SetInvertClip, 38
SetIsoValue, 39
SetMergeDuplicatePoints, 39
SetNormalArrayName, 39

ClipWithImplicitFunction, 34

GetImplicitFunction, 34
SetImplicitFunction, 34
SetInvertClip, 34

CMake, 8–13, 81–82
configuration, 8–10

BUILD SHARED LIBS, 9
CMAKE BUILD TYPE, 9, 11
CMAKE INSTALL PREFIX, 9
VTKm CUDA Architecture, 10
VTKm DIR, 11
VTKm ENABLE BENCHMARKS, 9
VTKm ENABLE CUDA, 10
VTKm ENABLE EXAMPLES, 9
VTKm ENABLE LOGGING, 82
VTKm ENABLE OPENMP, 10
VTKm ENABLE RENDERING, 10, 12
VTKm ENABLE TBB, 10
VTKm ENABLE TESTING, 10
VTKM USE 64BIT IDS, 66
VTKm USE 64BIT IDS, 10
VTKM USE DOUBLE PRECISION, 66
VTKm USE DOUBLE PRECISION, 10
VTKm VERSION, 82
VTKm VERSION FULL, 82
VTKm VERSION MAJOR, 82
VTKm VERSION MINOR, 82
VTKm VERSION PATCH, 82

version, 81–82
VTK-m library

vtkm cont, 12
vtkm filter, 12
vtkm rendering, 12

VTK-m package, 11–13
libraries, 12
variables, 12–13
version, 81–82
VTKm ENABLE CUDA, 13
VTKm ENABLE MPI, 13
VTKm ENABLE OPENMP, 13
VTKm ENABLE RENDERING, 13
VTKm ENABLE TBB, 13
VTKm FOUND, 12
VTKm VERSION, 12
VTKm VERSION FULL, 12
VTKm VERSION MAJOR, 12
VTKm VERSION MINOR, 12
VTKm VERSION PATCH, 12

CMAKE BUILD TYPE, 9, 11
CMAKE INSTALL PREFIX, 9
coding conventions, 63
Color, 47
color

background, 47
foreground, 47

color tables, 57–58

Index 347

DRAFT

Index

default, 57
ColorTable, 23, 57
column, 201
CompareAndSwap, 184
COMPONENT, 23
ComponentType, 73
composite vector array handle, 102–103
compression

zfp, 31–32
ComputePointGradient, 24
ConfigureFor32.h, 66
ConfigureFor64.h, 66
connected components, 21–22

cell, 21–22
field, 22
image, 22

Connectivity
CellShapeTag, 186
GetCellShape, 186
GetIndices, 186
GetNumberOfElements, 186
GetNumberOfIndices, 186
GetNumberOfIndicices, 186
IndicesType, 186

constant array handle, 95–96
cont namespace, 62, 63
Contains, 69, 70
contour, 39–40
control environment, 62
control signature, xii, xxi, xxv, 155–159, 162, 163, 165, 166,

169–173, 176, 177, 181, 184, 185, 189, 219, 295,
305, 313–315, 323–325, 329

atomic array, 184–185
execution object, 189–191
tags, 313–314
whole array, 181–184
whole cell set, 185–189

ControlSignatureTagBase, 314
FetchTag, 314
TransportTag, 314
TypeCheckTag, 314

ConvertNumComponentsToOffsets, 105, 236
ConvertOutputToUnstructured, 39
coordinate system, 139, 149
coordinate system transform, 19–20

cylindrical, 19
spherical, 19–20

CoordinateSystem, 149, 215
GetBounds, 149

Copy, 122
copy, 122
copy if, 122
copy sub range, 123
CopyIf, 122
CopyInto, 68, 74

CopySign, 198
CopySubRange, 123
CopyTo, 135, 148
Cos, 198
CosH, 198
cosine, 198
counting array handle, 96–97
Create, 140, 141
CreateResult, 243
CreateResult.h, 243
Cross, 200
cross product, 20, 200
CrossProduct, 20

GetOutputFieldName, 20
GetPrimaryCoordinateSystemIndex, 20
GetPrimaryFieldName, 20
GetSecondaryCoordinateSystemIndex, 20
GetSecondaryFieldName, 20
GetUseCoordinateSystemAsPrimaryField, 20
GetUseCoordinateSystemAsSecondaryField, 20
SetOutputFieldName, 20
SetPrimaryCoordinateSystem, 20
SetPrimaryField, 20
SetSecondaryCoordinateSystem, 20
SetSecondaryField, 20
SetUseCoordinateSystemAsPrimaryField, 20
SetUseCoordinateSystemAsSecondaryField, 20

cube root, 198
CUDA, 10, 64, 113
cuda namespace, 63
cylindrical coordinate system transform, 19–20
CylindricalCoordinateSystemTransform, 19

SetCartesianToCylindrical, 19
SetCartesianToSpherical, 19
SetCylindricalToCartesian, 19
SetSphericalToCartesian, 20

data set, 139–150
building, 139–144
cell set, see cell set
clean, 33–34
coordinate system, see coordinate system
field, see field
generate, 221–239
multiblock, see multiblock

data set filter, 32–37, 246–249
data set with field filter, 249–252
data set with filter, 37–42
DataSet, 15–17, 33, 37, 43, 45, 139, 140, 147–149, 155, 215,

218, 221, 241, 243–247, 249
GetCellSet, 246

DataSetBuilderExplicit, 141
Create, 141

DataSetBuilderExplicitIterative, 142
AddCell, 142
AddPoint, 142

348 Index

DRAFT

Index

DataSetBuilderRectilinear, 140
Create, 140

DataSetBuilderUniform, 140
Create, 140

DataSetFieldAdd, 143
AddCellField, 143
AddPointField, 143

Debug, 9
decompression

zfp, 32
deep array copy, 109
DeepCopy, 117
DefaultAnyDevice, 65
derivative, 209–210
derived storage, 258–265
detail namespace, 63
determinant, 201
Device, 65
device adapter, 113–129, 279–294

algorithm, 121–129, 288–293
copy, 122
copy if, 122
copy sub range, 123
lower bounds, 123
reduce, 124
reduce by key, 124
schedule, 127
sort, 127
stream compact, 122
synchronize, 128
unique, 128
upper bounds, 128

any, 115
array manager, 281–286
atomic interface execution, 288
basic execution array interface, 284–286
basic execution portal, 283–284
id, 114–115

provided, 114–115
implementing, 279–294
runtime detector, 280–281
runtime tracker, 117–119, 273
tag, 113–114, 279–280

provided, 113–114
timer, 293–294
try execute, 273–274
undefined, 115
virtual object transfer, 286–287

device adapter traits, 115–117
DeviceAdapterAlgorithm, 288
DeviceAdapterAlgorithmGeneral, 289
DeviceAdapterCuda.h, 113, 116
DeviceAdapterId, 65, 90, 114, 115, 118, 129, 284
DeviceAdapterNameType, 115
DeviceAdapterOpenMP.h, 113

DeviceAdapterRuntimeDetector, 280
Exists, 280

DeviceAdapterSerial.h, 113
DeviceAdapterTag, 117
DeviceAdapterTag.h, 280
DeviceAdapterTagAny, 65, 115, 132
DeviceAdapterTagCuda, 113, 116
DeviceAdapterTagOpenMP, 113
DeviceAdapterTagSerial, 113
DeviceAdapterTagTBB, 114
DeviceAdapterTagUndefined, 65, 115
DeviceAdapterTBB.h, 114
DeviceAdapterTimerImplementation, 293
DeviceAdapterTraits, 115, 116

GetId, 115
GetName, 115
Valid, 115, 116

DimensionalityTag, 71
DisableDevice, 117
discard array handle, 98
dispatcher, 154

creating new, 327–331
invocation object, 329

DispatcherBase, 328
Invoke, 154, 156, 157, 295

DispatcherMapField, 154, 158
Invoke, 158

DispatcherMapTopology, 154, 161, 162, 165
Invoke, 162, 165, 169, 223, 227, 232

DispatcherPointNeighborhood, 154, 171
Invoke, 171, 172

DispatcherReduceByKey, 154, 176
Invoke, 176, 177, 181, 184

DoExecute, xxiii, 241, 243–249, 251
Dolly, 53
DoMapField, xxiii, 246–249, 251
Dot, 67
dot product, 21
DotProduct, 21

GetOutputFieldName, 21
GetPrimaryCoordinateSystemIndex, 21
GetPrimaryFieldName, 21
GetSecondaryCoordinateSystemIndex, 21
GetSecondaryFieldName, 21
GetUseCoordinateSystemAsPrimaryField, 21
GetUseCoordinateSystemAsSecondaryField, 21
SetOutputFieldName, 21
SetPrimaryCoordinateSystem, 21
SetPrimaryField, 21
SetSecondaryCoordinateSystem, 21
SetSecondaryField, 21
SetUseCoordinateSystemAsPrimaryField, 21
SetUseCoordinateSystemAsSecondaryField, 21

dragon fractal, 335–337
dynamic cell set, 147–148

Index 349

DRAFT

Index

DynamicCellSet, 147, 148
Cast, 148
CastAndCall, 148
CastToBase, 148
CopyTo, 148
IsType, 148
NewInstance, 148
ResetCellSetList, 148

DynamicPointCoordinates, 302
DynamicTransform, 302
DynamicTransformCont, 301

edge, 145, 210–211
Elevation, 52, 53
elevation, 27, 52
environment, 61, 62

control, 62
execution, 61, 62

Epsilon, 198
Equal, 119
Error, 79, 83

GetMessage, 79
ErrorBadAllocation, 80, 117
ErrorBadDevice, 118
ErrorBadType, 80
ErrorBadValue, 80, 117
ErrorControlBadValue, 135, 262, 263
ErrorControlInternal, 263
ErrorExecution, 80, 127, 196, 289
ErrorInternal, 80
ErrorIO, 80
ErrorMessageBuffer, 289
ErrorOnBadArgument, 65
ErrorOnBadOption, 65
errors, 79–81, 195–196

assert, 80–81, 196
control environment, 79–80
execution environment, 80, 127, 195–196
worklet, 195–196

exec namespace, 62, 63, 318
ExecObject, xxii, 159, 160, 163, 166, 170, 172, 189, 215,

216, 219
ExecObjectType, 307, 309
Execute, 17–19, 26–28, 30, 31, 33, 37, 40, 150, 241, 242, 246,

247, 249
execution array interface, 284–286
execution array manager, 281–286
execution environment, 61, 62
execution object, 189–191
execution portal factory, 283–284
execution signature, xii, xxi, xxv, 155–157, 159, 163, 166,

170, 172, 173, 177, 192, 305, 313–315, 323, 324,
329

tags, 314–315
ExecutionArrayInterfaceBasic, xxiv, 281, 284
ExecutionArrayInterfaceBasicBase, 284

ExecutionArrayInterfaceBasicShareWithControl, 285
ExecutionObjectBase, 159, 163, 166, 170, 172, 189, 216,

219, 306
PrepareForExecution, 159, 163, 166, 170, 172, 189

ExecutionPortalFactoryBasic, xxiv, 281, 283
ExecutionPortalFactoryBasicShareWithControl, 283
ExecutionSignatureTagBase, 314

AspectTag, 314
INDEX, 314, 315

ExecutionTypes, 93, 110
Exists, 280
Exp, 198
Exp10, 198
Exp2, 198
explicit cell set, 146–147

single type, 146–147
explicit mesh, 141
ExplicitCellSet, 146
ExpM1, 198
exponential, 198
external faces, 35–36
ExternalFaces, 35

GetCompactPoints, 35
GetNumberOfDimensions, 36
GetPassPolyData, 35
SetCompactPoints, 35
SetNumberOfDivisions, 36
SetPassPolyData, 35

extract component array handle, 103–104

face, 145, 210–213
external, 35–36

false type, 81
fancy array handle, 95–265
far clip plane, 51
Fatal, 83
Fetch, 310–314, 321, 323

Load, 311, 314
Store, 311, 314
ValueType, 310, 311

fetch, 310–313
aspect, see aspect
cell set, 311
direct input array, 311
direct output array, 311
execution object, 311
topology map array input, 311
whole cell set, 311

FetchTag, 314
FetchTagArrayDirectIn, 311
FetchTagArrayDirectOut, 311
FetchTagArrayTopologyMapIn, 311
FetchTagCellSetIn, 311
FetchTagExecObject, 311
FetchTagWholeCellSetIn, 311
Field, 42, 44, 148, 150, 248, 251

350 Index

DRAFT

Index

ASSOC ANY, 42
ASSOC CELL SET, 42
ASSOC POINTS, 42
ASSOC WHOLE MESH, 42
AssociationEnum, 44
GetData, 148
GetRange, 148–150

field, 17, 139, 148–149
field filter, 17–32, 241–244
field filter using cells, 244–246
field map worklet, 153, 158–161
field of view, 51
field to colors, 23–24
FieldIn, 157, 158, 171, 325
FieldInCell, 162, 165
FieldInFrom, 169
FieldInNeighborhood, 171, 173
FieldInOut, 158, 162, 165, 169, 172
FieldInOutCell, 162
FieldInOutPoint, 165
FieldInPoint, 162, 165
FieldInTo, 169
FieldMetaData

AsField, 251
IsCellField, 251
IsPointField, 251

FieldMetadata, 242, 244, 247–249, 251
AsField, 248
IsCellField, 248
IsPointField, 248

FieldNeighborhood, 171, 173
Get, 173

FieldOut, 158, 162, 165, 169, 171, 325
FieldOutCell, 162
FieldOutPoint, 165
FieldPointIn, 156, 208, 209
FieldRangeCompute, 150
FieldRangeGlobalCompute, 150
FieldSelection, xvii, 43, 44

MODE EXCLUDE, 43, 44
MODE NONE, 43

FieldToColors, 23, 24
COMPONENT, 23
FieldToColors, 23
GetColorTable, 23
GetMappingComponent, 23
GetMappingMode, 23
GetNumberOfSamplingPoints, 24
GetOutputMode, 23
IsMappingComponent, 23
IsMappingMagnitude, 23
IsMappingScalar, 23
IsOutputRGB, 24
IsOutputRGBA, 24
MAGNITUDE, 23

RGB, 23, 24
RGBA, 23, 24
SCALAR, 23
SetColorTable, 23
SetMappingComponent, 23
SetMappingMode, 23
SetMappingToComponent, 23
SetMappingToMagnitude, 23
SetMappingToScalar, 23
SetNumberOfSamplingPoints, 24
SetOutputMode, 23, 24
SetOutputToRGB, 23
SetOutputToRGBA, 24

file I/O, 15–16
read, 15–16
write, 16

Filter, 43
DoExecute, 241, 243–246
Execute, 150
SetFieldsToPass, 43, 44

filter, 17–44, 61, 241–252
contour, 39–40
data set, 32–37, 246–249
data set with field, 37–42, 249–252
field, 17–32, 241–244

using cells, 244–246
fields, 42–44

input, 42–43
passing, 43–44

input fields, 42–43
isosurface, 39–40
Marching Cubes, 39–40
passing fields, 43–44
pathlines, 42
streamline, 41
streamlines, 41
threshold, 40
traits, 242–243, 245

filter namespace, 17, 63, 241
FilterCell, 244

GetActiveCellSetIndex, 244
SetActiveCellSetIndex, 244

FilterDataSet, 246
DoExecute, xxiii, 246–248
DoMapField, xxiii, 246–248
Execute, 33, 246, 247
MapFieldOntoOutput, 246
SetActiveCellSetIndex, 32
SetActiveCoordinateSystem, 32

FilterDataSetWithField, 249
DoExecute, xxiii, 249, 251
DoMapField, xxiii, 249, 251
Execute, 37, 249
MapFieldOntoOutput, 249
SetActiveCellSetIndex, 37

Index 351

DRAFT

Index

SetActiveCoordinateSystem, 37
SetActiveField, 37
SetOutputFieldName, 37

FilterField, 241, 243, 244
Execute, 17–19, 241, 242
GetOutputFieldName, 243
SetActiveCoordinateSystem, 43
SetActiveField, 17, 42
SetOutputFieldName, 17–19, 243
SetUseCoordinateSystemAsField, 17, 43

FilterTraits, 242, 245
InputFieldTypeList, 243

FilterTraits.h, 242
FindCell, 216, 217
FindNearestNeighbor, 219
Float32, xviii, 66, 72, 77, 199
Float64, 66, 69, 70, 77, 199
FloatDefault, 66, 208
Floor, 198
floor, 198
FMod, 198
focal point, 51
ForceDevice, 117
foreground color, 47
FromCount, 170
FromIndices, 170
function interface, 295–303

append parameter, 299
dynamic transform, 301–303
for each, 303
invoke, 297–298
replace parameter, 299
static transform, 300–301

function modifier, 63, 64, 157, 189
function signature, 295
functional array, 254–256
FunctionInterface, xxiv, 295, 329

Append, 299
AppendType, 299
ARITY, 296
DynamicTransformCont, 301
GetArity, 296
GetParameter, 296
GetReturnValue, 298
GetReturnValueSafe, 298
Replace, 299
ReplaceType, 299
SetParmeter, 296
StaticTransformCont, 300
StaticTransformExec, 300
StaticTransformType, 300

FunctionInterfaceReturnContainer, 298
VALID, 298
Value, 298

functor, 61, 254

FunctorBase, 127, 196
RaiseError, 127, 196

Get, 92, 173, 181
GetActiveCellSetIndex, 244
GetActiveFieldName, 31, 32
GetArity, 296
GetAutoOrientNormals, 29
GetBegin, 93
GetBinDelta, 25
GetBlocks, 149
GetBounds, 149
GetCamera, 49
GetCellNormalsName, 29
GetCellSet, 216, 246
GetCellShape, 186
GetClipValue, 38
GetColorBuffer, 54
GetColorTable, 23
GetCompactPointFields, 33
GetCompactPoints, 35
GetComponent, 73
GetComputeDivergence, 24
GetComputedRange, 25
GetComputeFastNormalsForStructured, 39
GetComputeFastNormalsForUnstructured, 39
GetComputeGradient, 25
GetComputePointGradient, 24
GetComputeQCriterion, 24
GetComputeVorticity, 24
GetConsistency, 29
GetCoordinates, 216, 218
GetData, 148
GetDevice, 132
GetDeviceAdapterId, 90
GetDivergenceName, 25
GetElapsedTime, 131, 132
GetEnd, 93
GetFastMerge, 34
GetFlipNormals, 29
GetGenerateCellNormals, 29
GetGenerateNormals, 39
GetGeneratePointNormals, 29
GetHumanReadableSize, 86
GetId, 115
GetImplicitFunction, 34
GetIndices, 186
GetInputIndex, 310
GetIsoValue, 39
GetLogLevelName, 84
GetLowerThreshold, 40
GetMappingComponent, 23
GetMappingMode, 23
GetMergeDuplicatePoints, 39
GetMergePoints, 33
GetMessage, 79

352 Index

DRAFT

Index

GetName, 115
GetNormalArrayName, 39
GetNormalizeCellNormals, 29
GetNumberOfComponents, 73, 134
GetNumberOfDimensions, 36
GetNumberOfElements, 186
GetNumberOfIndices, 186
GetNumberOfIndicices, 186
GetNumberOfSamplingPoints, 24
GetNumberOfValues, 89, 92, 133, 262, 268
GetOutputFieldName, 20, 21, 243
GetOutputIndex, 310
GetOutputMode, 23
GetOutputToInputMap, 223, 227
GetParameter, 296
GetPassPolyData, 35
GetPointNormalsName, 29
GetPortal, 268
GetPortalConst, 268
GetPortalConstControl, 90, 93
GetPortalControl, 90, 93, 95
GetPrimaryCoordinateSystemIndex, 20, 21
GetPrimaryFieldName, 20, 21
GetQCriterionName, 25
GetRange, 25, 148–150
GetRate, 31
GetRemoveDegenerateCells, 34
GetReturnValue, 298
GetReturnValueSafe, 298
GetRuntimeDeviceTracker, 118, 274
GetSecondaryCoordinateSystemIndex, 20, 21
GetSecondaryFieldName, 20, 21
GetSizeString, 86
GetSpatialBounds, 53
GetStackTrace, 87
GetStorage, 90
GetThreadName, 83
GetTolerance, 33
GetToleranceIsAbsolute, 33
GetUpperThreshold, 40
GetUseCoordinateSystemAsPrimaryField, 20, 21
GetUseCoordinateSystemAsSecondaryField, 20, 21
GetVisitIndex, 310
GetVorticityName, 25
GHOST, 36, 38
ghost cell

classify, 36
remove, 38–39

GhostCellClassify, 36
GhostCellRemove, 38

ConvertOutputToUnstructured, 39
RemoveAllGhost, 38
RemoveByType, 38

git, 7–8
gradient, 209–210

Gradients, 24
ComputePointGradient, 24
GetComputeDivergence, 24
GetComputeGradient, 25
GetComputePointGradient, 24
GetComputeQCriterion, 24
GetComputeVorticity, 24
GetDivergenceName, 25
GetQCriterionName, 25
GetVorticityName, 25
SetColumnMajorOrdering, 25
SetComputeDivergence, 24
SetComputeGradient, 25
SetComputePointGradient, 24
SetComputeQCriterion, 24
SetComputeVorticity, 24
SetDivergenceName, 24, 25
SetOutputFieldName, 24
SetQCriterionName, 24, 25
SetRowMajorOrdering, 25
SetVorticityName, 24, 25

gradients, 24–25
group vector array handle, 104–106

h, 102
Harter-Heighway dragon, 335
Hash, 228
Hash.h, 228
HashType, 228
HasMultipleComponents, 73
Heighway dragon, 335
hexahedron, 206
Hilbert curve, 337–339
Histogram, 25

GetBinDelta, 25
GetComputedRange, 25
GetRange, 25
SetNumberOfBins, 25
SetOutputFieldName, 25
SetRange, 25

histogram, 25–26, 178, 185
hyperbolic arccossine, 197
hyperbolic arcsine, 197
hyperbolic cosine, 198
hyperbolic sine, 200
hyperbolic tangent, 198, 200

I/O, 15–16
Id, 22, 66, 67, 73, 77, 96, 105, 123, 127–129, 159, 163, 166,

170–173, 177, 186, 205, 222, 223, 225, 226, 231,
232, 255, 262

id
device adapter, 114–115

provided, 114–115
Id2, 67, 77, 210, 225, 226, 229
Id3, xviii, 36, 67, 73, 74, 77, 101, 109, 127, 212

Index 353

DRAFT

Index

IdComponent, 66, 104, 159, 163, 166, 170–173, 177, 186,
192, 205, 207, 210–212, 300, 314

identity matrix, 201
image, 140
ImageConnectivity, 22
implicit array handle, 254–256
implicit function

clip, 34–35
implicit storage, 254–256
ImplicitFunction, 34
ImplicitFunctionHandle, 34
InBoundary, 174
Include, 70, 71
INDEX, 314, 315
index array handle, 96–97
IndexTag, 296, 300, 301
IndicesType, 186
Infinity, 198
Info, 83
initialization, 64–66
Initialize, 47, 64, 65, 82, 84
InitializeOptions, 64

AddHelp, 65
DefaultAnyDevice, 65
ErrorOnBadArgument, 65
ErrorOnBadOption, 65
None, 65
RequireDevice, 65
Strict, 65

InitializeResult, 65
Device, 65

input domain, xxi, 155, 157–158, 162, 165, 169, 171, 176
input index, 192
InputFieldTypeList, 243
InputIndex, 159, 163, 166, 171, 173, 177, 192
InsertBlock, 149
Int16, 66
Int32, 66, 184
Int64, 66, 184
Int8, 66, 115
Intel Threading Building Blocks, 10, 114
interactive rendering, 54–57

OpenGL, 54–55
internal namespace, 63, 295
interoperability, 63
interpolation, 209
INVALID, 38
inverse cosine, 197
inverse hyperbolic cosine, 197
inverse hyperbolic sine, 197
inverse hyperbolic tangent, 198
inverse matrix, 202
inverse sine, 197
inverse tangent, 197
Invocation, 328, 329

invocation object, 329
Invoke, 154, 156–158, 162, 165, 169, 171, 172, 176, 177, 181,

184, 223, 227, 232, 295
invoke, 154
InXBoundary, 174
InYBoundary, 174
InZBoundary, 174
io namespace, 15, 63, 139
is same, 81
IsCellField, 248, 251
IsFinite, 198
IsInf, 198
IsMappingComponent, 23
IsMappingMagnitude, 23
IsMappingScalar, 23
IsNan, 198
IsNegative, 199
IsNonEmpty, 69, 70
isosurface, 39–40
IsOutputRGB, 24
IsOutputRGBA, 24
isovolume, 37–38
IsPointField, 248, 251
IsSizeFixed, 207
IsSizeStatic, 73
IsType, 108, 134, 148
IsValueType, 134
IsZeroInitialized, 119
IteratorType, 93

Jurassic Park dragon, 335

kernel, 61
Keys, xxii, 176, 179, 227, 228, 306, 308
KeysIn, 176, 177
Koch Snowflake, 317

Length, 70
Lerp, 200
less, 74
level of detail, 36
Lindenmayer system, 318
line, 206
linear interpolation, 200
linear system, 202
ListForEach, 78
lists, 75–79

types, 77–78
ListTag.h, 76, 78
ListTagBase, 76
ListTagEmpty, 76
ListTagJoin, 76
Load, 311, 314
locator

cell, 215–218
point, 218–220

354 Index

DRAFT

Index

LOD, 36
Log, 199
Log10, 199
Log1P, 199
Log2, 199
logarithm, 199
logging, 82–87

initialization, 82–83
levels, 83–84

Logging.h, 84, 86
LogicalAnd, 119
LogicalNot, 119
LogicalOr, 120
LogLevel, 83, 84

Cast, 84
Error, 83
Fatal, 83
Info, 83
MemCont, 83
MemExec, 84
MemTransfer, 84
Off, 83
Perf, 83
UserFirst, 83, 84
UserLast, 83
UserVerboseFirst, 84
UserVerboseLast, 84
Warn, 83

loguru, 82
look at, 51
lower bounds, 123
LowerBounds, 123

MAGNITUDE, 23
Magnitude, 200
magnitude, 29–30
MagnitudeSquared, 200
make ArrayHandle, 90, 91
make ArrayHandleCartesianProduct, 102
make ArrayHandleCast, 98
make ArrayHandleCompositeVector, 103
make ArrayHandleConstant, 96
make ArrayHandleCounting, 97
make ArrayHandleExtractComponent, 104
make ArrayHandleGroupVec, 105
make ArrayHandleGroupVecVariable, 106
make ArrayHandleImplicit, 255
make ArrayHandlePermutation, 99
make ArrayHandleSwizzle, 104
make ArrayHandleTransform, 257
make ArrayHandleView, 96
make ArrayHandleZip, 100
make FunctionInterface, xxiv, 295
make ImplicitFunctionHandle, 34
make Pair, 69
make Vec, 67

make VecC, 68
map, 153
map cell to point, 165–168
map field, 158–161
map point neighborhood, 171–176
map point to cell, 161–164
map topology, 168–171
MapFieldOntoOutput, 246, 249
Mapper, 46
mapper, 46, 48–49
MapperCylinder, 46
MapperPoint, 46, 48
MapperQuad, 46
MapperRayTracer, 46
MapperVolume, 46
MapperWireframer, 46, 48
Marching Cubes, 39–40
MarchingCubes, 39
math, 197–204
Math.h, 197
Matrix, 201, 202
matrix, 201–202
Matrix.h, 201
MatrixDeterminant, 201
MatrixGetColumn, 201
MatrixGetRow, 201
MatrixIdentity, 201
MatrixInverse, 202
MatrixMultiply, 202
MatrixRow, 201
MatrixSetColumn, 202
MatrixSetRow, 202
MatrixTranspose, 202
Max, 69, 70, 120, 199
Maximum, 120
maximum, 199
MaxNeighborIndices, 173, 174
MemCont, 83
MemExec, 84
MemTransfer, 84
metaprogramming, 75
method modifier, 63, 64, 157, 189
Min, 69, 70, 120, 199
MinAndMax, 120
Minimum, 120
minimum, 199
MinNeighborIndices, 173, 174
MODE EXCLUDE, 43, 44
MODE NONE, 43
ModF, 199
modifier

control, 63, 64, 157, 189
execution, 63, 64, 157, 189

mouse rotation, 55–56
MultiBlock, 17, 33, 37, 139, 149, 150

Index 355

DRAFT

Index

AddBlock, 149
AddBlocks, 149
GetBlocks, 149
InsertBlock, 149
ReplaceBlock, 149

multiblock, 149–150

namespace, 62
detail, 63
internal, 63
vtkm, 62, 63, 197, 205, 295
vtkm::cont, 62, 63
vtkm::cont::arg, 305–307, 309
vtkm::cont::cuda, 63
vtkm::cont::tbb, 63
vtkm::exec, 62, 63, 318
vtkm::exec::arg, 311, 313
vtkm::filter, 17, 63, 241
vtkm::internal, 295
vtkm::io, 15, 63, 139
vtkm::io::reader, 15
vtkm::io::writer, 16
vtkm::opengl, 63
vtkm::rendering, 45, 63
vtkm::worklet, 63, 247, 325, 327

Nan, 199
natural logarithm, 199
NDEBUG, 80
near clip plane, 51
negative, 199
NegativeInfinity, 199
neighborhood worklet, 171–176

radius, 173
NewInstance, 108, 134, 148
Newton’s method, 202–204
NewtonsMethod, 202
NewtonsMethod.h, 202
NewtonsMethodResult, 202
None, 65
NORMAL, 36, 38
Normal, 201
Normalize, 201
normals, 28–29

auto orient, 28
consistency, 28
flip, 28

not a number, 199
NotEqual, 119
NotZeroInitialized, 119, 250
NUM COMPONENTS, 73
NUM POINTS, 207
NumericTag, 71

Off, 83
OpenGL, 54–55, 63
opengl namespace, 63

OpenMP, 10, 113
output index, 192
OutputIndex, 159, 163, 166, 171, 173, 177, 192

packages, 62–63
Paint, 47, 54
Pair, 44, 69, 100, 102
Pan, 50, 53, 56
parametric coordinates, 208–209
ParametricCoordinates.h, 208
ParametricCoordinatesCenter, 208
ParametricCoordinatesPoint, 208
ParametricCoordinatesToWorldCoordinates, 208
Pathline, 41

SetNextDataSet, 41
SetNextTime, 41
SetNumberOfSteps, 41
SetPreviousTime, 41
SetSeeds, 41

Pathlines
SetStepSize, 41

pathlines, 41–42
Perf, 83
permutation cell set, 147
permuted array handle, 98–100
pervasive parallelism, 61
Pi, 199
Pi 2, 199
Pi 3, 199
Pi 4, 199
pinhole camera, 50
Point, 186
point, 145, 210
point average, 26
point elevation, 27
point gradients, 24–25
point locator, 215, 218–220

uniform grid, 218
point neighborhood worklet, 153, 171–176
point to cell map worklet, 161–164
point to cell worklet, 153
point transform, 27–28
PointAverage, 26

Execute, 26
SetOutputFieldName, 26

PointCount, 163
PointElevation, 27, 155

SetHighPoint, 27
SetLowPoint, 27
SetOutputFieldName, 27
SetRange, 27

PointIndices, 163, 210, 212
PointLocator, 218, 219

FindNearestNeighbor, 219
GetCoordinates, 218
SetCoordinates, 218

356 Index

DRAFT

Index

Update, 218
PointLocatorUniformGrid, 218

SetNumberOfBins, 218
SetRange, 218

PointTransform, 27
Execute, 27
SetOutputFieldName, 27
SetRotation, 28
SetRotationX, 28
SetRotationY, 28
SetRotationZ, 28
SetScale, 28
SetTransform, 28
SetTranslation, 27

policy, 246
polygon, 206
PortalConstControl, 93, 262
PortalConstExecution, 262
PortalConstType, 268
PortalControl, 93, 262
PortalExecution, 262
PortalType, 268
Pow, 199
power, 199
predicates and operators, 119–121

binary operators, 120–121
binary predicates, 119–120
creating custom comparators, 121
unary predicates, 119

PrepareForExecution, 159, 163, 166, 170, 172, 189
PrepareForInPlace, 90, 110, 262, 263, 308
PrepareForInput, 90, 110, 189, 262, 307, 308
PrepareForOutput, 90, 110, 114, 262, 263, 307, 308
PrintArrayContents, 136, 137
Product, 120
pseudocolor, 57
pyramid, 206

quadrilateral, 206

RaiseError, 127, 196
Range, xviii, 49, 69, 70, 109, 148, 150

Center, 70
Contains, 69
Include, 70
IsNonEmpty, 69
Length, 70
Max, 69, 70
Min, 69, 70
Union, 70

range
array, 109–110
field, 148

RCbrt, 199
read file, 15–16
ReadDataSet, 15

reader namespace, 15
Ready, 132
reciprocal cube root, 199
reciprocal square root, 200
rectilinear grid, 140
rectilinear point coordinates array handle, 101–102
Reduce, 124
reduce, 124
reduce by key, 124
reduce by key worklet, 154, 176–181, 224
ReduceByKey, 124
ReduceByKeyLookup, 308
ReducedValuesIn, 177
ReducedValuesInOut, 177
ReducedValuesOut, 177
regular grid, 140
Release, 9
ReleaseResources, 89, 263, 268
ReleaseResourcesExecution, 89
Remainder, 199
remainder, 198, 199
RemainderQuotient, 200
RemoveAllGhost, 38
RemoveByType, 38
rendering, 45–58

actor, 45
camera, 49–53

2D, 49–50
3D, 50–53
azimuth, 52
clipping range, 51
elevation, 52
far clip plane, 51
field of view, 51
focal point, 51
look at, 51
mouse, 55–57
near clip plane, 51
pan, 50, 53
position, 51
reset, 53–54
up, 51
view range, 49
view up, 51
zoom, 50, 53

canvas, 46
color tables, 57–58

default, 57
interactive, 54–57
mapper, 46, 48–49
OpenGL, 54–55
scene, 45
view, 47–48

rendering namespace, 45, 63
Replace, 299

Index 357

DRAFT

Index

ReplaceBlock, 149
ReplaceType, 299
ReportAllocationFailure, 117
ReportBadDeviceFailure, 118
RequireDevice, 65
Reset, 117, 132
ResetCellSetList, 148
ResetDevice, 117
ResetToBounds, 53, 54
ResetTypes, 137
RetrieveOutputData, 263
RGB, 23, 24
RGBA, 23, 24
RMagnitude, 201
Roll, 53
Round, 200
round down, see floor
round up, see ceiling
row, 201
RSqrt, 200
Run method, 160
runtime device tracker, 117–119, 273
RuntimeDeviceTracker, 117, 273

CanRunOn, 117
DeepCopy, 117
DisableDevice, 117
ForceDevice, 117
ReportAllocationFailure, 117
ReportBadDeviceFailure, 118
Reset, 117
ResetDevice, 117

SaveAs, 48
SCALAR, 23
scalar, 30–31
scan

exclusive, 125
exclusive by key, 125
inclusive, 126
inclusive by key, 126

ScanExclusive, 125
ScanExclusiveByKey, 125
ScanInclusive, 126
ScanInclusiveByKey, 126
scatter, 191–195
scatter type, 191
ScatterCounting, 191, 193, 195, 222, 224, 228, 233

GetOutputToInputMap, 223, 227
ScatterIdentity, 191
ScatterPermutation, 191, 194, 195
ScatterUniform, 191, 192, 222
Scene, 45, 53

AddActor, 45
GetSpatialBounds, 53

scene, 45
Schedule, 127

schedule, 127
ScopedRuntimeDeviceTracker, 118
serial, 113
Set, 92, 181
SetActiveCellSetIndex, 32, 37, 244
SetActiveCoordinateSystem, 32, 37, 43
SetActiveField, 17, 29, 31, 32, 37, 42
SetAutoOrientNormals, 28, 29
SetBackground, 47
SetCamera, 49
SetCartesianToCylindrical, 19
SetCartesianToSpherical, 19
SetCellNormalsName, 28, 29
SetCellSet, 216
SetClippingRange, 52
SetClipValue, 38
SetColorTable, 23
SetColumnMajorOrdering, 25
SetCompactPointFields, 33
SetCompactPoints, 35
SetComponent, 73
SetComputeDivergence, 24
SetComputeFastNormalsForStructured, 39
SetComputeFastNormalsForUnstructured, 39
SetComputeGradient, 25
SetComputePointGradient, 24
SetComputeQCriterion, 24
SetComputeVorticity, 24
SetConfigurator, 216
SetConsistency, 28, 29
SetCoordinates, 216, 218
SetCylindricalToCartesian, 19
SetDensityL1, 216
SetDensityL2, 216
SetDivergenceName, 24, 25
SetFastMerge, 34
SetFieldOfView, 51
SetFieldsToPass, 43, 44
SetFlipNormals, 28, 29
SetForeground, 47
SetGenerateCellNormals, 29
SetGenerateNormals, 39
SetGeneratePointNormals, 29
SetHighPoint, 27
SetImplicitFunction, 34
SetInvertClip, 34, 38
SetIsoValue, 39
SetLogLevelName, 84
SetLookAt, 51
SetLowerThreshold, 40
SetLowPoint, 27
SetMappingComponent, 23
SetMappingMode, 23
SetMappingToComponent, 23
SetMappingToMagnitude, 23

358 Index

DRAFT

Index

SetMappingToScalar, 23
SetMaxLeafSize, 216
SetMergeDuplicatePoints, 39
SetMergePoints, 33
SetModeTo2D, 49
SetModeTo3D, 49
SetNextDataSet, 41
SetNextTime, 41
SetNormalArrayName, 39
SetNormalField, 30
SetNormalizeCellNormals, 29
SetNumberOfBins, 25, 218
SetNumberOfDivisions, 36
SetNumberOfPlanes, 216
SetNumberOfSamplingPoints, 24
SetNumberOfSteps, 41
SetOutputFieldName, 17–21, 24–31, 37, 243
SetOutputMode, 23, 24
SetOutputToRGB, 23
SetOutputToRGBA, 24
SetParmeter, 296
SetPassPolyData, 35
SetPointNormalsName, 28, 29
SetPosition, 51
SetPreviousTime, 41
SetPrimaryCoordinateSystem, 20, 21
SetPrimaryField, 20, 21
SetQCriterionName, 24, 25
SetRange, 25, 27, 218
SetRate, 31, 32
SetRemoveDegenerateCells, 34
SetRotation, 28
SetRotationX, 28
SetRotationY, 28
SetRotationZ, 28
SetRowMajorOrdering, 25
SetScalarFactorField, 30
SetScale, 28
SetSecondaryCoordinateSystem, 20, 21
SetSecondaryField, 20, 21
SetSeeds, 41
SetSphericalToCartesian, 20
SetStderrLogLevel, 84
SetStepSize, 41
SetThreadName, 83
SetTolerance, 33
SetToleranceIsAbsolute, 33
SetTransform, 28
SetTranslation, 27
SetUpperThreshold, 40
SetUseCoordinateSystemAsField, 17, 43
SetUseCoordinateSystemAsPrimaryField, 20, 21
SetUseCoordinateSystemAsSecondaryField, 20, 21
SetVectorField, 31
SetViewRange2D, 49

SetViewUp, 51
SetVorticityName, 24, 25
shape, 145, 205–208, 210

edge, 145, 210–211
face, 145, 210–213
point, 145, 210

Shrink, 89, 263, 268
signature, 295

control, xii, xxi, xxv, 155–159, 162, 163, 165, 166, 169–
173, 176, 177, 181, 184, 185, 189, 219, 295, 305,
313–315, 323–325, 329

tags, 313–314
execution, xii, xxi, xxv, 155–157, 159, 163, 166, 170,

172, 173, 177, 192, 305, 313–315, 323, 324, 329
tags, 314–315

signature tags, 156
1, 157, 159, 163, 166, 170, 172, 177, 314
2, 157, 159, 163, 166, 170, 172, 177, 314

AtomicArrayInOut, xxii, 159, 163, 166, 170, 172, 184,
185

Boundary, 172, 173
Cell, 186
CellCount, 166
CellIndices, 166
CellSetIn, 157, 162, 165, 169, 171
CellShape, 163, 170
ExecObject, xxii, 159, 160, 163, 166, 170, 172, 189,

215, 216, 219
FieldIn, 157, 158, 171, 325
FieldInCell, 162, 165
FieldInFrom, 169
FieldInNeighborhood, 171, 173
FieldInOut, 158, 162, 165, 169, 172
FieldInOutCell, 162
FieldInOutPoint, 165
FieldInPoint, 162, 165
FieldInTo, 169
FieldOut, 158, 162, 165, 169, 171, 325
FieldOutCell, 162
FieldOutPoint, 165
FieldPointIn, 156, 208, 209
FromCount, 170
FromIndices, 170
InputIndex, 159, 163, 166, 171, 173, 177, 192
KeysIn, 176, 177
OutputIndex, 159, 163, 166, 171, 173, 177, 192
Point, 186
PointCount, 163
PointIndices, 163, 210, 212
ReducedValuesIn, 177
ReducedValuesInOut, 177
ReducedValuesOut, 177
ThreadIndices, 159, 163, 166, 171, 173, 177
ValueCount, 177, 179
ValuesIn, 177

Index 359

DRAFT

Index

ValuesInOut, 177
ValuesOut, 177
VisitIndex, 159, 163, 166, 171, 172, 177, 192, 222
WholeArrayIn, xxii, 158, 162, 165, 170, 172, 181, 182
WholeArrayInOut, 158, 162, 166, 170, 172, 181
WholeArrayOut, 158, 160, 162, 165, 170, 172, 181
WholeCellSetIn, xxii, 159, 163, 166, 170, 172, 185–187,

225, 231
WorkIndex, 157, 159, 160, 163, 166, 171–173, 177, 192,

312
SignBit, 200
Sin, 200
sine, 200
single type cell set, 146–147
SinH, 200
SolveLinearSystem, 202
Sort, 127
sort, 127

by key, 127
SortByKey, 127
SortGreater, 119
SortLess, 119
Sphere, 35
spherical coordinate system transform, 19
SphericalCoordinateSystemTransform, 19
Sqrt, 200
square root, 200
Start, 131, 132
Started, 132
static assert, 81
StaticAssert.h, 81
StaticTransformCont, 300
StaticTransformExec, 300
StaticTransformType, 300
Stop, 131, 132
Stopped, 132
Storage, xxiv, 90, 259, 262, 267, 281

Allocate, 268
GetNumberOfValues, 268
GetPortal, 268
GetPortalConst, 268
PortalConstType, 268
PortalType, 268
ReleaseResources, 268
Shrink, 268
ValueType, 267

storage, 253–271
adapting, 265–271
default, 254, 270
derived, 258–265
implicit, 254–256

StorageBasicBase, 284, 285
StorageTag, 255, 257, 265, 269
StorageTagBasic, 254
Store, 311, 314

stream compact, 122
Streamline, 41

SetNumberOfSteps, 41
SetSeeds, 41
SetStepSize, 41

streamlines, 41
Strict, 65
structured cell set, 145–146
Sum, 120
Superclass, 255, 257, 265, 269
surface normals, 28–29

auto orient, 28
consistency, 28
flip, 28

surface simplification, 36–37
SurfaceNormals, 28

Execute, 28
GetAutoOrientNormals, 29
GetCellNormalsName, 29
GetConsistency, 29
GetFlipNormals, 29
GetGenerateCellNormals, 29
GetGeneratePointNormals, 29
GetNormalizeCellNormals, 29
GetPointNormalsName, 29
SetAutoOrientNormals, 28, 29
SetCellNormalsName, 28, 29
SetConsistency, 28, 29
SetFlipNormals, 28, 29
SetGenerateCellNormals, 29
SetGeneratePointNormals, 29
SetNormalizeCellNormals, 29
SetOutputFieldName, 28
SetPointNormalsName, 28, 29

swizzle array handle, 104
SyncControlArray, 89, 93, 270
synchronize, 128

Tag, 206
tag, 71

cell shape, 205–206
device adapter, 113–114

provided, 113–114
dimensionality, 71
lists, 75–79
multiple components, 73
numeric, 71
shape, 205–206
single component, 73
static vector size, 73
topology element, 169
type lists, 77–78
type traits, 71–73
variable vector size, 73
vector traits, 73–74

Tan, 200

360 Index

DRAFT

Index

tangent, 200
TanH, 200
TBB, 10, 114
tbb namespace, 63
template metaprogramming, 75
tetrahedron, 206
thread indices, 310, 320–322
thread name, 83
ThreadIndices, 159, 163, 166, 171, 173, 177
ThreadIndicesBasic, 321, 322

GetInputIndex, 310
GetOutputIndex, 310
GetVisitIndex, 310

ThreadIndicesTopologyMap, 321
Threshold, 40, 250

Execute, 40
GetLowerThreshold, 40
GetUpperThreshold, 40
SetLowerThreshold, 40
SetUpperThreshold, 40

threshold, 40
Timer, xxi, 131, 132, 293

GetDevice, 132
GetElapsedTime, 131, 132
Ready, 132
Reset, 132
Start, 131, 132
Started, 132
Stop, 131, 132
Stopped, 132

timer, 131–132, 293–294
TOPOLOGICAL DIMENSIONS, 207
TopologicalDimensionsTag, 207
topology element tag, 169
topology map worklet, 153, 168–171
TopologyElementTag.h, 169
TopologyElementTagCell, 169, 186
TopologyElementTagEdge, 169
TopologyElementTagFace, 169
TopologyElementTagPoint, 169, 186
TrackballRotate, 55
traits, 71–75

device adapter, 115–117
filter, 242–243, 245
type, 71–73
vector, 73–75

transfer virtual object, 286–287
transform, 27–28
transformed array, 256–257
Transport, xxv, 307, 309

ExecObjectType, 307, 309
transport, 307–310

atomic array, 308
cell set, 308
execution object, 307

input array, 307
input array keyed values, 308
input/output array, 308
input/output array keyed values, 308
keys, 308
output array, 307
output array keyed values, 308
topology mapped field, 308
whole array input, 308
whole array input/output, 308
whole array output, 308

TransportTag, 314
TransportTagArrayIn, 307
TransportTagArrayInOut, 308
TransportTagArrayOut, 307
TransportTagAtomicArray, 308
TransportTagCellSetIn, 308
TransportTagExecObject, 307
TransportTagKeyedValuesIn, 308
TransportTagKeyedValuesInOut, 308
TransportTagKeyedValuesOut, 308
TransportTagKeysIn, 308
TransportTagTopologyFieldIn, 308
TransportTagWholeArrayIn, 308
TransportTagWholeArrayInOut, 308
TransportTagWholeArrayOut, 308
transpose matrix, 202
triangle, 206
TriangleNormal, 201
true type, 81
try execute, 273–274
TryExecute, 116, 273
TryExecuteOnDevice, 274
TwoPi, 200
type check, 305–307

array, 306
atomic array, 306
cell set, 306
execution object, 305
keys, 306

type lists, 77–78
type traits, 71–73
type traits, 81
TypeCheck, xxv, 305, 306

value, 306, 307
TypeCheckTag, 314
TypeCheckTagArray, 306
TypeCheckTagAtomicArray, 306
TypeCheckTagCellSet, 306
TypeCheckTagExecObject, 305
TypeCheckTagKeys, 306
TypelessExecutionArray, 284, 285
TypeListTag.h, 77, 78, 136
TypeListTagAll, 77
TypeListTagCommon, 77

Index 361

DRAFT

Index

TypeListTagField, 77
TypeListTagFieldScalar, 77
TypeListTagFieldVec2, 77
TypeListTagFieldVec3, 77
TypeListTagFieldVec4, 77
TypeListTagId, 77
TypeListTagId2, 77
TypeListTagId3, 77
TypeListTagIndex, 77
TypeListTagScalarAll, 77
TypeListTagVecAll, 77
TypeListTagVecCommon, 77
Types.h, 64, 66, 68, 77
TypeToString, 86
TypeTraits, xviii, 71, 72, 122

ZeroInitialization, 122
TypeTraitsIntegerTag, 71
TypeTraitsRealTag, 71
TypeTraitsScalarTag, 71
TypeTraitsVectorTag, 71

UInt16, 66
UInt32, 66
UInt64, 66
UInt8, 23, 38, 66
uniform grid, 140
uniform point coordinates array handle, 101
Union, 70, 71
Unique, 128
unique, 128
unstructured grid, 141
Update, 216, 218
upper bounds, 128
UpperBounds, 128
UserFirst, 83, 84
UserLast, 83
UserVerboseFirst, 84
UserVerboseLast, 84

VALID, 298
Valid, 115, 116
Value, 298
value, 306, 307
ValueCount, 177, 179
ValuesIn, 177
ValuesInOut, 177
ValuesOut, 177
ValueType, 92, 103, 104, 255, 257, 262, 265, 267, 269, 310,

311
variant array handle, 133–137

cast, 134–137
construct, 133
new instance, 134
query, 133, 134

VariantArrayHandle, 78, 108, 133, 302
AsVirtual, 135

CastAndCall, 135, 136
CopyTo, 135
GetNumberOfComponents, 134
GetNumberOfValues, 133
IsType, 134
IsValueType, 134
NewInstance, 134
PrintArrayContents, 136, 137
ResetTypes, 137

VariantArrayHandleBase, 137
Vec, xviii, xix, 23, 66–68, 70, 73, 74, 77, 97, 102–106, 109,

133, 173, 200–203, 208, 209, 222, 225, 231, 305,
306

CopyInto, 68
Vec-like, 67–69, 73
VecC, 68
VecCConst, xviii, 68
VecFromPortal, 69
VecFromPortalPermute, 69
VecRectilinearPointCoordinates, 69
vector, 31
vector analysis, 200–201
vector magnitude, 29–30
vector traits, 73–75
Vector¡T,2¿, 120
VectorAnalysis.h, 200
VectorMagnitude, 29

SetActiveField, 29
SetOutputFieldName, 29

VecTraits, xviii, 73, 74
VecTraitsTagMultipleComponents, 73
VecTraitsTagSingleComponent, 73
VecTraitsTagSizeStatic, 73
VecTraitsTagSizeVariable, 73
VecVariable, xviii, 68, 69
version, 81–82

CMake, 81–82
macro, 82

Version.h, 82
vertex, 206
vertex clustering, 36–37
VertexClustering, 36
View, 47, 49, 53

GetCamera, 49
Initialize, 47
Paint, 47, 54
SaveAs, 48
SetBackground, 47
SetCamera, 49
SetForeground, 47

view, 47–48
view array handle, 96
view up, 51
View2D, 47
View3D, 47

362 Index

DRAFT

Index

virtual array handle, 106–108
virtual object transfer, 286–287
VirtualObjectTransfer, xxiv, 286
VirtualObjectTransferShareWithControl, 287
visit index, 192
VisitIndex, 159, 163, 166, 171, 172, 177, 192, 222
VTK-m CMake package, 11–13

libraries, 12
vtkm cont, 12
vtkm filter, 12
vtkm rendering, 12

variables, 12–13
VTKm ENABLE CUDA, 13
VTKm ENABLE MPI, 13
VTKm ENABLE OPENMP, 13
VTKm ENABLE RENDERING, 13
VTKm ENABLE TBB, 13
VTKm FOUND, 12
VTKm VERSION, 12
VTKm VERSION FULL, 12
VTKm VERSION MAJOR, 12
VTKm VERSION MINOR, 12
VTKm VERSION PATCH, 12

version, 81–82
VTKDataSetReader, 15

ReadDataSet, 15
VTKDataSetWriter, 16

WriteDataSet, 16
vtkm namespace, 62, 63, 197, 205, 295
vtkm/cont/ArrayHandleCartesianProduct.h/h, 102
vtkm/cont/cuda/DeviceAdapterCuda.h, 113, 116
vtkm/cont/internal/DeviceAdapterTag.h, 280
vtkm/cont/openmp/DeviceAdapterOpenMP.h, 113
vtkm/cont/tbb/DeviceAdapterTBB.h, 114
vtkm/cont/ArrayCopy.h, 109
vtkm/cont/ArrayHandle.h, 63
vtkm/cont/ArrayHandleCast.h, 98
vtkm/cont/ArrayHandleCompositeVector.h, 103
vtkm/cont/ArrayHandleConstant.h, 96
vtkm/cont/ArrayHandleCounting.h, 97
vtkm/cont/ArrayHandleExtractComponent.h, 104
vtkm/cont/ArrayHandleGroupVec.h, 105
vtkm/cont/ArrayHandleGroupVecVariable.h, 106
vtkm/cont/ArrayHandleImplicit.h, 255
vtkm/cont/ArrayHandlePermutation.h, 99
vtkm/cont/ArrayHandleSwizzle.h, 104
vtkm/cont/ArrayHandleView.h, 96
vtkm/cont/ArrayHandleZip.h, 100
vtkm/cont/ArrayPortalToIterators.h, 93
vtkm/cont/ArrayRangeCompute.h, 109
vtkm/cont/CellSetListTag.h, 148
vtkm/cont/DeviceAdapterSerial.h, 113
vtkm/cont/Logging.h, 84, 86
vtkm/exec/CellDerivative.h, 209
vtkm/exec/CellEdge.h, 210, 225

vtkm/exec/CellFace.h, 211
vtkm/exec/CellInterpolate.h, 209
vtkm/exec/ParametricCoordinates.h, 208
vtkm/filter/internal/CreateResult.h, 243
vtkm/filter/FilterTraits.h, 242
vtkm/internal/ConfigureFor32.h, 66
vtkm/internal/ConfigureFor64.h, 66
vtkm/worklet/WorkletMapTopology.h, 161
vtkm::cont, 62, 63
vtkm::cont::arg, 305–307, 309
vtkm::cont::cuda, 63
vtkm::cont::tbb, 63
vtkm::exec, 62, 63, 318
vtkm::exec::arg, 311, 313
vtkm::filter, 17, 63, 241
vtkm::internal, 295
vtkm::io, 15, 63, 139
vtkm::io::reader, 15
vtkm::io::writer, 16
vtkm::opengl, 63
vtkm::rendering, 45, 63
vtkm::worklet, 63, 247, 325, 327
VTKM ARRAY HANDLE SUBCLASS, 255–257, 265,

269
VTKM ARRAY HANDLE SUBCLASS NT, 255–257,

265, 269, 270
VTKM ASSERT, xix, 80, 196
VTKM CONT, 63, 64, 189
vtkm cont, 12
VTKm CUDA Architecture, 10
VTKM DEFAULT CELL SET LIST TAG, 148
VTKM DEFAULT STORAGE TAG, 254, 270
VTKM DEFAULT TYPE LIST TAG, 78, 136
VTKm DIR, 11
VTKm ENABLE BENCHMARKS, 9
VTKm ENABLE CUDA, 10, 13
VTKm ENABLE EXAMPLES, 9
VTKm ENABLE LOGGING, 82
VTKm ENABLE MPI, 13
VTKm ENABLE OPENMP, 10, 13
VTKm ENABLE RENDERING, 10, 12, 13
VTKm ENABLE TBB, 10, 13
VTKm ENABLE TESTING, 10
VTKM EXEC, 63, 64, 157, 189
VTKM EXEC CONT, 63, 64, 157, 189
vtkm filter, 12
VTKm FOUND, 12
VTKM IS ARRAY HANDLE, 106
VTKM IS CELL SHAPE TAG, 205
VTKM IS DEVICE ADAPTER TAG, 114
VTKM LOG ERROR CONTEXT, 86
VTKM LOG F, 85
VTKM LOG IF F, 85
VTKM LOG IF S, 85
VTKM LOG S, 85

Index 363

DRAFT

Index

VTKM LOG SCOPE, 85
VTKM LOG SCOPE FUNCTION, 86
VTKM MAX BASE LIST, 76
VTKM NO 64BIT IDS, 66
VTKM NO DOUBLE PRECISION, 66
vtkm rendering, 12
VTKM STATIC ASSERT, xix, 81
VTKM STATIC ASSERT MSG, 81
VTKM STORAGE, 270
VTKM STORAGE UNDEFINED, 270
VTKM SUPPRESS EXEC WARNINGS, 64
VTKM USE 64BIT IDS, 66
VTKm USE 64BIT IDS, 10
VTKM USE DOUBLE PRECISION, 66
VTKm USE DOUBLE PRECISION, 10
VTKM VALID DEVICE ADAPTER, 280
VTKM VERSION, 82
VTKm VERSION, 12, 82
VTKM VERSION FULL, 82
VTKm VERSION FULL, 12, 82
VTKM VERSION MAJOR, 82
VTKm VERSION MAJOR, 12, 82
VTKM VERSION MINOR, 82
VTKm VERSION MINOR, 12, 82
VTKM VERSION PATCH, 82
VTKm VERSION PATCH, 12, 82
vtkm/Assert.h, 80
vtkm/CellShape.h, 205
vtkm/CellTraits.h, 207
vtkm/Hash.h, 228
vtkm/ListTag.h, 76, 78
vtkm/Math.h, 197
vtkm/Matrix.h, 201
vtkm/NewtonsMethod.h, 202
vtkm/StaticAssert.h, 81
vtkm/TopologyElementTag.h, 169
vtkm/TypeListTag.h, 77, 78, 136
vtkm/Types.h, 64, 66, 68, 77
vtkm/VectorAnalysis.h, 200
vtkm/Version.h, 82
vtkmGenericCellShapeMacro, 206

Warn, 83
warp scalar, 30–31
warp vector, 31
WarpScalar, 30

Execute, 30
SetNormalField, 30
SetOutputFieldName, 30
SetScalarFactorField, 30

WarpVector, 31
Execute, 31
SetOutputFieldName, 31
SetVectorField, 31

wedge, 206
whole array, 181–184

whole cell set, 185–189
WholeArrayIn, xxii, 158, 162, 165, 170, 172, 181, 182
WholeArrayInOut, 158, 162, 166, 170, 172, 181
WholeArrayOut, 158, 160, 162, 165, 170, 172, 181
WholeCellSetIn, xxii, 159, 163, 166, 170, 172, 185–187, 225,

231
wireframe, 48
WordTypeDefault, 288
WorkIndex, 157, 159, 160, 163, 166, 171–173, 177, 192, 312
worklet, 61, 153–196

atomic array, 184–185
control signature, 156
creating, 155–196
error handling, 195–196
execution object, 189–191
execution signature, 156–157
input domain, 157
scatter, 191–195
whole array, 181–184
whole cell set, 185–189

worklet namespace, 63, 247, 325, 327
worklet types, 153–154, 158–181

cell to point, 153
cell to point map, 165–168
creating new, 317–339
field map, 153, 158–161
point neighborhood, 153, 171–176
point to cell, 153
point to cell map, 161–164
reduce by key, 154, 176–181, 224
topology map, 153, 168–171

WorkletBase, 325
WorkletMapCellToPoint, 153, 165
WorkletMapField, 153, 154, 158, 191
WorkletMapPointToCell, 153, 154, 161, 169, 191
WorkletMapTopology, 153, 154, 168, 169
WorkletMapTopology.h, 161
WorkletPointNeighborhood, 153, 154, 171
WorkletReduceByKey, 154, 176, 225, 308
world coordinates, 208–209
WorldCoordinatesToParametricCoordinates, 208
write file, 16
WriteDataSet, 16
writer namespace, 16

X, 70

Y, 70

Z, 70
ZeroInitialization, 72, 122
zfp

compression, 31–32
decompression, 32

ZFPCompressor, 31
GetActiveFieldName, 31

364 Index

DRAFT

Index

GetRate, 31
SetActiveField, 31
SetRate, 31

ZFPDecompressor, 32
GetActiveFieldName, 32
SetActiveField, 32
SetRate, 32

zipped array handles, 100
Zoom, 50, 53, 57

Index 365

	I Getting Started
	Introduction
	How to Use This Guide
	Conventions Used in This Guide

	Build and Install VTK-m
	Getting VTK-m
	Configure VTK-m
	Building VTK-m
	Linking to VTK-m

	File I/O
	Readers
	Legacy VTK File Reader

	Writers
	Legacy VTK File Writer

	Running Filters
	Field Filters
	Cell Average
	Coordinate System Transforms
	Cylindrical Coordinate System Transform
	Spherical Coordinate System Transform

	Cross Product
	Dot Product
	Connected Components
	Cell Connectivity
	Image Field

	Field to Colors
	Gradients
	Histogram
	Point Average
	Point Elevation
	Point Transform
	Surface Normals
	Vector Magnitude
	Warp Scalar
	Warp Vector
	ZFP Compression

	Data Set Filters
	Clean Grid
	Clip with Implicit Function
	External Faces
	Ghost Cell Classification
	Vertex Clustering

	Data Set with Field Filters
	Clip with Field
	Ghost Cell Removal
	Marching Cubes
	Threshold
	Streamlines
	Pathlines

	Advanced Field Management
	Input Fields
	Passing Fields from Input to Output

	Rendering
	Scenes and Actors
	Canvas
	Mappers
	Views
	Changing Rendering Modes
	Manipulating the Camera
	2D Camera Mode
	View Range
	Pan
	Zoom

	3D Camera Mode
	Position and Orientation
	Movement
	Pan
	Zoom
	Reset

	Interactive Rendering
	Rendering Into a GUI
	Camera Movement
	Rotate
	Pan
	Zoom

	Color Tables

	II Using VTK-m
	Basic Provisions
	General Approach
	Package Structure
	Function and Method Environment Modifiers
	Initialization
	Core Data Types
	Single Number Types
	Vector Types
	Pair
	Range
	Bounds

	Traits
	Type Traits
	Vector Traits

	List Tags
	Building List Tags
	Type Lists
	Operating on Lists

	Error Handling
	VTK-m Version
	Logging
	Initializing Logging
	Logging Levels
	Log Entries
	Basic Log Entries
	Conditional Log Entries
	Scoped Log Entries
	Error Context

	Helper Functions

	Array Handles
	Creating Array Handles
	Array Portals
	Allocating and Populating Array Handles
	Fancy Arrays
	Constant Arrays
	ArrayHandleView
	Counting Arrays
	Cast Arrays
	Discard Arrays
	Permuted Arrays
	Zipped Arrays
	Coordinate System Arrays
	Composite Vector Arrays
	Extract Component Arrays
	Swizzle Arrays
	Grouped Vector Arrays

	Virtual Arrays
	Deep Array Copies
	Compute Array Range
	Interface to Execution Environment

	Device Adapters
	Device Adapter Tag
	Device Adapter Traits
	Runtime Device Tracker
	Predicates and Operators
	Unary Predicates
	Binary Predicates
	Binary Operators
	Creating Custom Comparators

	Device Adapter Algorithms
	Copy
	CopyIf
	CopySubRange
	LowerBounds
	Reduce
	ReduceByKey
	ScanExclusive
	ScanExclusiveByKey
	ScanInclusive
	ScanInclusiveByKey
	Schedule
	Sort
	SortByKey
	Synchronize
	Unique
	UpperBounds
	Specifying the Device Adapter

	Timers
	Variant Array Handles
	Querying and Casting
	Casting to Unknown Types
	Specifying Cast Lists

	Data Sets
	Building Data Sets
	Creating Uniform Grids
	Creating Rectilinear Grids
	Creating Explicit Meshes
	Add Fields

	Cell Sets
	Structured Cell Sets
	Explicit Cell Sets
	Cell Set Permutations
	Dynamic Cell Sets
	Blocks and Assemblies
	Zero Cell Sets

	Fields
	Coordinate Systems
	Multi-Block Data

	III Developing with VTK-m
	Worklets
	Worklet Types
	Dispatchers
	Provided Worklets
	Creating Worklets
	Control Signature
	Execution Signature
	Input Domain
	Worklet Operator

	Worklet Type Reference
	Field Map
	Topology Map
	Point to Cell Map
	Cell To Point Map
	General Topology Maps

	Point Neighborhood
	Neighborhood Information
	Convolving Small Kernels

	Reduce by Key

	Whole Arrays
	Atomic Arrays
	Whole Cell Sets
	Execution Objects
	Scatter
	Error Handling

	Math
	Basic Math
	Vector Analysis
	Matrices
	Newton's Method

	Working with Cells
	Cell Shape Tags and Ids
	Converting Between Tags and Identifiers
	Cell Traits

	Parametric and World Coordinates
	Interpolation
	Derivatives
	Edges and Faces

	Locators
	Cell Locators
	Building a Cell Locator
	Using Cell Locators in a Worklet

	Point Locators
	Building Point Locators
	Using Point Locators in a Worklet

	Generating Cell Sets
	Single Cell Type
	Combining Like Elements
	Faster Combining Like Elements with Hashes
	Variable Cell Types

	Creating Filters
	Field Filters
	Field Filters Using Cell Connectivity
	Data Set Filters
	Data Set with Field Filters

	Custom Array Storage
	Basic Storage
	Implementing Fancy Arrays
	Implicit Array Handles
	Transformed Arrays
	Derived Storage

	Adapting Data Structures

	Try Execute

	IV Advanced Development
	Implementing Device Adapters
	Tag
	Runtime Detector
	Array Manager Execution
	vtkmidentifierArrayManagerExecution
	vtkmidentifierExecutionPortalFactoryBasic
	vtkmidentifierExecutionArrayInterfaceBasic

	Virtual Object Transfer
	Atomic Interface Execution
	Algorithms
	Timer Implementation

	Function Interface Objects
	Declaring and Creating
	Parameters
	Invoking
	Modifying Parameters
	Transformations
	For Each

	Worklet Arguments
	Type Checks
	Transport
	Fetch
	Creating New vtkmsignatureControlSignature Tags
	Creating New vtkmsignatureExecutionSignature Tags

	New Worklet Types
	Motivating Example
	Thread Indices
	Signature Tags
	Worklet Superclass
	Dispatcher
	Using the Worklet
	Quadratic Type 2 Curve
	Tree Fractal
	Dragon Fractal
	Hilbert Curve

	V Appendix
	Index

